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ABSTRACT

A number of more or less well-known, but quite complex, characterizations
of stop-loss order are reviewed and proved in an elementary way. Two recent
proofs of the stop-loss order preserving property for the distortion pricing
principle are invalidated through a simple counterexample. A new proof is
presented. It is based on the important Hardy-Littlewood transform, which
is known to characterize the stop-loss order by reduction to the usual
stochastic order, and the dangerousness characterization of stop-loss order
under a finite crossing condition. Finally, we complete and summarize the
main properties of the distortion pricing principle.
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1. INTRODUCTION

Since its introduction by Biihlmann (1970), the functional approach to
premium calculation in insurance has seen an impressive development. A
first general and rather elementary method to generate valuable pricing
principles consists of the class of quantile premium calculation principles by
Denneberg (1985/90/94). Several recent contributions around this theme
have been made in actuarial science and finance, among others Hurlimann
(1993), Wang (1995a/b/c, 1996a/b), Wang et al. (1997) and Chateauneuf et
al. (1996).

For a given set S of non-negative random variables X > 0 with finite
means, defined on some probability space, and which represent random
losses of insurance contracts, a pricing principle is a non-negative real
function P : S —> R, which depends on the distribution Fx{x) of X, and
which is interpreted as price of the insurance risk. From an axiomatic point
of view, it is well accepted that a pricing principle should satisfy a certain
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120 WERNER HURLIMANN

number of desirable properties. Without repeating all well-known inter-
pretations, the following properties are quite reasonable:

P[X] > E[X], for all X &S

(P2) P[X] < suppT], for all X e S

(P3) P[aX + b } = aP[X] + b , f o r a l l a , b , a > 0 , f o r a l l X e S

(PA) P[X + Y ] < P[X] + P [ Y ] , f o r a l l X , Y e S s u c h t h a t X + Y e S

(P5) P[X] <P[Y] i f X < s , Y and X , Y e S

The last property says that the price functional preserves the stop-loss order,
or equivalently the increasing convex order (see Kaas et al. (1994) and
Shaked and Shanthikumar (1994) for fundamentals). Requiring that the
price functional preserves the usual stochastic order <st only, is a less
stringent property since stochastic order implies stop-loss order. Though the
stop-loss ordering preserving property of the Swiss family of premium
calculation principles has been known since its actuarial consideration in
Buhlmann et al. (1977), the recognition of <,,/ as a sound ordering of risk
seems more recent. For example, the order preserving axiom (P5) is
considered in Heilmann (1987) but without mention of a specific and
accepted partial order, which could be used as selected ordering of risk.
Furthermore, the absolute deviation principle and the Gini principle,
introduced by Denneberg (1985/90), and which satisfy properties (Pl)-(PA),
and the weaker stochastic order preserving property, also satisfy (P5),
(consequence of our main result in Section 3.2). Previously two quite similar
but different proofs of (P5) have been proposed by Wang (1996a/b), but
both contain an error (see Section 3.1).

In view of the above discussion, it seems useful to present a short
chronological review of some main non-trivial pricing functions, which
preserve <si, and inspect whether the remaining axioms (Pl)-(P4) are
satisfied.

The Swiss family is positively homogeneous if, and only if, it is the net
principle (see Schmidt (1989), simpler proof by Hurlimann (1997), Example 4.1
(continued), p. 9). The first genuine pricing principles, which satisfy (P1)-(P5),
are the absolute deviation principle P[X] = E[X] + 9 • E[\X - mx\], 0 < 0 < 1
(Denneberg (1985/90)) and the Gini principle P[X) = E\X] +6-Gin\[X},
0 < 0 < 1 (Denneberg (1990)). These functionals are special cases of the
class of distortion pricing principles.

r oo p\ /'I

P[X\= g(Fx(x))dx = Fx\\ - u)dg{u) = F-\u)dj(u), (1.1)
Jo Jo Jo

where g(x) is an increasing concave function such that g(0) — 0, g(\) = \,
Fx(x) = 1 — Fx(x) is the survival function, j(x) = 1 — g(\ — x) is the
distortion of probabilities in Denneberg's setting, and F^'(w) is a quantile
function of X, The second equality is obtained through partial integration,
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and shown by elementary calculus in case g(x) is differentiable. The right-
hand side representation has been introduced by Denneberg (1990) and
its equivalence with the first integral (up to an alternative appropriate
definition of the inverse) has been used by Wang (1996a) (see also Wang
et al. (1997)).

Another attractive special case of (1.1) is the PH-transform principle
studied by Wang (1995a/95b/96a/96b). Previously to the last example had
appeared the Dutch principle (see van Heerwaarden (1991), van Heerwaar-
den and Kaas (1992), Kaas et al. (1994) and a slight generalization of it (see
Hiirlimann (1994/95a/95b)). A pricing principle from the Dutch family
satisfies (P1)-(P5) if, and only if, it is of the form

P[X) = E[X] + 0-E[{X-E[X})+] , 0<9<\. (1.2)

The Dutch family is a special case of the class of so-called "quasi-mean value
principles" considered recently by the author. However, only sporadic
members of this class define feasible price functionals satisfying (Pl)-(P5), of
which one may mention the interesting Example 11.1 in Hiirlimann (1997a).

A generalization of the class of distortion pricing principles is the class of
Choquet pricing principles in Chateauneuf et al. (1996), which is based on
the theory of capacities and non-additive measures (exposed in Denneberg
(1994)), and breaks with the traditional probabilistic foundations of
actuarial science and finance. Finally, let us mention that one misses still
feasible price functionals along the economic approach initiated by
Buhlmann (1980/84) (see the critical comments by Lemaire (1988)).

In the present paper, we invalidate Wang's proofs of the property (P5) for
the distortion pricing principle through a simple counterexample, and focus
on a new proof of this important property. Using a two-stage limiting
argument (dominated convergence theorem and continuity property of the
distortion pricing functional), it is possible to restrict the attention to risks,
which belong to the following large set:

S consists of all non-negative random variables with
finite means, such that the distribution functions of any
two of them cross finitely many times (finite crossing condition). (1.3)

For completeness, we show also that (1.1) satisfies the other properties
(P\)-(P4), where our expose is intended to be essentially accessible from an
elementary perspective.

The paper is organized as follows. In Section 2, a number of more or less
well-known, but quite complex, characterizations of stop-loss order are
reviewed and proved in an elementary way. Since no such proofs have been
found in the original and other papers (and books) consulted by the author,
the present supplement to the existing literature will hopefully be helpful for
future workers in this area (as it has been to the author). Section 3 is devoted
to a derivation of the main properties of the distortion pricing principle. In
Section 3.1 two recent proofs by Wang of the stop-loss order preserving
property for the distortion pricing principle are invalidated through a simple
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counterexample. A new proof is presented in Section 3.2. It is based on the
important Hardy-Littlewood transform, which is known to characterize the
stop-loss order by reduction to the usual stochastic order (Theorem 2.3), and
the dangerousness characterization of stop-loss order under the finite
crossing condition (1.3) (Theorem 2.2). Finally, we complete and summarize
the main properties of the distortion pricing principle in Section 3.3.

2. SOME EQUIVALENT CHARACTERIZATIONS OF STOP-LOSS ORDER

Capital letters X, Y, ... denote random variables with distribution functions
Fx{x), FY(x)_, ... and finite means px, py, ••• • The survival functions are
denoted by Fx{x) — 1 - Fx{x), ... . The stop-loss transform of a random
variable X is defined by

nx(x) := E[{X - x)+] = I Fx(t)dt, x in the support of X. (2.1)
Jx

The random variable X is said to precede Y in stochastic order or stochastic
dominance of first order, a relation written as X <st Y, if Fx{x) < Fy{x) for
all x in the common support of X and Y. The random variables X and Y
satisfy the stop-loss order, or equivalently the increasing convex order, written
as X <si Y (or X <icx Y), if nx(x) < •ny(x) for all x. A sufficient condition
for a stop-loss order relation is the dangerousness order relation, written as
X <D Y, defined by the once-crossing condition

Fx(x) < FY(x) for all x < c,
Fx(x) > FY(x) for all x > c,

where c is some real number, and the requirement fix < fJ-y (Lemma 2.1). By
equal means fix = /j,y, the ordering relations <,,/ and <o are precised by
writing <si,= and <o=- The partial stop-loss order by equal means is also
called convex order and denoted by <cx. The probabilistic attractiveness of
the partial order relations <^ and <s/ is corroborated by several invariance
properties (e.g. Kaas et al. (1994), chap. II.2 and III.2, or Shaked and
Shanthikumar (1994)). For example, both of <s, and <,/ are closed under
convolution and compounding, and < /̂ is additionally closed under mixing
and conditional compound Poisson summing.

In applications, to establish stop-loss order comparison properties, one
requires some fundamental facts and equivalent characterizations. First of
all, the following well-known elementary equivalent statements hold:

(SLl) X <si Y
(SL2) E[tp(X)] < E[p( Y)] for all increasing convex functions <p(x)

(SL3) E[m&x(x, X)} < E[m&x(x, Y)} uniformly for all x <E R
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ON STOP-LOSS ORDER AND THE DISTORTION PRICING PRINCIPLE 123

A famous and widely known sufficient condition for stop-loss order is
summarized in the following property.

Lemma 2.1. (Karlin-Novikoff (1963) once-crossing condition, Lemma ofOhlin
(1969)). Let X and Y be random variables with distributions Fx{x), FY{x)
and suppose that X <D Y, as defined in (2.2). Then the stop-loss order
relation X <s/ Y is satisfied.

Proof. By assumption, one has the inequalities

max(x, X) < max(x, Y), x > c,

min(x, X) > min(x, Y), x < c.

In particular, one obtains E[max(x, X)] < £[max(i, Y)], x > c. By (5X3)
above, it remains to show the last inequality for x < c. This follows
immediately from the identity

max(x, X) = X + x — min(x, X)

using the assumptions. •

A generalized version of the Karlin-Novikoff once-crossing conditions
yields the following sign-change characterization of the stop-loss order.
Without proof, one finds the relevant conditions in Taylor (1983), which
attributes them to Stoyan (1977). However, the previous result by Taylor has
not been formulated as a full characterization of stop-loss order.

Theorem 2.1. (Karlin-Novikoff-Stoyan-Taylor crossing conditions for stop-
loss order). Let X,YGS be random variables with means /xjf, fiy,
distributions F\(x), Fy(x) and stop-loss transforms TTX(X), ny(x). Suppose
the distributions cross n > 1 times in the crossing points t\ < ti < ... <tn.
Then one has X <si Y if, and only if, one of the following is fulfilled:

Ca.se 1: The first sign change of the difference Fy(x) — Fx(x) occurs from —
to +, there is an even number of crossing points n = 2m, and one has the
inequalities

Kx{t2j-\) <KY(t2j-i), j=l,...,m (2.3)

Case 2: The first sign change of the difference FY{x) - Fx(x) occurs from +
to —, there is an odd number of crossing points n = 2m + 1, and one has the
inequalities

fix < Mr, nxihj) < iry&j), j = 1, •••,ra (2.4)
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Proof. Two cases must be distinguished.

Case 1: The first sign change occurs from — to +

If X <si Y, the last sign change occurs from + to — (otherwise
nx(x) > TTY{X) for some x > tn), hence n = 2m is even. Consider random
variables Zo = Y, Zm+\ = X, and Zj,j = 1, ...,m with distribution functions

x{?\ * f ' * " ' ' (2.5)
y(x), X> t2j-\.

 V ^

For/' = 1, ...,m, the Karlin-Novikoff once-crossing condition between Zj+\
and Zj is fulfilled with crossing point ?2/. A partial integration shows the
following mean formulas:

Hj := E[Zj] = fix - Kxity-i) + nY(t2j-\), j = l,...,m. (2.6)

Now, by Karlin-Novikoff, one has Zj+\ <D Zj, j = 1, ...,m, if, and only if,
the inequalities nj+\ < \ij are fulfilled, that is

-Kx{t2j-\)-'KY{t2i-\)<Kx{ty+\)-'KY{t2j+\), ./= 1,...,w- 1, and

which is equivalent to (2.3). Since obviously Z] <v, F, one obtains the
ordered sequence

X = Zm+\ <D Zm <D ... <D Z\ <st Zo = y, (2.8)

which is valid under (2.3) and implies the result.

Case 2: The first sign change occurs from + to —

If X <si Y, then the last sign change occurs from + to —, hence n = 2m + 1
is odd. Similarly to Case 1, consider random variables Zo = Y, Zm+\ = X,
and Zj,j= 1, ...,ra, with distribution functions

Y(x), x>t2j.

For j = 0,1, ...,m, the once-crossing condition between Zj+\ and Z7 is
fulfilled with crossing point t2j+\. Using the mean formulas

HJ:=E[Z]]=nx--nx{.ty) + irY{t2j), j =],...,m, (2.10)
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the conditions for Zj+\ <D ZJ, that is //y+i < //,-,_/ = 0,1, ...,m, are therefore

-7rr(?2/+2), j =l,...,m-l, and (2,11)

which is equivalent to (2.4). One obtains the ordered sequence

X = Zm+\ <D Zm <D ... <D Z\ <D ZQ = Y, (2.12)

which is valid under (2.4) and implies the result. •

It is instructive to relate this result with another (apparently simpler) known
crossing characterization. Instead of crossing points, which describe the sign
change properties of the distribution functions, consider slightly more
general crossover points, which are defined as follows. A pair {£, u} of real
numbers is a crossover point of the pair {F\(x),F2(x)} of distribution
functions if for / ^j e {1,2} one has

F,(O < Fj(n < m) < Fi(0 and u =

or equivalently

Fr\u) < Ffl(u) < Fr\u+) < F;\u
+) and ^ = Frl(u).

How are the crossing points related to the crossover points? Clearly, every
crossing point is a crossover point. Additionally, there are two crossover
points, associated to the end points of the supports ofF\(x), /^(x), where no
actual sign change between the distributions occurs. Let (a,-, bi),
-oo < a, < b, < oo, be the open support_ of Fj(x), i—l,2, and set
a = min{a\,a2}, b = max{/?i,&2}-_Then (a,b) is the open support of the
pair {F\(x),F2(x)}, and {a,0}, [b, 1} are the remaining crossover points.
The following characterization has been used by Kertz and Rosier (1992),
again without proof.

Corollary 2.1 (Crossover point characterization of the stop-loss order) For
/ = 1,2, let Xi G S be random variables with finite means /z,-, distributions
Fj(x), and stop-loss transforms TT,-(X). Then one has X\ <si X2 if, and only if,
for all crossover points {£,u] of the pair {F\{x),F2&)}, the inequality
TTI(O <TT2(O is fulfilled.

Proof. It suffices to show that the conditions are sufficient. One needs the
following additional criteria:

b l b 2 ,

7Tl(fl) < TT2(a) O / i l < H2-
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The first one follows immediately from the integral representation
m(x) = J^° Fj{t)dt. For the second one, we distinguish between two cases.
If a > -oo, then the equivalence follows from the fact that 7r,-(aj = /x,- - a,
i = 1,2. If a — -oo, the inequality

/•oo />0 /*oo pO

Hx= I Fx{x)dx- I Fx{x)dx< \ F2{x)dx - / F2(x)dx = fi2
Jo J-oo Jo J-oo

can be rearranged to the inequality
/*oo roo

7n(fl)=/ Fi(x)dx < w2(a) = / F2(x)dx,
J—oo J— oo

and vice versa. Since the set C of crossover points equals

C = {crossing points} U {a, 0} U {Z>, 1},

the inequalities TTI(£) < 7T2(£) for all {£, w} G C imply by the above criteria
that the inequalities (2.3) and (2.4) required in Case 1 and Case 2 of the
Theorem 2.1 are fulfilled. D

The simpler but less precise characterization by crossover points is often
sufficient from the theoretical point of view (an example is Theorem 2.3
below). From a practical point of view, Theorem 2.1, together with the
ordered sequences (2.8) and (2.12), yields the maximum amount of available
information for a stop-loss order relation. In this respect, a detailed
application of this result shows that X\ <s; X2 if, and only if, the set C of
crossover points is given as follows:

Case 1: n = 1m

C={{au0},{t1,Fl(h)},{t2,F2(t2)},{ti,Fl(t3)},...,{t2m,F2(t2m)},{b2,\}}J

Case 2: n — 2m + 1

C={{a2,0},{h,F2(h)},{t2,Fl{t2)},{ti,F2(t3)},...,{t2m+\,F2{t2m+])}, {b2,1}}.

Some applications, which use the explicit characterization Theorem 2.1, are
given in Hurlimann (1998a).

The once-crossing condition of dangerousness order formulated in
Lemma 2.1 is not a transitive relation. Though not a proper partial order,
it is an important and main tool used to establish stop-loss order between
two random variables. In fact, the transitive (stop-loss)-closure of the
order <D, denoted by <D', which is defined as the smallest partial order
containing all pairs (X, Y) with X <D Y as a subset, identifies with the stop-
loss order. To be precise, Xprecedes Yin the transitive (stop-loss-)closure of
dangerousness, written as X <D* Y, if there is a sequence of random
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variables Z\, Zi, Z3, ..., such that X = Z\, Z, <D Zi+\, and Zt —> Y in stop-
loss convergence (equivalent to convergence in distribution plus convergence
of the mean). The equivalence of <o> and <s/ is described in detail by Muller
(1996) (see also Kaas and Heerwaarden (1992)). In case there are finitely
many sign changes between the distributions, the stated result simplifies as
follows.

Theorem 2.2. (Dangerousness characterization of stop-loss order) Let
X, Y 6 S be random variables with finite means such that X <si Y. Then
there exists a finite sequence of random variables Z\, Z2, ..., Zn such that
X = Z\, Y = Zn and Z, <p Zi+\ for all i = 1, ...,n — 1.

Proof. This is Kaas et al. (1994), Theorem III.1.3. Alternatively, the ordered
sequences (2.8) and (2.12) yield a more detailed constructive proof of this
result. •

Other characterizations of the stop-loss order can be obtained by
transforming the random variables, which must be compared. A simple
such result reduces a (degree one) stop-loss order comparison to a degree
zero stop-loss order or usual stochastic order comparison by means of the
Hardy-Littlewood maximal distribution. For any random variable X with
finite mean and quantile function F^x{u), the Hardy-Littlewood transform
XH of X is defined by its quantile function on [0,1] through the formula

^ ' (1) , M = l .

Its name stems from the Hardy-Littlewood (1930) maximal function. The
random variable XH is the least majorant with respect to <st among all
random variables Y <si X (e.g. Meilijson and Nadas (1979)). Its great
importance in applied probability and related fields has been noticed by
several further authors, among others Blackwell and Dubins (1963), Dubins
and Gilat (1978), Ruschendorf (1991), and Kertz and Rosier (1990/92). A
recent actuarial use has been proposed by the author (1998b).

Theorem 2.3. (Reduction of stop-loss order to stochastic order) For i = 1,2,
let Xi G S be random variables with finite means /x,-, distributions Ft(X), and
stop-loss transforms TT,(X). Then one has X\ <s/ X2 if, and only if, one has
vH <- vHA\ _i.v( A2 •

Proof. (Kertz and Rosier (1992), Lemma 1.8) The basic idea relies on the
following geometric property. For each crossover point {£,«}, the identity

{Fl(t)-F2(t)}dt= f
Ju
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expresses the fact that the area between F\ and F2 to the right of £ equals the
area between Ff1 and F2~

l to the right of u. From this and the Corollary 2.1
one obtains the result by means of the following equivalences:

X \ <s
poo roc

& 7n(£) = / F\{i)dt < I F2{i)dt = 7T2(£) for all crossover points {£,u)

h k
roc

<=> / {F\ (t) - F2(t)}dt > 0 for all crossover points {£, u)
/•

<̂ > /
Ju

/

l
{F2~

l(v) — F^l(v)}dv > 0 for all crossover points {£, u)

O (Ffy^u) < {F?y\u) for all u e [0,1]

<̂  x? <st x?. n

By existence of a common mean /xj = \x2, the resulting characterization of
the convex order X\ <cx X2 <=> Xf1 <st X2 is found in equivalent form in
van der Vecht (1986), p. 69, which attributes the result to D. Gilat. In this
situation, there exists also the well-known higher degree stop-loss order
reduction property of the integrated tail transform considered by van
Heerwaarden (1991), p. 69, whose importance lies in actuarial ruin models
(see e.g. Embrechts et al. (1997)). For completeness, one may mention a
further characterization of the convex order by means of Markov kernels,
which goes back to Blackwell (1953), and still another one by means of
fusions for probability measures as studied by Elton and Hill (1992). For
this, the interested reader is referred to Szekli (1995).

3. PROPERTIES OF THE DISTORTION PRICING PRINCIPLE

First, we invalidate S. Wang's proofs of the stop-loss order preserving
property (P5) for the distortion pricing principle through a simple
counterexample. Then we focus on a new proof of this important property.
For completeness and convenience of the reader, elementary proofs of the
other properties (P\)-(P4) are also provided, where reference is made to
related results in the literature.

3.1. A diatomic counterexample

For real numbers 0 < a2 < a\ < b\ < b2 and for i = 1,2 let X-t be a diatomic
random variable with support {a,, bf\ and probabilities {/?,, 1 — /?,-}, 0 < p, < 1,
and mean /i, = at + (1 —/?,•)(6,- - a,-). Assume fi\ < n2 and/»2 < P\- Then the
dangerousness order relation X\ <D X2 (a sufficient condition for <.,/) holds
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because fi\ < p,2 and the survival functions satisfy the Karlin-Novikoff once-
crossing condition (known as Ohlin's Lemma in actuarial science):

Fl(x)>F2(x), x<c,
Fl(x)<F2(x), x>c, [ ' '

with c = a\. Set g(x) — x~", p > 1, in (1) to get the PH-transform principle
- i

F(xydx. In the notation of Wang, one has= /
Jo

Wang (1996b), proof of Theorem 1, states that RHS(p)>F2(ai)^~l-RH^(l),
or equivalently (1 — p2y>"' > (1 —p\)~l. This is not correct because JC~ is
decreasing over (0, oo) for p > 1 and (1 - p 2 ) > (1 -p\) by assumption.
Similarly, Wang (1996a), proof of Theorem J, states that
RHS(p) > F2{a\f~X • RHS(l), or equivalently (1 - p 2 ) ~ l > (1 -p\)'~\
which is false for the same reason. Despite this, one has

Xip[X\} = a} + (1 -px)\h - ay) < a2 + (1 -p2j{b2 - ax) = np[X2],

and therefore a correct proof of (P5) must be given.

3.2. An elementary proof of the stop-loss order preserving property

In a first step we suppose that X, Y e S. The idea of the proof is simple. For
each X > 0, let Xg be the distortion transform with survival function
Fg

x{x) = g(Fx{x)). By Theorem 2.2 it suffices to show that X <# Y implies
Xg <si Yg, which in turns implies that P[X] = E[XS] < E[Yg] = P[Y], hence
(P5). Furthermore, by Theorem 2.3 it suffices to show that X <r> Y implies
(Xg)H <„ (Ygf. (Note that the distributions of (Xg)H and {XHf differ in
general.)

Suppose that X <D Y, that is E[X] < E[Y] and there exists 9 e (0,1)
such that

Fx\u)>Fy\u), 0<u<q,

F;l(u)<FY
l(u), q<u<\.

For simplicity, assume that g(x) (resp. 7(x)) is differentiable and has an
inverse g"1^) (resp. 7~1(x)). Then the distortion transform Xg has quantile
function {Fg

x)~ — (7 o f j ) ~ ' , and using (2.14) one obtains for the Hardy-
Littlewood distortion transform (Xg)H the relationships

v=^- f /^1(v)rf7(v))0<M<l. (3.3)
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Similar expressions hold with X replaced by Y. One must show that
{Fg/y\u) < {Fg/y\u) for all u e [0,1], or equivalent^

l

{FY
l(v)-Fx\v)}dj(v) > 0 for all w e [0, 1]. (3.4)I

If w > q this is trivial by the second inequality in (3.2). Let now
0 < w < q < 1. Since 'y(x) is convex, the derivative 'y'(x) is increasing, in
particular 7'(w) < j'(q) < 7'0)- The affirmation follows from the following
chain of equalities and inequalities:

= " I" {F-x\v)-FY\v)}i{v)dv+ f
Jw J q

>1(q)- f {FY\v)-F-x\v)}dv>i{q)- f {FY\v)-FY\v)}dv
Jw JO

= ^(q)-{E[Y]-E[X]}>0.

(3.5)

This achieves the proof of the stop-loss order preserving property for the
distortion pricing principle in case the finite crossing condition (1.3) holds.

In case X <s/ Y and there are infinitely many crossing points, the
equivalence of <s; and <D* shows that there is a sequence of random
variables Z\, Z2, Z3, ..., such that X — Z\, Z, <D Zi+i, and Z, —> Y in stop-
loss convergence. For each n > 1 one has X <si Zn by Theorem 2.2 From the
preceding first step, one obtains that P[X] < P[Zn). On the other side, the
relation Z\ <D Zi+\ implies min(Z(, d) <D min(Z,+1, d) for all d, from which
one deduces by the first step that P[min(Zm, d)} < P[min(Zm, d)] for all d, all
m> n. Using this, the result follows from the inequality

P[Zn)= limP[mm(Zn,d}< lim { lim P[min(Zm,d)}}= lim P[min( Y,d)]=P[Y}.
d—>oo d—>oo tm—>oo " i d—>oo

The first and third equality is a continuity property satisfied by the Choquet
integral, and a fortiori by the distortion pricing principle, which is a special
case of it (see Denneberg (1994), or Axiom 4, Theorem 1 to 3 in Wang et al.
(1997)). The second equality is an application of the dominated convergence
theorem, which is allowed for risks with finite support.
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3.3. Other properties of the distortion pricing principle

It is now possible to complete and summarize the main properties of the
distortion pricing principle. Up to (P5) an advanced proof of this is in
Denneberg (1994), pp. 64 and 71.

Theorem 3.1. (Main properties of the distortion pricing principle) Let X
be a non-negative random variable with survival function Fx(x), and
quantile function F^l(u). Let g(x) be a differentiable increasing concave
function on [0,1] such that g(0) = 0, g(l) = 1. Then the functional

P{X] = f g[F{x)]dx = f Fx\u)dj(u) with 7(JC) = 1 - g{\ - x), satisfies

the properties (PI) - (P5)°

Proof, (P\)-(P3) are easily shown as follows (see also Denneberg (1990)):

(PI) Since g(x) is increasing concave on [0,1] andg(0) = 0, g(l) = 1, one has

g(x) > x and therefore P[X] > I F(x)dx = E[X].
Jo

(P2) One first shows that P[X] preserves <st, which is obvious because
X <st Y is equivalent with F^l(u) < Fy\u) for all we (0,1). Since
X <st Y := supfX], the property follows.
(P3) This property follows from the facts F^+h(u) = F^l(u) + b and
F~\{u) =a-Fx\u) for a > 0.
(PA) That this holds when j(x) has a bounded density is mentioned by
Denneberg (1990). Using Wang (1995a), Appendix, one relaxes this
condition as follows, where differentiability of g(x) is here not assumed.
(The idea of proof is attributed to O. Hesselager). A simple property of
concave functions is required.

Lemma 3.1. Let 0 < a < b and suppose g(x) is concave for x > 0. Then for
any x > 0 one has the inequality g(x + b) — g(x + a) < g(b) — g(a).

Proof. It is well-known that g(x) is concave if, and only if, one has

orz\\0<x <y<z.
y-x z-y

Two successive applications of this criterion to a<b<x + a<x-\b,
respectively a<x + a<b<x + b, yields the desired inequality. •

It suffices to show (PA) for arbitrary Y and a discrete X taking values in
{0,. . . ,«}. Indeed, applying (P3), the result holds then for X e {k,...,« + k)
and X 6 {kh,..., (n + k)h}, k 6 N+, h>0 arbitrary. Since any random
variable can be approximated closely by a discrete random variable with
small enough h, the property will hold for arbitrary X. One uses
mathematical induction. For n = 0 the affirmation is obvious. To show

https://doi.org/10.2143/AST.28.1.519082 Published online by Cambridge University Press

https://doi.org/10.2143/AST.28.1.519082


132 WERNER HURLIMANN

the induction step n -> n + 1 for (X, Y) with X e {0,...,« + 1}, let (X1, Y')
be distributed as (X, Y\X > 0). Since A " G { 1 , . . . , « + 1 } the induction
hypothesis states that P[X' + 7'] < P[X'] + P[F] . With e = PT(X = 0) and
FYl0(x) = Pr(F > x|C/ = 0) one has for x > 0:

According to Lemma 3.1, one obtains for x > 0 that

g £ )
Observe now that k(x) := — r— is increasing concave on [0,1] such that

£V ~ £)
k(Q) = 0, k(l) = I. Integrate on both sides of the last inequality and use the

induction assumption for the function k(x) to see that

P[X+Y}-P[X]-P[Y]

k{Fx,+T{x))dx- I™k{Fx,{x))dx- n
Jo Jo

This shows (P4).
Since the property (P5) has been shown in Section 3.2, the proof is complete.

•
Note added in proof. At the time this paper has been accepted for
publication, the author has received a related paper by Dhaene et al.
(1997). These authors present in particular an alternative proof of the stop-
loss order preserving property of the distortion functional, whose idea is due
to A. Miiller. Moreover, their Theorem 3 characterizes stop-loss order using
the distortion functional in a way dual to the classical characterization
(SLl)-(SL3) based on the expected value functional. Finally, the author is
grateful to A. Miiller for pointing out an error in the elementary proof of
Section 3.2.
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