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RELATIVE KLOOSTERMAN INTEGRALS FOR GL(3): II 

HERVÉ JACQUET 

ABSTRACT. Let G' be a quasi-split reductive group over a local field F, f the 
characteristic function of a maximal compact subgroup K' of G', N' a maximal unipotent 
subgroup of G'. We consider the orbits of maximal dimension for the action of N' x N' 
on G1 and the weighted orbital integral off on such an orbit, the weight being a generic 
character. The resulting integral, we call a Kloosterman integral. A relative version of 
this construction is to consider a symmetric space S associated to a quasi-split group 
G, a maximal unipotent subgroup TV of G, a maximal compact K of G and the orbits 
of maximal dimension for the action of N on S. The weighted orbital integral of the 
characteristic function/ of KP\S on such an orbit is what we call a relative Kloosterman 
integral; the weight is an appropriate character of N. We conjecture that a relative 
Kloosterman integral is actually a Kloosterman integral for an appropriate group G'. 
We prove the conjecture in a simple case: E is an unramified quadratic extension of F, 
G is GL(3, E), S is the set of 3 x 3 matrices s such that sH - 1 ; the group^G' is then the 
quasi-split unitary group in three variables. 

1. Introduction. Let F be a non-archimedean field of odd residual characteri stic. We 

denote by Rp the ring of integers of F, by Pp the maximal ideal and we set qF = #RF/ PF. 

Let G' be a quasi-split reductive group defined over F. Let B' be a Borel subgroup of 

G' defined over F, Nf the unipotent radical of B' and A' a maximal torus of G! such that 

B' = A'N. We choose a representative w for the longest element of the Weyl group of A' 

and a generic character 0' of N'. Finally, we l e t / ' be the characteristic function of a good 

maximal compact K' of G'. Then the integral 

( 1 ) 1(a) = [ f'{nTl wan2)O
f(n i )6f(n2) dn { dn2 

JN'xN' 

is what we call a Kloosterman integral. It is the local analogue of a Kloosterman sum 

(see [Fr], [G] and the references therein). More generally, we can consider the action of 

N' x TV7 on G' given by: 
/ - l / 

g ^nx gn2. 

Then the normalizer of A' in G' is a system of representatives for the orbits. The orbits 

of maximal dimension are those which admit a representative of the form wa. We could 

consider also "orbital integrals" associated to the other orbits; we will not do so in this 

article. 

Now, let G be another quasi-split group, a an automorphism of order two of G defined 

over F and B = AN a Borel subgroup of G defined over F; let S be the variety of g G G 
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such that gg° = 1. Then G operates on S by : 

s i—• g~asg. 

One expects the orbits of N on S to be fairly simple ([S]). To be definite let us assume 
that B and A are stable under a. (In [J-Y], we considered a case where a takes B to its 
opposite.) Let us further assume that any Weyl element has a representative w such that 
wa = w. Then it is fairly easy to see that each orbit of N on S has a representative of the 
form wa where w2 = 1 and waw = a~° ([S]). The orbits of maximal dimension have a 
representative of the form wa where w is the longest Weyl element and a belongs to a 
certain torus A'. Let us assume that G has a good maximal compact K invariant under o. 
Let O be the characteristic function of K H S. Consider the integral: 

(2) J(a) = j ®(n-awan)6(n) dn. 

where 6 is a generic character of N. This integral we call a relative Kloosterman integral. 
Again, we do not discuss orbital integrals attached to other orbits. 

We conjecture that the two types of integral are essentially the same. More precisely, 
given G, a, B, K, 6, A! as above there should be another group G' with data B\ A', K'', 0' 
such that: 

1(a) = J(a). 

We emphasize the fact that A7 is the same group for both sets of data: it is a maximal torus 
in G and the subtorus of a G A such that waw = a~°". Needless to say, our conjecture is 
much too vague. The exact relation between the two functions might be slightly more 
complicated; at any rate, it will depend on the choice of the characters. Moreover, we 
offer no rule to choose G'. Nonetheless, we expect a result of this form to be true for 
any quasi-split group G and any automorphism of order two of G. (see [J], [Y], [J-Y]). 
Our purpose in establishing our conjecture in a simple case is to provide evidence for it. 
Moreover, we hope that, even though our method of proof is rudimentary, some feature of 
the proof will generalize or that the proof will give some clue to the precise formulation 
of the conjecture. 

The motivation for our conjecture comes from representation theory but is best dis­
cussed in the special case at hand. We consider an unramified quadratic extension E of 
F with Galois conjugation z ^—> cr(z) or z *—> z. We let ^ F be an additive character of F of 
conductor RF and I/JE the additive character of E defined by ^E(Z) = ^F(Z +1). We often 
write i[) for ipE, q for qp\ thus qE = q2- The group G is then the group GL(3, £), regarded 
as an algebraic group over F. We regard a as an automorphism of GL(3, E). The variety 
S is the set of s G GL(3, E) such that ss = 1. The fixator of e is H = GL(3, F) and G 
operates transitively on S. We denote by B the group of upper triangular matrices, by A 
the group of diagonal matrices, by N the group of upper triangular matrices with unit 
diagonal. We set: 
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The orbits of N on S of maximal dimension are those with a representative of the form: 

wa 

where 
(4) waw~x = ~cTx. 

We denote by A' the torus of a G A satisfying this condition. Thus A' is the set of matrices 
of the form: 

la 0 0 
0 u 0 | , uU= 1. 

\oozr1 

1 x z 
0 1 y \=^E(x-y). 
0 0 1 

We set K = GL(3,RE) and let O be the characteristic functionofKHS. Note that KHS 
is the orbit of I3 under K. The integral we want to consider is: 

(7) 1(a) = J 0(7T l wan)0(n) dn, 

where a is in A'. Here meas(Af DK) = \. 
Here the group G' is the group of matrices g G G such that: 

(8) 'gwg = w. 

Thus G' is a quasi-split unitary group in three variables. We denote by K'', #r and Â  the 
intersections of T̂, # and Af with Gl'. The group A' is then the intersection of A and G', in 
particular, a maximal torus in G'. The group Â  is the group of matrices of the form: 

(9) n' = 
l\ x t-xî\ 

0 1 -x , t +1 = 0. 
\ o o 1 / 

We define a character #7 of Nf by: 

(10) flV) = ^ W . 

We set K' = KDG' and we let/7 be the characteristic function of K'. The integral we 
want to consider takes the form: 

(11) J(a) = / f\rûxwani)$\n\ni)dn\dn2, 
JN'xN' 

where a is in Ar. Here meas(AT/ H Afr) = 1. Our main result is: 
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THEOREM 1. With the above notations: 

1(a) = J(a). 

We now briefly explain the relation of this result with representation theory and the 
principle of functoriality. To that end, we go to a global situation. We let F be a number 
field. Then there is a functorial map (stable unitary base change) from the automorphic 
representations of G' to those of G([F2], [R]). A representation n of G should be in the 
image of the correspondence if and only if it is distinguished with respect to //, that is, 
there is cj> in the space of ir such that the integral 

L (j)(h)dh 
H(F)\{FA) 

is non zero. This notion takes its origin in [H-L-R]. In [J-Y] we discussed the dual case 
where, roughly speaking, the role of H and G' are exchanged. For GL(2) the two cases 
get entangled because of the isogenies between H and G'\ we refer to the work of Flicker 
(see [F3] and the references therein) for more details and the relation with the poles of 
the appropriate L—function ([Fl]). 

To prove this conjecture one can try to establish an identity of the form: 

/ / K(h, n) dh6(n) dn= Kf(n[, n2)0(n\n2) dn\ dn2 

where K and K' are the kernels representing the action of functions / and / ' on the 
discrete spectrum of G and G'. The integral on the left depends only on the integral 

/ . 

This may be viewed as function O on S: 

<t>{g-ag)={f{hg)dh. 
JH{FA) 

Associated to O and/7, we can define two integrals / and / and the above trace formula 
should be true if and only if 1(a) = J(a). In establishing this identity, the first step is the 
above theorem ("fundamental lemma for the unit element of the Hecke algebra"). We 
refer to [Y] and [J] for examples of this kind of trace formula. 

The paper is arranged as follows. Both / and / may be viewed as functions on Ex. 
In Section 2, we compute the integral / ; in Section 3 we compute its formal Mellin 
transform. In Section 4, we compute the integral /; in Section 5, we compute its formal 
Mellin transform. Roughly speaking, the Mellin transforms turn out to be the square of a 
Gaussian sum (or integral), the same for both integrals, times an elementary factor. The 
difficulty is to prove the elementary factors are the same in both cases. In contrast to the 
previous cases ([J] and [Y-J]), the proof does not involve an identity between Gaussian 
sums: the same Gaussian sum appears for both / and J. For us, this is another motivation 
for this paper. 
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2. Computation of / . We note that the center of G' consists of all scalar matrices 
MI3 with mi = 1. Both 1(a) and J(a) are invariant under multiplication by such matrices. 
Thus it will suffice to compare the values of / and J on a diagonal matrix a of the form: 

(12) 

We then write 1(a) and J (a) for 1(a) and J (a). After changing n\ to its inverse, the integral 
for J takes the form: 

J(a) = JJ0f-l(n[)6'(n2)dn[ dn2 

the integral over the set 
n[wan2 G Kf. 

In particular, the integrand is zero unless n[ wa is in K'N'. Thus we may write the integral 
as follows: 
(13) J(a) = Jef-\n[nf)dn[, 

where 
n[wa = k'ri 

with kf G K' and n' G A .̂ Now, for ^i as in (9), we have: 

((t-f)a xa~l\ 
(14) n[wa= -xa 1 0 . 

\ a 0 0 / 

Recall that t +1 = 0. The Haar measure on Â  is given by: 

dri = dx dt 

where 
f dx=l, [ dt=\. 

J\x\ = \ J\t\ = \ 
Let A/, 1 < / < 3, be the entries in the three first columns and D^\ < i < 3, the minors 
formed with the two first columns of (14). The matrix (14) is in K'N' if and only if it is 
KN\ in turn, this is equivalent to the relations 

supflA/l^l, sup( |A| )=l . 

On the other hand, we have the relation: 

A\DX -A2D2+A3D3 = 0. 

We thank S. Friedberg for pointing out to us the importance of this relation. Explicitly, 
we obtain the conditions: 

(15) sup 
xx 

t-j)a , \xa\, \a\ } = 1 
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:, \xa\, \a\ = 1 (16) sup u + — )aL \xa\, \a\ 

and 
( XX \ _ ( XX\ 

(17) —It—— Jaa — xaxa+ It + — \aa = 0. 

If \a\ - 1, then the other relations imply |JC| < 1 and \t\ < 1 and in turn J(a) = 1. 
From now on we assume \a\ < 1. Then the above relations simplify to: 

\ax\ < 1, 4+f) 2 

After an easy but lengthy computation we find that 

= 1. 

l\b c 
(18) n[wa = k\ 0 1 -b 

\ 0 0 1 

with k e K' and 

(19) * = ^ - . 
fl(x^f — 20 

Note that the value of c is actually irrelevant. We conclude that 

(20) J{a) = (UE(-x + _2* 1 dr A. 
././ V a(xx — 2t)J 

It will be convenient to change r to txx/2 to arrive at: 

(21) J(a) = JJ^E{-X + _ J |x|£Jx^, 

with the following domain of integration: 

\a\ < 1, |ÛJC| < 1, \axx(\ +t)\ - 1. 

Recall that the first condition is actually the domain on which the integration formula is 
valid. These conditions can also be written in the form: 

(22) |oaa(l+0| = 1, 1 < |xc(l + r)|, 1 < k ( l + 0 | -

3. Mellin transform of / . In this section, we compute the Mellin transform of / 
viewed as a function on Fx. More precisely, we compute the Mellin transform of the 
function J0 equal to J for \a\ < 1 and to 0 otherwise. 

Let x be a character of Ex ; we write 

X(z) = Xo(z)\z\s
E 

where %o has module one and is trivial if x is not ramified. We also set X = q^s. The 
Mellin transform is a formal Laurent series in X: 

(23) 70(X) = Jjo(a)X(a)dxa = JJJ^E(-x+ _ j |*| dxdtX(a)dxa. 
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We compute formally at first and then justify our steps. In the above integral, we change 
x to —JC, a to 

-2a 
( 1 - 0 * 

and then a to a~l. The above integral takes the form: 

(24) / o ( x ) / ^ W x " 1 W W ^ ( a ) x " k f l ) x ( ^ ) ^ d x f l d r . 

We write ^ for t/^. The range of integration is now: 

(25) \a\ = \x\, 1 < |jrë(l+f)|, 1 < |*(1+0|-

Now suppose x is ramified of conductor P^. Then nothing is changed if in (24) we 
restrict x and A to the domain: 

W\ = \x\=qm
E. 

After converting the multiplicative Haar measure to an additive one, we find: 

(26) 70(x) = (1 - q~2rl Ji>(x)x-\x)dxJ^(a)X-{(a)da x / x ( ^ ) dt. 

By (25) the variable t is restricted to 

\l + t\E>q-2m. 

Since t = —i, this condition is vacuous. We may also observe that the integral in a and x 
are actually equal. We arrive then at our final form for the Mellin transform of JQ: 

(27) 70(X) = (1 - q~2TX ( | x | Mx)X-\x)dx)2 x / x ( ^ ) </*. 

We now assume \ unramified. In (24) the integral in a and x can be restricted to the 
domain: 

\a\ = |*| < qE-

The contribution of the set |#| = |JC| = qE will be noted Jt ("top term"). It is given by (27) 
with m = 1. Next, we sum the contributions of the sets |x| = \a\ = q'2m, with m > 0. 
This sum we call Jf, ("bottom term"). It is given by: 

-2 

£>o ->|i+'U>*2 

The integral in J can be written as: 

(28) Jb=Y, X-2mq-4m(l - q-2) f , ^ ^ x ( ~ ) dt. 

[ x-\t)dt= £ xvo-*-1). 
M ^ > ^ " r>2m+l 

Altogether then we obtain the following expression for Jb : 

(l-^-'xi-?-2) Y. r-2m
q
r-4m. 

r>2m+l,m>0 
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If we set s = r — 2m, we arrive at: 

( i - 9 - ' ) ( i - 9 - 2 ) 2 ^ E ? " 2 " = o-?"1)-i-^-
s>\ m>0 l 4A 

Finally, we arrive at the following expression for the Mellin transform of/o* 

(29) yo(x) = fci)+y, 
1 — qX 

where the "top term" Jt is given by: 

(30) J, = (i - * - y (J{XHE mx-\x)dx)
2jx(^d, 

To justify our steps, we let <j> be the characteristic function of the set 

qE
A < \a\ < 4-

Then Jo(x) is the limit, as A tends to infinity, of the Laurent polynomial 

J Jo(a)(f)(a)x(a)dxa. 

The topology on the space of formal Laurent series is given by the convergence of the 
coefficients. Say \ is unramified. We must show this Laurent polynomial tends to (29) 
as A tends to infinity. We apply to this integral our sequence of formal manipulations. 
They are justified and we find this Laurent polynomial is the sum of two terms. The first 
term is given by the integral (30) with the range of t restricted by: 

^ - 4 < | ! _ f | < ^ - 4 _ 

As A tends to infinity, this tends to (30). The second term is equal to 

{\-q-')(\-q-2)YJX
r-2mqr~*m

J 

the sum over the pairs (r, m) such that: 

r > 2m + 1, m > 0, -A < r - 2m < A. 

As before, we set s = r — 2m. then the above expression becomes: 

(l-q-l)(l-q-2) £ XV£<T2m 

1 <s<A m>0 

As A tends to infinity, this tends to 

( > - * - ' > , * 1-qX 

We have thus justified our formal computations. 
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4. Computation of /. We now evalutate the integral /: 

1(a) = / <b(n~xwan)8(n)dn. 

The integrand is zero unless n~[wa is in KN. Writing 

n~ wa = kri 

we find the integrand is zero, unless n'n G K. Thus 

(31) 1(a) = / 8(n) dn where n~l wa = kri', n'n G K. 

We set: 

(32) 

Then 

dn - dx dy dz 

the Haar measure on E being the one for which RE has measure one. We have: 

-l 

(33) n wa = 
I a(xy — z) —x a 

-ay 1 0 
\ a 0 0 

If At are the entries in the first column and Dt the minors formed with the two first 
columns of (33), then this matrix is in Â7V if and only if: 

We have also: 

Explicitly, this gives: 

sup(|AI-|)=l, sup( |A| )=l . 

A1Z)1-A2D2+A3D3=0. 

(34) sup(|fl(xy - z)\, \ay\, \a\) = 1, 

(35) sup(|az|,|a*|,|a|)= 1, 

and the trivial relation: 

(36) a(xy — z)(—a) + ayax — adz - 0. 

If \a\ = 1 we find that \x\<l, \y\ < 1, \z\ < 1 and then 1(a) = 1. 
From now on, we assume that \a\ < 1. We easily find that 

TTxwa 
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is in KN if and only if one of the three following sets of conditions is satisfied: 

(37) |*| < 1 , H = l, \az\ = h \a(xy-z)\<\ 

(38) |*| < 1, \ax\ = 1, \a(xy-z)\ = 1, \az\ < 1 

(39) \a\ < 1, \ax\ < 1, |<xy| < 1, \a(xy — z)\ = 1, |az| = 1 

For instance, assume that (34) and (35) are satisfied. Assume further that 

M = i. 

Then we get from (36) |OJC| < 1 and then from (35) \az\ = 1. This leads to (37). 
The matrices n' corresponding to cases (37) to (39) can be easily computed: 

1229 

(40) 

(41) 

(42) 

' 1 0 -{aaaz°Yx \ 
0 1 -yG{a°zaYx 

v o o i ; 

/ 1 -x*(a(x*ya - za))~l {aaG(y?f - zaS)~X 

0 1 -(aax*yl 

\ 0 0 1 

' 1 -**{a(?f - za)\X (aaa(x°ya - zCT))_1 

0 1 - / ( û Y ) " 1 

,0 0 1 

Accordingly, / is the sum of three integrals //, 1 < / < 3, with the same integrand: 

Ii(a) = J I/J(X- y) dx dy dz, 

but three different domains of integration defined by the conditions 37 to 39 and the 
condition 

n'n G K. 

4.1. Computation ofI\. The domain of integration for I\ is defined by: 

(43) 

(44) 

Since |JC| < 1, the integral in x disappears leaving us with the expression: 

h=Jfil>(y)dydz, 

integrated over the set: 

(45) | A | < 1 , \ay\ = l, \az\ = 1; 

(46) \y- =1 < 1, \aazz- ll <\a\. 
I az\ 

\a\ < 1, |dry| = 1, \az\ = 1, \a(xy — z)\ < 1; 
1 

\x\ < 1, I - — 
I a~z 

< 1, 
aaz 

< 1. 
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Let us change z into zy in this integral. We arrive at: 

h = \a\-lJJxlj(y)dydz 

The domain of integration is now: 

(47) 

(48) 
az 

a | < l , |ay| = l, |z| = l; 

< 1, \aa~yyzz — l\ <\a\. 

We now remark that the above relations imply: 

Taking this relation into account and changing y to 

y_ 

M 

we get 

''=i«i-2/M=)**'. 
The domain of integration is now: 

| a | < l , |z| = l, \y-l\<\a\, \yy - l\ <\a\. 

After integrating over y we get 

J\z\=i \az' 

or simply: 
/ , = /", é(z)dz. 

J\az\=l 

Finally, we obtain the following formula for I\ : 

(49) 

(50) 

It(a) =-I if \a\=qE
l 

Ii(a) = 0if\a\?qËi 

4.2. Computation ofh- The domain of integration for Ij is given by: 

(51) 

(52) 

\a\ < 1, \a(xy — z)\ = 1, \ax\ = 1, \az\ < 1, 

x — fl(xy — z) 
< 1, 

1 
y~ < i , z + 

1 xy 
aa(xy — z) a(xy — z) 

< 1. 

We first remark that the inequality \az\ < 1 can be replaced by: 

\y\ < i. 
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Now we change z to 

z + xy. 

The integrand does not change but the domain of integration is now: 

1231 

\a\< 1, \az\ = l, H = l, \y\ < 1; 
1 

x + — < l, \z—= + U + — )y\ 
az\ I aaz V az/ I 

< 1. 

This simplifies to 

\y\ < i, 

a\ < 1, |az| = 1, |OJC| = 1; 
1 x 

x+ — 
<2Z 

< 1, 
aaz 

< 1. 

If we change z to — z and compare with the expression for I\ we see that I\ -h. 

We conclude that 

(53) 

(54) 

/i(fl) + /2(a) = - 2 i f H = f e \ 

4.3. Computation ofl^. It will be convenient to express the domain of définition of IT, 
as follows. We will set 

z = xy — z. 

The domain of integration is then defined by the following conditions: 

\a\ < 1, \ax\ < 1, |dry| < 1, \az\ = 1, \az'\ = 1; 

X - < i , y-
_ y_ 

a~z 
< 1 , 

1 xy 
Z+-ZZ7 - — 

<2<2Z tf£ 
< 1. 

The last condition can be written as: 

\aa~zz! + 1 —a~xy\ < \a\. 

We change z to zxy (and z' to z'xy). We obtain then the following expression: 

(55) h(a) = / / / > ( * - y)\xy\ dxdydz 

with domain of integration 

(56) z + z = 1, \zxy\ > 1, M > 1, M > 1; 

\azxy\ = 1, |z| = |z'|; 
1 

fl?;y I azx 
< 1, l^axxyyzz' + 1 — axy| < |a|. 

https://doi.org/10.4153/CJM-1992-073-6 Published online by Cambridge University Press

file:///aa~zz
https://doi.org/10.4153/CJM-1992-073-6


1232 HERVÉ JACQUET 

5. Mellin tranform of L We now compute the formal Mellin transform of 7, more 
precisely, of /o, the function equal to I for \a\ < 1 and to 0 otherwise. We have 

/o = / i + / 2 + / 3 . 

From (53), we get at once: 

(57) 1\ (x) + h(x) = 0 if x is ramified 

(58) /i (x) + h(x) = -2X if \ is unramified 

We pass to the computation of the Mellin transform of h. We go back to (55). We 
obtain 

h(x) = JJJJ^(x-y)\xy\x(a)dxdydzdxa, 

with domain of integration defined by (56). We change a to 

a 

xy 

We get then the following expression 

(59) 73(x) = J*l>(x - y)\xy\x'l(xy)X(a) dxdydZdxa, 

with domain of integration: 

(60) z + z' = l, H = l, \z\ = \z\; 

\zxy\ > 1, \zx\ > 1, \zy\ > 1; 

\l-az\ <\x\~\ \l-az\ <\y\"l\ 

\dazz — ~à+ 1| < |«LX—1>^~11. 

Multiplying the last inequality by |z| or |z'|, we observe that it can be put into one of the 
following equivalent forms: 

\dazzz — az + z\ <\x~ly~l\, 
i — / - / — / , /i ^ i —l —li 

\aaz zz — az +z\ <\x y |. 

5.1. x ramified. Suppose that \ is ramified of conductor Fg. Then nothing is changed 
if in (59) we restrict x and y to the set: 

\A = \y\ = qm
E-

Our integral decomposes into a product: 

X ( - 2 ) / mxKx)x~Hx)dx f J{y)X-\y)dyxA 

where 

(61) A = q4mJX(a)dxadz. 
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The domain of integration for A is determined by: 

(62) z + z' = l, \az\ = l, \z\ = \z\ 

1233 

(63) 

(64) 

We first remark that 

\l-az\ <qE
m, \l-(É\ <q~E

m, 
2m \aazzz — az + z\ < qE
 m. 

X(a) = x-
l(z). 

Next, we remark that the second equality in (63) can be written: 

\z — azz\ < qE
m\z\. 

Taking in account the other conditions, we see this is equivalent to: 

|z + z - i | <qE
m\z\. 

Thus the domain of integration for A is also defined by the previous condition, the 
equalities 

H = l, \z\ = \l-z\ 

and the conditions 

| 1 - A Z | <q~E
m, \(az-l)âz + z(l-aâzz)\ <q~E

lm-

After changing a to az~l, we get: 

(65) A = q4mJX~\z)dzdxa, 

where the domain of integration is defined by: 

(66) 

(67) 

\z + Z-l\<qE
m\zl |Z| = | 1 - Z | , 

\l-a\ <qE
m, \(a-\)â + z(l-aâ)\ <qE

2m. 

Let us set E - F(-N/r) with \r\ = 1 and 

z = a + fjy/r 

with a and (3 in F. Then (66) is satisfied if and only if one the two following conditions 
is satisfied: 

(68) 

(69) 

In any case, we have 

I / 3 | F > 1 

I / ? I F < I , 

1 

a 
2 

< q-mW 

<q 

< IE \ + ^ \ 
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and thus 

On the other hand, we will set 

a = 1 +vom{x + yyJr), 

where tu is a uniformizer and x, y are in F. At this point, our integral takes the form; 

(70) A = (l-q-2rlq2mjx(\+^yldad[3dxdy. 

with domain of integration defined by (68) and (69) and the conditions: 

\-x + a(2x + wm(x2 - y2T))\ < q~m, 

\y + f3(2x-^vom(x2-y2T))\ <q~m, 

\x\ < 1, \y\ < 1-

We change variables once more and use 

2x + wm{x2 - y2r) 

and y for variables of integration. Our integral becomes: 

(71) A = q2m(l - q-2yx j \ ~ x 0- + /V?) dad(3dxdy 

with domain of integration defined by (68) and (69) and the conditions 

1 
(72) (a--)x\<q-m, \y + (3x\<q-m, \x\<\, \y\<\ 

At this point we write 
A =A\ +A2 

where A\ (resp. A2) is defined by the same integrand as A but domain of integration 
defined by (68) (resp. (69)) and (72). 

We compute A2. Since | a — \ \ < q~m the first relation in (72) is a consequence of the 
others and we find that in A2 the integration is over the domain defined by (69) and the 
conditions 

|*| < 1 , | y | < l , b + /&| <q-m. 

Since |JC| < 1 we may change y to y — f3x. We find for A2 the same integrand as before 
but the domain of integration is now: 

< 1, 
1 

a~2 
<<T"\ W < 1 , \y\<q-m. 
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After evaluating the integrals in a, x1 y we find: 

A2 = (l-q-
2rlJm<lX-\l+(3VT)df3 

Next, we evalute A\. To that end, we change x to 

xf3-x 

and arrive at the following expression: 

(73) A2 = q2m{\ - q-2yX J Wx"1 (\ + Py/r) d(5dadxdy 

with domain of integration defined by (68) and 

l i 
\x\ < a - - \x\<q-m\P\, \y + x\<q-m, \y\<\. 

The two first inequalities above are actually a consequence of the others and (68). If we 
change x to x — y the integrand does not change but the domain of integration is now: 

a-l-\<q-m\P\,\x\<q-m, \y\<\. 1/31 > 1 

Upon integrating in x1 y we obtain 

(74) A 1 = ( i - , -vr x-ifrptfdp. ,2 
Altogether, we obtain 

,2 

This can also be written as 

A = Ax + A2 = (1 - q~2rl y V 1 ( - + fiy/rj d(3. 

Finally, we obtain: 

y~l(x)ilj(x)dx) x / Y( (75) /3(X) = (l-^2r1((, X-\x)mdx)2x t x(-l\dt. 
\J\x\=q™ J Jt+t=0 \L+tJ 

5.2. x unramified. We now assume \ unramified. In the integral for 1^ we can impose 
the conditions |JC| < qE and \y\ < qE- We separate the domain of integration into four 
subregions defined by: 

(76) |*| = qE, \y\ = qE 

(77) \x\=qE, | v | < l 

(78) | * | < 1 , \y\=qE 

(79) |x| < 1, \y\ < 1 
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The contribution of (76) we denote by It ("top term"). Just as before, it is given by: 

, 2 r / - 2 
du (80) lt = (\-q~

2yUj x-\xMx)dx) x/_ yv, , 
\J\x\=qE J Jt+t=0 V 1 + t) 

The contribution of (77) (resp. (78)) we denote by lm\ (resp. 7m2). We have: 

Im\ = J ii(x-y)\xy\x~\xy)dxdyx(a)dxadz. 

The domain of integration is defined by (60) and (77). To compute this, we must sum 
the contributions of the sets: 

W = <IE, \y\ = q7, r > o. 

For such an (x, y) the other conditions simplify to: 

|z| >qr
E, \l-dz\ <qiX\ 

\azâzz-âz +z\ < qr£l • 

Thus Im\ is equal to the expression 

£ V d - ç - y - ^ [X(a)d*adz', 

where the integral is over the domain defined by the above conditions. Next, we change 
a to az'~l. We find: 

E - ? 2 ( l - < r 2 ) X , - V 4 r [X(a)x-l(z)dxadz\ 
r>0 J 

where, for given r, the integral in (a, z') is over the set: 

| l - f l | <qE\ \z\>qE, 

\â{a-\) + z!{\-aa)\ <qr
E

X. 

The last inequality simplifies to: 

\z!{\-aa)\ <qr
EK 

To continue, we sum the contribution of the sets: 

|z'| = qs
E, s > r. 

We obtain the following expression: 

£ -Xl-r+sq2-4r+2s(l - q~2)2 [dxa, 

where the last integral is over the set: 

\\-a\<q-E\ \(\-aâ)\F<qr-s-1. 

At this point, we need a lemma: 
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LEMMA 1. F orb > I, the integral: 

fd*a 

taken over the set 

11 —
 C\E ^ QE ? 11 ~~ aa\f — Q 

is equal to 

To prove the Lemma, we write: 

(i-ç-yv1-*. 

a = 1 + u + V^/T 

with u^v'mRf. Then: 

aâ= I +2u + u — v T 

and we can use v and 2u + u2 — v2r for variables of integration. 

Applying the lemma with b = s + 1 — r, we get for our integral: 

(8i) /Mi= £ -x 1— v 3 r + 5 o-<r 2 ) . 
r>0,5>r 

If we set t - s — r, this becomes: 

E-x l +VEf 2 rd-f 2 ) . 
t>\ r>0 

or 

Similarly, we find: 

(82) Im2 = 

So altogether 

(83) /ml+/m2 = - 2 

1-X<?' 

* 2 < 7 

1-X<? 

Finally, we compute the contribution of (79). It will be noted Ib ("bottom term") and 

is equal to: 

(84) ]b = J\xy\x'l(xy)X(a)dxdydxadz 

The domain of integration is defined by: 

(85) |*| < i , M < i , |*| > M " 1 , k l = i; 

(86) \azazz -a~z + z\ < \xy\~l 

We change a to az~~l. Then the integral becomes: 

(87) ib = J\xy\X-1(xy)x(a)x-\z)dxdydxadz. 
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with domain of integration 

(88) |*| < 1 , | y | < l , |z| > Ixyr1, |fl| = l; 

(89) \dâz' -â + z\ <\xy\~x 

The last condition simplifies to 

(90) \\-aa\ <\xyz\~x 

At this point, we appeal to another lemma: 

LEMMA 2. For t E E with \t\E < 1, the integral 

taken over the set 

is equal to: 

\O\E = 1, |1 — aa\E < \t\E 

(i-?-')- 'Wê , / 2-
We leave the proof to the reader. If we set 

\A = <iEri \y\ = <IESI \Z\ = in 

and apply the lemma our integral becomes a sum: 

(91) Ib= £ Xf-r~y-3^3*(l - q-2)\\ - q~x)-\ 
r>0,s>04>r+s 

We set u = t — r — s. Then this sum becomes: 

£ Xuq»q-2r-2s(\-q-2)\l-q-lrl 

w>l,r>0,s>0 

or 
(92) Ib = (l+q-1) K qX 

\-Xq 

Finally, we sum our results: 

70(X) = I +/l +?2 + ?ml +/m2 +ft = £ ~ 2X - 2 - ^ r + ^ l ^ -
\ —Xq 1 — A q 

(93, ' - ' . ^ T S 1 2 -
1 — Xq 

It remains to justify our formal computations. As before, we let </> be the characteristic 
function of the set 

q~A <W<cf 
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and consider the integral 
Jlo(a)(f>(a)x(a)dxa. 

As A tend to infinity, this tends to IQ. NOW we perform our sequence of manipulations on 
this integral. They are justified. For instance, let us assume \ is unramified and consider 
the integral which replaces /&: it is still given by (87) with the extra condition 

q~A\xy\ <\a\<<f\xy\. 

In (87) we must impose the extra condition 

—A < t— r- s < A. 

If we set, as before, 
u = t — r — s 

the expression for It, is now replaced by: 

J2 Xuquq-2r-2s(\-q~2)\\-q-xyx = £ Xuquq-2r~2s(l + q~X). 
A>w>l,r>0,s>0 A>w>l 

As A tends to infinity, this does approach 

One can treat the other terms the same way. So our formal computations are justifed. 

6. Conclusion. Now to prove our theorem. For \a\ = 1, we have 1(a) = J (a) - 1. 
Thus it suffices to show that Io(a) = Jo(a) or 

/o(xWo(x). 

This follows from (27) and (75) if \ is ramified. If \ is unramified, the top terms coincide 
and the remaining terms coincide as follows from (29) and (93). 

So we are done. 
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