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Abstract. We study the indexing systems that correspond to equivariant Steiner and
linear isometries operads. When G is a finite abelian group, we prove that a G-indexing
system is realized by a Steiner operad if and only if it is generated by cyclic G-orbits.
When G is a finite cyclic group, whose order is either a prime power or a product of two
distinct primes greater than 3, we prove that a G-indexing system is realized by a linear
isometries operad if and only if it satisfies Blumberg and Hill’s horn-filling condition. We
also repackage the data in an indexing system as a certain kind of partial order. We call
these posets transfer systems, and develop basic tools for computing with them.

2010 Mathematics Subject Classification. Primary 55P91.

1. Introduction. Commutative ring spectra are of fundamental importance in stable
homotopy theory. They represent cohomology theories, which are equipped with power
operations akin to the usual Steenrod operations. This extra structure is of great value in
explicit calculations.

Equivariantly, genuine commutative ring spectra have even more structure. Suppose
G is a finite group. Ignoring multiplication, every genuine G-spectrum is equipped with a
family of twisted sums, which make its homotopy groups into G-Mackey functors. Every
genuine commutative ring G-spectrum R is also equipped with a family of twisted prod-
ucts. These give rise to RO(G)-degree shifting norms in homotopy, and in particular, they
make π0(R) into a Tambara functor. These norms have also proven themselves useful in
explicit calculations, such as Hill–Hopkins–Ravenel’s solution to the Kervaire invariant
one problem [11].

Accordingly, commutative ring spectra are very rich objects, but they can be studied
locally just like ordinary rings. This approach to stable homotopy theory works very well
nonequivariantly, but there are pathologies that appear in the presence of a group action. For
example, the Zariski localization of a commutative ring G-spectrum is typically computed
as a telescope, and a fundamental observation, due to Hill and Hopkins [9], is that such
localizations need not be genuine commutative ring G-spectra. The ordinary multiplication
survives, but the norms might not. We recall Hill and Hopkins’ original example.

EXAMPLE 1.1. Suppose R is a genuine commutative ring G-spectrum, and suppose
we wish to compute its G-geometric fixed points �GR. One construction of �GR proceeds
as follows. Let ẼP be a space such that ẼPH � ∗ for all H � G, and ẼPG � S0. Our
preferred model is the sequential colimit

S∞ρ = colim

(
S0 Sρ S2ρ S3ρ . . .a �ρa �2ρa )

,
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where ρ = R[G] − 1 is the reduced regular representation, Sρ is the one-point compact-
ification of ρ, and a : S0 → Sρ is the Euler class, i.e. the inclusion of the north and
south poles. Then �GR � (S∞ρ ∧ R)G, so we may as well study the spectrum S∞ρ ∧ R.
However, smashing with R preserves the colimit, and therefore S∞ρ ∧ R � R[a−1]. Hill
and Hopkins’ fundamental observation is that L = R[a−1] cannot be a genuine commu-
tative ring spectrum, provided L �� ∗. For if it were, then the counit of the adjunction
NG

H : CommH �CommG : resG
H between commutative ring H-spectra and G-spectra would

be a ring map ε : NG
H resG

H L → L. However, the Euler class a : S0 → Sρ is null once we
restrict to H � G, and therefore resG

H L and NG
H resG

H L are null. The existence of a ring map
NG

H resG
H L → L then implies L is also null.

Localizing R in other ways produces similar issues, though it is conceivable that some
norms do survive in these cases. Hill and Hopkins [9, 10] and White (cf. [16]) give precise
criteria for when they do. Thus, we are led to study commutative ring G-spectra equipped
with some, but not all norms. These are called N∞-ring spectra, because of the homotopy
coherence enjoyed by the multiplicative structure. More generally, an N∞ algebra is an
object, equipped with a homotopy commutative monoid structure, and additional trans-
fer maps that are compatible with it. This notion of algebraic structure can evidently be
interpreted in other homotopical contexts, and Blumberg and Hill have axiomatized the
essential features in their definition of N∞ operads [3].

An N∞ G-operad is a representing object for homotopy commutative monoids,
equipped with additional equivariant transfer maps. When G is the trivial group, an N∞
operad is an E∞ operad in the usual sense. Though there are many different point-set mod-
els of E∞ operads, all such operads are equivalent, because they are connected through
zigzags of weak equivalences. This is completely false equivariantly. As before, there are
many different point-set models of N∞ operads, but there are meaningful distinctions even
after we pass to homotopy.

Fortunately, the homotopy category Ho(N∞-OpG) of N∞ G-operads is relatively sim-
ple. It is equivalent to a certain poset Ind(G) of G-indexing systems (cf. [3, 5, 8, 14]),
where the indexing system associated to an N∞ operad is an algebraic object that encodes
the additional transfers. In this sense, the homotopy theory of N∞ operads is essentially
algebraic. One can also model the entire homotopy theory of N∞ G-operads with discrete
operads in the category of G-sets (cf. [14]). It follows that all homotopical constructions on
N∞ operads can be performed in pure combinatorics, and then transported into topology
after the fact (cf. [15]). This gives another sense in which N∞ operads are algebraic.

Unfortunately, this point of view completely ignores the naturally occurring geometry.
One of the initial motivations behind the study of N∞ operads was a desire to understand
the relationship between additive and multiplicative structures on equivariant spectra. From
a classical standpoint, such operations arise for very different reasons. Additive operations
are constructed by embedding finite G-sets into finite dimensional subrepresentations of a
universe U , and then applying the Pontryagin–Thom construction to their tubular neigh-
borhoods. There are many possible choices, which are neatly parametrized by the colimit
D(U) = colimV⊂UD(V) of little V -disks operads, where V ranges over finite dimensional
subrepresentations of U . Unfortunately, the operad D(U) has poor point-set-level proper-
ties, and does not naturally act on many things. This issue is fixed by thickening D(U)

to the Steiner operad K(U), and actions of Steiner operads are the basis of a recognition
principle for equivariant infinite loop spaces (cf. [7]).

In contrast, multiplicative operations on a spectrum E ∈ Sp(U) are classically con-
structed by internalizing the external smash product E∧n ∈ Sp(U⊕n) along a linear isometry
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f : U⊕n → U , and then mapping back to E. As before, there are many possible choices for
f , and the linear isometries operad L(U) parametrizes all of the options. From a conceptual
standpoint, actions of the linear isometries operad can be internalized to the smash product
of SG-modules (cf. [6, 13]), and this construction gave rise to the first symmetric monoidal
category of spectra. Excellent discussions of Steiner and linear isometries operads can be
found in [3, 7].

The operads K(U) and L(U) are the natural, geometric examples of N∞ G-operads.
Therefore, it is sensible to examine their properties more closely. When G is the trivial
group, both K(U) and L(U) are E∞ operads, and consequently, they are equivalent. A
natural question is whether this remains true equivariantly. The first surprise is that there
are incomplete universes U such that K(U) and L(U) are inequivalent [3]. In this paper,
we shall further quantify just how different Steiner and linear isometries operads can be, in
terms of the corresponding indexing systems. The asymmetry is stark.

Another natural question, first posed by Blumberg and Hill, is “whether or not all
homotopy types in N∞-OpG are realized by the operads that ‘arise in nature,’ i.e., the
equivariant Steiner and linear isometries operads” [3, p. 22]. Nonequivariantly, this is true
because there is only one E∞ operad up to equivalence. While one might suspect this is
false equvariantly, our second surprise is just how false it is. In what follows, we shall
give numerous counterexamples, and we shall demonstrate that the indexing systems that
correspond to Steiner and linear isometries operads are often in the minority.

We take a moment to address Blumberg and Hill’s question. The answer depends heav-
ily on the ambient group, but it is “no” in most cases. Given a prime p, the answer is “yes”
for the cyclic groups Cp and Cp2 , but it is “no” for Cpn when n ≥ 3, and it is “no” for (Cp)

×n

when n ≥ 2. Given distinct primes p and q, it is “yes” for Cpq provided that p, q > 3, but
“no” otherwise. In general, if G contains a tower 1 � L � H � G, or if G is a noncyclic
finite abelian group, then there is at least one N∞ G-operad that is inequivalent to every
Steiner and linear isometries operad (Theorems 4.3 and 4.15). There are often many more.
For example, only 9 of the 19 homotopy types of N∞ K4-operads correspond to Steiner
and linear isometries operads. We fare no better in the non-abelian case. Only 5 of the 9
�3-homotopy types and only 22 of the 68 Q8-homotopy types correspond to such operads.

Thus, we refine Blumberg and Hill’s problem. For any given group G, we pose the
following.

QUESTION 1.2. What properties characterize the Steiner and linear isometries G-
operads among all N∞ G-operads?

In light of the equivalence Ho(N∞-OpG) � Ind(G), we seek algebraic properties that
detect when a given G-indexing system I ∈ Ind(G) corresponds to some K(U) or L(U).
In [3, p. 17], Blumberg and Hill observe that every I obtained from a linear isometries
operad satisfies the following condition1:

If K ⊂ L ⊂ H ⊂ G and H/K ∈ I, then L/K ∈ I and H/L ∈ I. (�)

Among experts, condition (�) was considered the most promising criterion for determin-
ing whether an indexing system corresponds to a linear isometries operad. We began
this project hoping to establish sufficiency, but unfortunately, this is not true. We provide
explicit counterexamples when G = K4, Q8, �3, and C6 (cf. Section 5). Thus, we must

1Reproduced in this paper as Proposition 5.1.
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continue the search for conditions on indexing systems, which encode the peculiarities of
Steiner and linear isometries operads.

The homotopy types of Steiner and linear isometries G-operads are determined by
the representation theory of G over the reals, but the translation to the algebra of index-
ing systems is surprisingly bad. The collection Uni(G) of all isoclasses of G-universes
forms a cube, the poset category Ind(G) is a lattice, and we obtain two natural functions
Uni(G)⇒ Ind(G) by sending a G-universe U to the indexing systems corresponding to
K(U) and L(U). Neither of these functions are lattice maps in general (Proposition 2.7).
Thus, we eschew a top-down approach in favor of a more direct attack. We elaborate on
Blumberg and Hill’s computations, and then we look for patterns after the fact. We prove
the following.

THEOREM 4.11 Let G be a finite abelian group and let I be a G-indexing system.
Then I corresponds to a G-Steiner operad if and only if I is generated by a set of G-orbits
{G/H1, . . . , G/Hn} such that each G/Hi is cyclic when regarded as a quotient group of G.

The key point is that the homotopy type of K(U) ultimately depends on the isotropy
groups of points in the irreducible subrepresentations of U (Theorem 4.6). One can prove
similar theorems for any given finite group G, but the results are not nearly as uniform.

On the other hand, there is nothing remotely like Theorem 4.6 for L(U), and we sus-
pect there never will be. The behavior of linear isometries G-operads is just too dependent
on the representation theory of G, and this does not translate well to indexing systems.
Thus, we believe that the most fruitful path forward will be to analyze linear isometries
operads on a case-by-case basis, for small subclasses of finite groups. The same can also be
said for Steiner operads. Theorem 4.11 above is uncharacteristically simple, and is mostly
a reflection of the representation theory for finite abelian groups.

We begin our incremental analysis of linear isometries operads by specializing G to
finite cyclic groups. This reduces the problem to a pleasant puzzle in modular arithmetic
(Proposition 5.15), and we ultimately identify two cases where our original hopes about
linear isometries operads are met.

THEOREMS 5.18 AND 5.20. Let G be a finite cyclic group, whose order is either a
prime power or a product of two distinct primes greater than 3. If I is a G-indexing system,
then I corresponds to a G-linear isometries operad if and only if I satisfies condition (�).

As mentioned above, Blumberg and Hill observed the necessity of (�) in [3], and
we prove sufficiency by direct construction. Surprisingly, these constructions do not work
when G = C2q or C3q. This further underscores the disconnect between the representation
theory of Cpq, which varies in p and q, and the algebra of Cpq-indexing systems, which does
not. In general, we believe that (�) should be sufficient for detecting CN -linear isometries
operads, provided that the prime factors of N are sufficiently large relative to the number
of distinct factors of N . However, we do not have a proof, and the direct approach in this
paper is unlikely to extend much further.

We end with a comment on our formalism. Theorems 4.11, 5.18, and 5.20 are stated
in Sections 4 and 5 using different, but logically equivalent language. Briefly, an indexing
system I is completely determined by the orbits it contains, and with a bit of thought,
one can also recast all structure in I in such terms. We call the result a transfer system
(Definition 3.4). Informally, the transfer system associated to an N∞ G-operad O specifies
the additive transfers on O-algebra G-spaces, and the multiplicative transfers on O-algebra
G-spectra. The switch to transfer systems makes many of our computations easier, and it
also streamlines our notation.
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The notion of a transfer system was also discovered in independent work of Balchin
et al. [1]. They use transfer system formalism in their beautiful proof that Ind(Cpn)

is isomorphic to the (n + 1)st Stasheff polytope, and transfer systems are also used in
Balchin–Bearup–Pech–Roitzheim’s subsequent work on N∞ Cpqr-operads [2]. We are
confident that transfer systems will have further applications.

1.1. Organization. The remainder of this paper is structured as follows. In Section
2, we review some background material and give a more leisurely introduction to the char-
acterization problem. In Section 3, we introduce transfer systems. We prove that they are
equivalent to indexing systems (Theorem 3.7), and then we give a few examples (Figures
1–4). From here, we turn to the characterization problem. In Section 4, we analyze Steiner
operads, starting with general finite groups (Theorem 4.6), and then we specialize to finite
abelian groups (Theorem 4.11). In Section 5, we do the same for linear isometries operads.
There is not much we can say in general, so we quickly specialize to finite cyclic groups
CN , and then to Cpn and Cpq (Theorems 5.18 and 5.20). The Appendix explains how to
compute the transfer system generated from a prescribed set of relations (Construction
A.1), and then examines a few useful cases. We rely on these calculations throughout the
paper.

CONVENTION 1.3. In what follows, G denotes a finite group with unit e. When G =
Cn, we write λ(k) = λn(k) : Cn → SO(2) ∼= S1 for the two-dimensional real representation
of Cn that sends a chosen generator g ∈ Cn to e2π ik/n. When G is noncyclic, we use λ to
denote the pullback of such a representation along a quotient G�Cn. We write σ for the
sign representation of C2 and its pullbacks.

2. The characterization problem. In this section, we describe the characterization
problem (Problem 2.5) and indicate some obstacles toward its solution (Proposition 2.7).
The passage from the real representation theory of a group G to the algebra of G-indexing
systems is less transparent than one might hope, and this is why we take such a hands-on
approach in later sections.

2.1. Overview. We begin by reviewing the basic theory of N∞ operads, with an eye
toward Steiner and linear isometries operads. For further discussion, we recommend [3, 7].

Let G be a finite group and let TopG be the category of left G-spaces. Throughout this
paper, we understand G-operads to be symmetric operads in TopG with respect to the carte-
sian product. The prototypical example is the endomorphism G-operad for a G-space X . Its
nth level is the G-space TopG(X ×n, X ) of all continuous, but not necessarily equivariant,
maps X ×n → X . The group G acts by conjugation. Little disks operads constitute another
important class of examples. Suppose V is a finite dimensional real G-representation and
let D(V) denote the unit disk in V . A little V -disk is an affine, but not necessarily equivari-
ant, map of the form av + b : D(V) → D(V), and the nth level of the little V -disks operad
D(V) is the space of all n-tuples of disjoint little V -disks.

An N∞ G-operad is a G-operad O that has the following three properties:

(1) the G × �n-space O(n) is �n-free for every n ≥ 0;
(2) the fixed-point subspace O(n)
 is either empty or contractible for every n ≥ 0 and

subgroup 
 ⊂ G × �n; and
(3) the fixed-point subspace O(n)G is nonempty for every n ≥ 0.
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Such operads parametrize the multiplicative structures that typically remain on localiza-
tions of genuine commutative ring G-spectra. These operads also parametrize the canonical
additive and multiplicative structures on spectra over incomplete universes. Recall that a
G-universe is a countably infinite dimensional real G-inner product space, which contains
each of its subrepresentations infinitely often, and which contains trivial summands. For
any G-universe U , the natural multiplication on spectra indexed over U is parametrized
by the N∞ linear isometries operad L(U). Its nth level is the space of all linear, but not
necessarily equivariant, isometries U⊕n ↪→ U . One would like to say that the natural addi-
tive structure is parametrized by the N∞ operad D(U) = colimV⊂UD(V), where V ranges
over all finite dimensional subrepresentations of U . Unfortunately, the operad D(U) does
not naturally act on equivariant infinite loop spaces, because the point-set-level colimit that
defines D(U) is not compatible with suspension.

The standard work-around is to use Steiner operads K(U) instead. Suppose V is a finite
dimensional real G-representation and let RV be the G-space of distance-reducing, but not
necessarily equivariant, embeddings V ↪→ V . A V -Steiner path is a map h : [0, 1] → RV

such that h(1) = id, and the nth level of the Steiner operad K(V) is the space of all n-
tuples (h1, . . . , hn) of V -Steiner paths such that the images of h1(0), . . . , hn(0) are disjoint.
For any G-universe U , we let K(U) = colimV⊂UK(V). These Steiner operads do act on
equivariant infinite loop spaces.

We declare a map ϕ : O1 → O2 between N∞ operads to be a weak equivalence if
ϕ : O1(n)
 → O2(n)
 is a weak homotopy equivalence of topological spaces for every
n ≥ 0 and subgroup 
 ⊂ G × �n. Under mild point-set-level conditions, a weak equiva-
lence between N∞ operads induces a Quillen equivalence between the associated model
categories of algebra G-spectra [3, Theorem A.3]. The Steiner operad K(U) is equivalent
to the infinite little disks operad D(U), but there are generally universes U such that K(U)

and L(U) are inequivalent [3, Theorem 4.22].
By the usual product trick [12, Proposition 3.10], the homotopy type of an N∞ G-

operad O is completely determined by the subgroups 
 ⊂ G × �n such that O(n)
 is
nonempty. Moreover, the set of such 
 must be closed under subconjugacy, and must sat-
isfy additional closure conditions that encode operadic composition. It is convenient to
phrase these conditions in coordinate-free terms. By �-freeness, the relevant subgroups

 ⊂ G × �n all intersect {e} × �n trivially. Such subgroups are typically called graph sub-
groups. Every graph subgroup 
 ⊂ G × �n is the graph of a permutation representation
σ : H → �n of some subgroup H ⊂ G. Conversely, if T is a finite H-set, then the graph of
a permutation representation of T is a graph subgroup 
(T) ⊂ G × �T . We say that an N∞
operad O admits T if O(T)
(T) is nonempty. The (graded) class of all admissible sets of an
N∞ operad forms an indexing system in the sense given next.

DEFINITION 2.1. Let G be a finite group and let Sub(G) denote the set of all sub-
groups of G. A class of finite G-subgroup actions is a class X , equipped with a function
X → Sub(G), such that the fiber over each H ∈ Sub(G) is a class of finite H-sets. Write
X (H) for the fiber over H .

A G-indexing system I is a class of finite G-subgroup actions which satisfies the
following closure conditions:

(1) (trivial sets) For any subgroup H ⊂ G, the class I(H) contains all finite, trivial
H-actions.

(2) (isomorphism) For any subgroup H ⊂ G and finite H-sets S and T , if S ∈ I(H) and
S ∼= T , then T ∈ I(H).
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(3) (restriction) For any subgroups K ⊂ H ⊂ G and finite H-set T , if T ∈ I(H), then
resH

K T ∈ I(K).
(4) (conjugation) For any subgroup H ⊂ G, group element g ∈ G, and finite H-set T , if

T ∈ I(H), then cgT ∈ I(gHg−1).
(5) (subobjects) For any subgroup H ⊂ G and finite H-sets S and T , if T ∈ I(H) and

S ⊂ T , then S ∈ I(H).
(6) (coproducts) For any subgroup H ⊂ G and finite H-sets S and T , if S ∈ I(H) and

T ∈ I(H), then S � T ∈ I(H).
(7) (self-induction) For any subgroups K ⊂ H ⊂ G and finite K-set T , if T ∈ I(K) and

H/K ∈ I(H), then indH
K T ∈ I(H).

We call the elements of I(H) the admissible H-sets of I. Let Ind(G) denote the poset of
all G-indexing systems, ordered under inclusion.

For any group G, there is a maximum indexing system Set, whose H-fiber is the class
of all finite H-sets, and there is a minimum indexing system triv, whose H-fiber is the
class of all finite, trivial H-actions. The meet of two indexing systems I and J is the level-
wise intersection (I ∧J )(H) = I(H) ∩J (H), and the join of two indexing systems is the
smallest indexing system that contains the level-wise union (I ∪J )(H) = I(H) ∪J (H).
Thus Ind(G) is a lattice. It is finite because indexing systems are determined by the orbits
they contain.

DEFINITION 2.2. A G-indexing system I is a �-indexing system if it also satisfies

(�) For any subgroups K ⊂ L ⊂ H ⊂ G, if H/K ∈ I(H), then L/K ∈ I(L) and H/L ∈
I(H).

If I is any indexing system and H/K ∈ I(H), then L/K ∈ I(L) because I is closed
under restriction and subobjects. The extra condition for �-indexing systems is that H/L ∈
I(H). The class of admissible sets of a linear isometries operad is always a �-indexing
system [3, p. 17].

REMARK 2.3. Condition (�) is a kind of horn-filling property. Suppose that we have
a chain of subgroups H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn, regarded as a n-simplex in Sub(G). If the
orbit Hn/H0 is admissible for a �-indexing system I, then every suborbit Hi/Hj with i ≥ j
must also be admissible for I.

Taking admissible sets defines a functor A : N∞-OpG → Ind(G) from the category of
N∞ G-operads to the poset category Ind(G) of G-indexing systems. The classification
theorem states that A induces an equivalence after we invert weak equivalences.

THEOREM 2.4 [3, 5, 8, 14]. Taking admissible sets induces an equivalence A :
Ho(N∞-OpG) → Ind(G) of 1-categories.

In their pioneering work, Blumberg and Hill proved that the admissible sets functor
A : Ho(N∞-OpG) → Ind(G) is full and faithful [3, Theorem 3.24], and subsequent, inde-
pendent work in [5, 8, 14] established surjectivity. However, the constructions in [5, 8, 14]
are all essentially algebraic. For example, the simplest N∞ operads considered in [14] are
constructed by generating a free discrete operad on the desired operations, and then attach-
ing cells to kill all homotopy. All N∞ operads arise in this way, up to equivalence, which
reflects the fact that the definitions of N∞ operads and indexing systems only axiomatize
general features of equivariant composition. It is natural to ask how the geometry of Steiner
and linear isometries operads is encoded by the algebra of indexing systems.
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PROBLEM 2.5. Given a finite group G, identify extra algebraic conditions on indexing
systems that characterize the images of the Steiner operads and linear isometries operads
under the map A : Ho(N∞-OpG) → Ind(G).

We shall solve this problem in a few, special cases.

2.2. Structural obstacles. Suppose that U is a G-universe, and let K(U) and L(U)

be the corresponding Steiner and linear isometries operads. Problem 2.5 asks what the
possible values of A(K(U)) and A(L(U)) are. One’s first thought might be to leverage
relations between universes into relations between indexing systems. Unfortunately, this
approach does not work as well as one might hope.

To start, note that the admissible sets of K(U) and L(U) depend only on the
isomorphism class of U . Thus, we introduce notation.

DEFINITION 2.6. Let Uni(G) denote the set of all isomorphism classes [U] of G-
universes U .

We declare [U] ≤ [U ′] if there is a G-embedding U ↪→ U ′ for some representatives U
and U ′. The minimum element of Uni(G) is the class of a trivial universe, and the maxi-
mum element is the class of a complete universe. The join of [U] and [U ′] is represented
by U ⊕ U ′, and the meet [U] ∧ [U ′] is the universe that contains infinitely many copies of
each irreducible V that embeds into both U and U ′. Thus, Uni(G) is a lattice. It is isomor-
phic to an n-cube, where n is the number of nontrivial irreducible real representations of
G, up to isomorphism.

The lattice Uni(G) carries a right action by the group Aut(G) of automorphisms of
G. Given a class [U] ∈ Uni(G) and an automorphism σ ∈ Aut(G), we declare [U] · σ to
be the class represented by the G-universe G

σ→ G → O(U). On the other hand, Ind(G)

is also a lattice, and it inherits a right Aut(G)-action from the corresponding action on G.
Explicitly, given σ ∈ Aut(G) we declare

(i) g · σ = σ−1(g) for all g ∈ G,
(ii) H · σ = σ−1H for every subgroup H ⊂ G,

(iii) T · σ = [σ−1H
σ→ H → Perm(T)] for every subgroup H ⊂ G and finite H-set T ,

and
(iv) I · σ = {T · σ | T ∈ I} for every G-indexing system I.

These formulas define Aut(G)-actions on G, Sub(G), Set, and Ind(G).
Ideally, the functions

A(K(−)), A(L(−)) : Uni(G)⇒ Ind(G)

would preserve all structure in sight. That is too optimistic.

PROPOSITION 2.7. Neither A(K(−)) nor A(L(−)) is a lattice map in general.

Proof. Example 2.8 shows that A(K(−)) does not preserve meets when G = C5,
and Example 2.9 shows that A(L(−)) does not preserve the order when G = C9. The
calculations in Examples 5.9, 5.10, and 5.17 provide similar counterexamples.

Here is the problem for Steiner operads. By [3, Theorem 4.19], the operad K(U) �
D(U) admits H/K if and only if there is an H-embedding H/K ↪→ resG

H U . This com-
plicates things when nonisomorphic G-representations decompose into the same orbits.
Recall the Cn-representations λ(k) described in Convention 1.3.
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EXAMPLE 2.8. Suppose G = C5. The C5-universes U1 = (R ⊕ λ(1))∞ and U2 = (R ⊕
λ(2))∞ are incomparable, but the free orbit C5/C1 embeds into both of them. Hence,
A(K(U1)) = A(K(U2)) = Set, and A(K(U1)) ∧ A(K(U2)) = Set. On the other hand, we
have [U1] ∧ [U2] = [R∞], and thus A(K([U1] ∧ [U2])) = triv. Therefore, A(K(−)) does
not preserve meets.

As for linear isometries operads, [3, Theorem 4.18] states that the operad L(U) admits
an orbit H/K if and only if there is an H-embedding indH

K resG
KU ↪→ resG

H U . This compli-
cates things because we cannot analyze the problem one irreducible subrepresentation of
U at a time.

EXAMPLE 2.9. Let G = C9 and consider the incomplete universes U1 = (R ⊕ λ(3))∞
and U2 = (R ⊕ λ(1) ⊕ λ(3))∞. Then [U1] < [U2], but we shall see that A(L(U1)) and
A(L(U2)) are incomparable.

First, consider the admissibles of L(U1). The restriction resC9
C3

U1 is a trivial C3-universe

and indC9
C3

resC9
C3

U1
∼= U1. Hence L(U1) admits C9/C3. On the other hand, indC3

C1
resC9

C1
U1 is a

complete C3-universe, and thus L(U1) does not admit C3/C1.
Now consider the admissibles of L(U2). The restriction resC9

C3
U2 is a complete C3-

universe, and hence L(U2) admits C3/C1. On the other hand, indC9
C3

resC9
C3

U2 is a complete
C9-universe, and therefore L(U2) does not admit C9/C3.

That being said, we can salvage the situation to some extent.

PROPOSITION 2.10. The function AK = A(K(−)) : Uni(G) → Ind(G) is Aut(G)-
equivariant, and it preserves the order, the maximum element, the minimum element, and
joins. It is not always order-reflecting, meet-preserving, or injective.

Proof. Composing embeddings of orbits with embeddings of universes proves that
AK is order-preserving, and applying (−) · σ and (−) · σ−1 shows that T embeds into
resG

H U if and only if T · σ embeds into U · σ . It follows that AK preserves the Aut(G)-
action. We have AK([R∞]) = triv because the only orbits that embed in R∞ are trivial,
and AK([R[G]∞]) = Set because every orbit embeds in R[G]. By Proposition 4.5 AK pre-
serves joins, and Example 2.8 shows that AK need not reflect the order, preserve meets, or
be injective.

PROPOSITION 2.11. The function AL = A(L(−)) : Uni(G) → Ind(G) is Aut(G)-
equivariant, and it preserves maximum and minimum elements. It is not always order-
preserving, order-reflecting, join-preserving, meet-preserving, or injective.

Proof. We begin with the Aut(G)-equivariance. Right multiplication (−) · σ pre-
serves embeddings, and it commutes with restriction and induction. Therefore, indH

K resG
H U

embeds into resG
H U if and only if indσ−1H

σ−1K resG
σ−1H(Uσ) embeds into resG

σ−1H(Uσ). It fol-
lows H/K ∈ AL([U]) if and only if (H/K)σ ∈ AL([U]σ), and passing to coproducts
shows AL([U])σ = AL([U]σ). The map AL preserves minimum and maximum elements
because no nontrivial universe embeds in a trivial one, and every universe embeds into a
complete one.

Consider the universes in Example 2.8 once more. Keeping the same notation, we have
AL(U1) = AL(U2) = triv, and therefore AL is not injective or order-reflecting for G = C5.
Example 2.9 shows that AL is not order-preserving for G = C9, and therefore AL does not
preserve all joins and meets in that case, either.

The failure of AK to preserve meets is a nuisance, but it is counterbalanced by the fact
that AK preserves joins. The failure of AL to preserve the order is more serious. It precludes

https://doi.org/10.1017/S001708952000021X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952000021X


316 JONATHAN RUBIN

a clean, structural approach to Problem 2.5 for linear isometries operads. To move forward,
we elaborate on Blumberg and Hill’s calculations of AK and AL, and then we study the
formulas that fall out.

3. Transfer systems. In this section, we take a detour to introduce formalism that
simplifies our discussion of Problem 2.5. Indexing systems are proper class-sized objects,
but they are determined by finite sets of orbits. Reformulating Definition 2.1 in these terms
leads to our notion of a transfer system (Definition 3.4). We prove that transfer systems
are equivalent to indexing systems (Theorem 3.7) and to the indexing categories of [4]
(Corollary 3.9). We also give a handful of examples in Section 3.2. We reiterate that Balchin
et al. [1] have independently developed the same formalism.

3.1. The data in an indexing system. There are several ways to think of indexing
systems. From an operadic standpoint, they are equivalent to homotopy types of N∞ oper-
ads (Theorem 2.4). From an algebraic standpoint, they are equivalent to indexing categories
in the sense given next [4, Theorem 3.17].

DEFINITION 3.1. Let SetG
fin denote the category of finite G-sets. A G-indexing cate-

gory is a wide, pullback stable, finite coproduct complete subcategory D ⊂ SetG
fin. We write

IndCat(G) for the poset of all G-indexing categories.

Such categories naturally parametrize the transfers on incomplete Mackey functors
and the norms on incomplete Tambara functors.

We now introduce transfer systems, which encode generating data in indexing systems
and indexing categories. Informally, a transfer system is a diagram of the orbits in an index-
ing system, or the intersection of an indexing category D ⊂ SetG

fin with the orbit category
OG. We consider the relationship to indexing systems first.

DEFINITION 3.2. Suppose I is a G-indexing system. We define the graph of I to be
the set Sub(G), equipped with the binary relation →I as follows:

K →I H if and only if K ⊂ H and H/K ∈ I.

We think of subgroups H ⊂ G as vertices, and relations K →I H as directed edges.
The indexing system axioms imply the following properties of →I .

PROPOSITION 3.3. Suppose that I is a G-indexing system. Then → = →I is

(a) a partial order,
(b) a refinement of the subset relation: if K → H, then K ⊂ H,
(c) closed under conjugation: if K → H, then (gKg−1) → (gHg−1) for every group

element g ∈ G, and
(d) closed under restriction: if K → H and L ⊂ H, then (K ∩ L) → L.

If I is a �-indexing system, then → also is

(e) saturated: if K → H and K ⊂ L ⊂ H, then K → L and L → H.

Proof. Part (b) holds by fiat. For (a), reflexivity holds because I contains all trivial
actions, and antisymmetry follows from (b). For transitivity, suppose K → L and L → H .
Then L/K ∈ I and H/L ∈ I, and hence H/K ∼= indH

L L/K ∈ I because I is closed under
isomorphism and self-induction. Condition (c) holds because if K → H , then H/K ∈ I,
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and hence gHg−1/gKg−1 ∼= cgH/K ∈ I because I is closed under isomorphism and con-
jugation. Condition (d) holds because we have an embedding L/(L ∩ K) ↪→ resH

L H/K,
and I is closed under restriction and subobjects. Condition (e) is a restatement of
condition (�).

Thus, we make a definition.

DEFINITION 3.4. Let G be a finite group. A G-transfer system is a partial order on
Sub(G), which refines the subset relation, and which is closed under conjugation and
restriction in the sense of Proposition 3.3. We use arrows → to denote transfer systems. A
transfer system → is saturated if it also satisfies condition (e) above. Let Tr(G) denote the
poset of all G-transfer systems → ordered under refinement, i.e. declare →1 ≤ →2 if and
only if K →1 H implies K →2 H for all K, H ⊂ G.

REMARK 3.5. We explain the terminology. Suppose O is an N∞ G-operad. The
transfer system →O corresponding to the class of O-admissible sets satisfies

K →O H if and only if K ⊂ H and O([H : K])
(H/K) �=∅.

We shall see that a relation K →O H gives rise to a transfer map on O-algebras.
Suppose K and H are subgroups such that K →O H , and write n = [H : K]. Order

H/K as {r1K < · · · < rnK}, let 
 = 
(H/K) be graph of the corresponding permutation
representation σ : H → �n, and choose a 
-fixed operation f ∈ O(n). If X is an O-algebra
G-space, then there is a transfer map

trH
K (x) = f (r1x, . . . , rnx) : X K → X H .

On the other hand, if we regard f as a map G×�n



→ O(n), then we obtain a G-map

tr
H
K : G ×H X ×H/K ∼= G × �n



×
�n

X ×n f ×id−→ O(n) ×
�n

X ×n −→ X .

Here X ×H/K is the space X ×n equipped with the H-action

h(x1, . . . , xn) = (hxσ(h)−11, . . . , hxσ(h)−1n)

and the isomorphism G ×H X ×H/K ∼= G×�n



×�n X ×n identifies [g, (x1, . . . , xn)] with

[[g, 1], (gx1, . . . , gxn)]. The map tr
H
K is an external version of trH

K : X K → X H . We recover
trH

K by taking H-fixed points of the adjoint X ×H/K → resG
H X , and then composing with the

map X K ∼= (X ×H/K)H that identifies x with (r1x, . . . , rnx).
Similarly, if E is an O-algebra G-spectrum, then by [3, Construction 6.5], we obtain

an external norm map

nH
K : G+ ∧H NH

K resG
KE ∼= G × �n



+ ∧

�n

E∧n f+∧id−→ O(n)+ ∧
�n

E∧n −→ E.

Thus, relations in →O give rise to external additive and multiplicative transfers on O-
algebra G-spaces and G-spectra.

The construction of a transfer system from an indexing system is reversible, because
indexing systems are determined by their orbits.

PROPOSITION 3.6. If → is a G-transfer system, then there is a unique G-indexing
system I = I→ such that →I = →. More specifically, I→(H) is the class of all finite
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coproducts of H-orbits H/K such that K → H. The transfer system → is saturated if and
only if I→ is a �-indexing system.

Proof. Fix a transfer system →. If I is an indexing system such that →I = →, then
the orbits of I must be those H/K such that K → H , and I must be the class of all finite
coproducts of such orbits. Therefore, I is unique if it exists.

We check that this recipe works. Define

I→(H) :=
{

finite H-sets T

∣∣∣∣ there exist n ≥ 0 and K1, . . . , Kn ⊂ H such that

T ∼= ∐n
i=1 H/Ki and Ki → H for i = 1, . . . , n

}
,

where empty coproducts are understood to be ∅. We must check that I = I→ is a G-
indexing system, and that →I = →.

We verify the axioms in Definition 2.1. Condition (1) holds because → is reflexive.
Condition (2) holds because coproducts are only defined up to isomorphism. Condition (3)
holds because if T ∼= ∐n

i=1 H/Ki with Ki → H , then for any L ⊂ H ,

resH
L T ∼=

n∐
i=1

resH
L H/Ki

∼=
n∐

i=1

∐
a∈L\H/Ki

L/(L ∩ aKia
−1).

The right-hand side is a finite coproduct, and if Ki → H , then for any a ∈ L\H/Ki, we
have (aKia−1) → (aHa−1) = H and also (L ∩ aKia−1) → L, because → is closed under
conjugation and restriction. Condition (4) holds because if T ∼= ∐n

i=1 H/Ki, then cgT ∼=∐n
i=1 gHg−1/gKig−1, and → is closed under conjugation. Condition (5) holds because

every subobject of T ∼= ∐
i H/Ki ∈ I is still just a finite coproduct of orbits H/K with

K → H . Similarly for condition (6).
Suppose that H/K ∈ I. Then H/K ∼= H/K ′ for some K ′ → H . Therefore, K = hK ′h−1

for some h ∈ H , and thus K = hK ′h−1 → hHh−1 = H . Condition (7) follows, because if
T ∼= ∐n

i=1 K/Li ∈ I for some Li → K and H/K ∈ I, then K → H , and therefore Li → H by
transitivity. Thus, indH

K T ∼= ∐n
i=1 H/Li ∈ I. This proves that I is an indexing system, and

it is easy to see that →I = →.
Suppose the transfer system → is saturated. If H/K ∈ I and K ⊂ L ⊂ H , then K → H

as above, and therefore K → L → H . Hence L/K, H/L ∈ I, and hence I is a �-indexing
system. The converse is similar.

In summary, we obtain the following result.

THEOREM 3.7. The maps →• : Ind(G)�Tr(G) : I• are inverse order isomorphisms,
and they restrict to an isomorphism between the subposet of �-indexing systems and the
subposet of saturated transfer systems.

Proof. The set maps →• and I• are inverse by Propositions 3.3 and 3.6. We must check
that they are order-preserving. Suppose that I ⊂J . If K →I H , then H/K ∈ I ⊂J , and
therefore K →J H . Thus →I refines →J . Conversely, if →I refines →J , then every orbit
in I is also contained in J . Therefore, I ⊂J , because I is generated by its orbits.

This makes precise the intuition that transfer systems are the sets of orbits in indexing
systems.

We now consider the relationship between transfer systems and indexing categories,
starting with a review of Blumberg and Hill’s isomorphism Ind(G) ∼= IndCat(G). For any
indexing system I, let SetG

I ⊂ SetG
fin be the indexing category consisting of those f : S → T
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such that Gf (s)/Gs ∈ I for every s ∈ S. Conversely, given any indexing category D ⊂ SetG
fin,

let ID be the indexing system whose admissible H-sets are those T such that T = p−1(eH)

for some p : S → G/H in D .2

THEOREM 3.8 [4, Theorem 3.17]. The maps SetG
• : Ind(G)� IndCat(G) : I• are

inverse lattice isomorphisms.

We obtain a composite isomorphism Tr(G) ∼= Ind(G) ∼= IndCat(G). Unwinding the
definitions and simplifying yields the following formulas. For any transfer system � ∈
Tr(G), let SetG

� ∈ IndCat(G) consist of those morphisms f : S → T in SetG
fin such that

Gs�Gf (s) for every s ∈ S. Conversely, for any D ∈ IndCat(G), let →D ∈ Tr(G) be the
transfer system defined by

K →D H if and only if K ⊂ H and (π : G/K → G/H) ∈ D,

where π is the canonical projection map π(gK) = gH .

COROLLARY 3.9. The lattice maps SetG
• : Tr(G)� IndCat(G) : →• are inverse.

This makes precise the intuition that transfer systems are the intersection of indexing
categories with the orbit category OG.

There is a chain of equivalences

Ho(N∞-OpG) � Ind(G) ∼= IndCat(G) ∼= Tr(G),

and therefore these structures all contain the same information. It is easy to identify the
essential group-theoretic data from the standpoint of transfer systems.

COROLLARY 3.10. The lattices Ind(G), IndCat(G), and Tr(G), and the one-category
Ho(N∞-OpG) are determined by the lattice Sub(G), together with the orbit space of the
G-set

⊂G = {(K, H) ∈ Sub(G)×2 | K ⊂ H}
under the diagonal conjugation G-action.

In particular, the lattice Sub(G) determines everything if G is finite abelian, or if all
subgroups of G are normal (e.g. if G = Q8). In general, we must remember ⊂G/G and not
just the set Sub(G)/G of conjugacy classes of subgroups, because the actions on the fibers
of ⊂G � (Sub(G)/G)×2 need not be transitive.

EXAMPLE 3.11. Let G = �4. There are three conjugate copies of D8 in �4, obtained
by ordering the vertices of a square, and then taking the images of the associated permu-
tation representations. There are three double-transpositions in �4 which generate three
conjugate copies of C2. These subgroups determine a copy of the bipartite graph

C2 C′
2 C′′

2

D8 D′
8 D′′

8

2The indexing system ID is obtained from the construction in [4, Lemma 3.18] by composing with the
equivalence SetG

/G/H � SetH , and then taking object classes.
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in Sub(�4). For each copy of D8, one inclusion of C2 corresponds to the rotation by π ,
and the other two inclusions correspond to reflections. Without loss of generality, we may
assume that the vertical inclusions above are the rotations. We obtain two conjugacy classes
of edges:

C2 C′
2 C′′

2

D8 D′
8 D′′

8

C2 C′
2 C′′

2

D8 D′
8 D′′

8

and

.

Thus, to specify a �4-transfer system, it is not enough to declare [C2] → [D8]. We must
also know which copies of C2 are related to which copies of D8.

3.2. Examples of transfer systems. We now describe the lattice Tr(G) for a few
small groups G. These examples illustrate how our formalism works, and they will be
useful in the upcoming discussion of Steiner and linear isometries operads.

The lattice Tr(G) is determined by Sub(G), equipped with the conjugation G-action.
Thus, we focus on groups with small subgroup lattices. We start with the case of a tower.
Balchin et al. have proven a marvelous theorem. Using a clever inductive argument, they
show that Tr(Cpn) is isomorphic to the (n + 1)st associahedron for any prime p and inte-
ger n ≥ 0. To give the idea, we draw Tr(Cpn) for 0 ≤ n ≤ 3 in Figure 1, but we heartily
recommend their paper for the general argument.

Next, we generalize orthogonally. The lattice Sub(Cp2) is a three-tiered tower, and in
Figure 2, we show what happens as the number of intermediate subgroups increases. We
start with Cpq, where p < q are prime, and the Klein four group K4. Write K4 = {1, a, b, c},
where 1 is the identity and ab = c.

The pentagons that show up in Tr(Cpq) and Tr(K4) are copies of the pentagon that
appears in Tr(Cp2). More generally, suppose that G is a finite abelian group with n proper,
nontrivial subgroups that are pairwise incomparable. Then Tr(G) decomposes as a stacked
pair of n-cubes with a layer of n transfer systems between them. Thus, if G = (Cp)

×2 for a
prime p, then there are p + 1 intermediate subgroups and 2p+2 + p + 1 transfer systems.

Now consider the quaternion group Q8 = {±1, ±i, ±j, ±k}. Its subgroup lattice is
obtained from the tower Sub(Cp3) by widening the upper two links into a copy of Sub(K4).
Accordingly, the lattice Tr(Q8) exhibits features of both Tr(Cp3) and Tr(K4), but the mix-
ing is nontrivial. There are 68 total Q8-transfer systems, and the group Out(Q8) ∼= �3

acts on Tr(Q8) because all subgroups of Q8 are normal. As a �3-poset, Tr(Q8) is a sum
�3/1 + 17 · �3/〈(12)〉 + 11 · �3/�3 of 29 orbits, and we draw the quotient in Figure 3.

There is an evident copy of Tr(K4)/�3 on the left edge of Tr(Q8)/�3. As we move to
the right, partially grown copies sprout up from the bottom, and we end with another fully
grown copy of Tr(K4)/�3 on the right. There is also a copy of the associahedron Tr(Cp3)

in Tr(Q8), spanned by the Q8-transfer systems as follows:

···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· ·

So far, we have only studied groups for which every subgroup is normal. We consider
G = �3 in Figure 4 for a change.

The group �3 has four proper, nontrivial subgroups, generated by the transpositions
and a three cycle. The former copies of C2 are conjugate, and the latter copy of C3 is
normal. In some respects, this allows us to treat all copies of C2 as the same subgroup.
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Figure 1. Transfer systems for Cp0 , Cp1 , Cp2 , and Cp3 .

For example, if 1 → 〈(12)〉, then 1 → 〈τ 〉 for every transposition τ , and dually if 〈(12)〉 →
�3. However, we must remember that 〈(12)〉, 〈(13)〉, and 〈(23)〉 are distinct subgroups.
The �3-transfer system generated by 〈(12)〉 → �3 contains 1 → �3 because it contains
〈(23)〉 → �3 by conjugating, and 1 = 〈(12)〉 ∩ 〈(23)〉 → 〈(12)〉 by restricting (cf. Example
A.3). This is in sharp contrast to the Cpq-transfer system generated by Cp → Cpq or the
(C3)

×2-transfer system generated by a single relation of the form C3 → (C3)
×2.

More generally, if G = D2p for a prime p > 2, then the set of proper nontrivial sub-
groups of G consists of p conjugate copies of C2, and one normal copy of Cp. One finds
that Tr(D2p) ∼= Tr(�3), by the same count.
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Figure 2. Transfer systems for Cpq and K4.
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Figure 3. Transfer systems for Q8.

4. Steiner operads. In this section, we continue Blumberg and Hill’s analysis of
equivariant Steiner operads. We identify the G-transfer systems that arise from Steiner
operads in general (Theorem 4.6), and then we specialize to finite abelian groups (Theorem
4.11). In the latter case, we show how to construct a minimal universe U such that K(U)

parametrizes a specified transfer map (Proposition 4.17).
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Figure 4. Transfer systems for �3.

4.1. General finite groups. Suppose that U is a G-universe and consider the Steiner
operad K(U). If K ⊂ H ⊂ G are subgroups, then by [3, Theorem 4.19],

K →K(U) H if and only if H/K H-embeds into resG
H U .

We begin our analysis by showing → = →K(U) is completely determined by transfer
relations K → G such that the target is all of G.

Identify a binary relation R on a set X with the set {(x, y) ∈ X ×2 | xRy} of all R-related
pairs. Thus, xRy means (x, y) ∈ R, and R refines S if and only if R ⊂ S. If R is any binary
relation on Sub(G) that refines inclusion, then there is minimum transfer system → = 〈R〉
that contains R. Abstractly, → is the intersection of all transfer systems that contain R, but
we give an explicit construction in the Appendix. We call 〈R〉 the transfer system generated
by R.

LEMMA 4.1. Suppose that U is a G-universe, and let → = →K(U). Then → is
generated by {(K, G) | K ⊂ G and K → G}.

Proof. Let � be the G-transfer system generated by {(K, G) | K ⊂ G and K → G}.
Then� refines → by definition. We must establish the other refinement.

Suppose K → H , choose an H-embedding ϕ : H/K ↪→ resG
H U , and let x = ϕ(eK) ∈

U . Then K = Hx = Gx ∩ H , and there is a G-embedding G/Gx ↪→ U . Therefore, Gx →
G, which implies Gx�G, and restricting along H ⊂ G shows that K = Gx ∩ H�H .
Therefore → refines�.

EXAMPLE 4.2. There are plenty of transfer systems → such that the refinement
〈(K, G) | K ⊂ G and K → G〉 ≤ → is an equality, and plenty such that it is not. If G = K4,
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then we have an equality for the �3 = Out(K4)-orbits of

·· · ·· ·· · ·· ·· · ·· ·· · ·· ·· · ·· ·· · ··

and an inequality for the orbits of

·· · ·· ·· · ·· ·· · ·· .

Lemma 4.1 and Proposition 5.1 imply that a large class of transfer systems are not
realized by Steiner or linear isometries operads.

THEOREM 4.3. Suppose G is a finite group, K �G is a normal subgroup, and K �

L � H � G is a chain in Sub(G). Then the G-transfer system 〈(K, H)〉 generated by (K, H)

is not realized by a G-Steiner or a G-linear isometries operad.

Proof. Let H = H1, . . . , Hn be the conjugates of H in G and let → = 〈(K, H)〉 =
〈(K, Hi) | 1 ≤ i ≤ n〉. Then → = {(M, M) | M ⊂ G} ∪ ⋃n

i=1{(M ∩ K, M) | M ⊂ Hi} by
Proposition A.5.

If J → G, then J = G, and therefore 〈(J , G) | J → G〉 = �Sub(G) < →. Lemma 4.1
implies that → is not realized by any Steiner operad.

On the other hand, L �→ H because L �= H and M ∩ K ⊂ K � L for all M ⊂ G. Hence
→ is not saturated, and Proposition 5.1 implies that → is not realized by any linear
isometries operad.

EXAMPLE 4.4. The Cp3 -transfer system ···
·

and the Q8-transfer system ···
·· · are not

realized by any Steiner or linear isometries operads.

We can hone our description of →K(U) further. For any G-representation V , let

Orb(V) = {(K, G) | K � G and G/K G-embeds into V}.
PROPOSITION 4.5. Let U be a G-universe, and suppose that U ∼= ⊕

i∈I Vi for some
G-representations Vi, indexed over a possibly infinite set I. Then →K(U) is generated by⋃

i∈I Orb(Vi).

Proof. Let → = →K(U) and let � = 〈⋃i∈I Orb(Vi)〉. If (K, G) ∈ Orb(Vi) for some
i ∈ I , then there is a composite G-embedding G/K ↪→ Vi ↪→ U , and therefore (K, G) ∈ →.
Therefore� refines →.

Conversely, suppose K → G and choose a G-embedding ϕ : G/K ↪→ ⊕
i∈I Vi. Since

G/K is finite, the map ϕ factors through some finite sum Vi1 ⊕ · · · ⊕ Vin . Let
(x1, . . . , xn) = ϕ(eK) ∈ Vi1 ⊕ · · · ⊕ Vin . Then K = G(x1,...,xn) = Gx1 ∩ · · · ∩ Gxn . Since we
have G-embeddings G/Gxi ↪→ Vi, it follows that Gxi �G, and hence K = Gx1 ∩ · · · ∩
Gxn �G by Lemma A.6. Therefore 〈(K, G) | K → G〉 ⊂ �, and the left-hand side equals
→ by Lemma 4.1. This proves that → refines�.

In particular, we may calculate →K(U) in terms of the irreducible subrepresentations
V ⊂ U . The next result follows easily.

THEOREM 4.6. Suppose G is a finite group and → is a G-transfer system. The
following are equivalent:

(1) There is a G-universe U such that → = →K(U).
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(2) There is an integer n ≥ 0 and nontrivial, irreducible real G-representations
V1, V2, . . . , Vn such that → = 〈⋃n

i=1 Orb(Vi)〉.
When n = 0 in (2), we understand → to be the minimum transfer system.

Proof. If → = 〈⋃n
i=1 Orb(Vi)〉 for some sequence of nontrivial, irreducible real G-

representations Vi, then → = →K(U) for U = [R ⊕ ⊕n
i=1 Vi]∞, by Proposition 4.5. The

converse is similar.

Thus, we can identify the image of AK : Uni(G) → Tr(G) by computing orbit decom-
positions of all irreducible real G-representations, and then enumerating the transfer
systems generated by combinations of these data. We illustrate by example.

EXAMPLE 4.7. Let G = K4 once more, and keep notation as in Section 3.2. We shall
further winnow down the candidates found in Example 4.2. There are three nontrivial, irre-
ducible real K4-representations. We have a sign representation σa : K4�K4/〈a〉 σ→ O(1),
which satisfies Orb(σa) = {(〈a〉, K4)}, and similarly for b, c ∈ K4. Thus, there are eight K4-
universes, which form four orbits under the �3-action. We give orbit representatives and
their transfer systems as follows:

U →K(U)

R∞ ·· · ··
(R ⊕ σc)

∞ ·· · ··
(R ⊕ σb ⊕ σc)

∞ ·· · ··
(R ⊕ σa ⊕ σb ⊕ σc)

∞ ·· · ··

EXAMPLE 4.8. If G = Q8, then there are four nontrivial, irreducible real represen-
tations. There is a sign representation σi : Q8�Q8/〈i〉 σ→ O(1), and analogous repre-
sentations σj and σk for j, k ∈ Q8. There is also a four-dimensional representation H,
obtained by letting Q8 ⊂ H act on the quaternions by left multiplication. We have Orb(H) =
{(1, Q8)}, Orb(σi) = {(〈i〉, Q8)}, and similarly for j and k. Thus, there are 16 Q8-universes
which form 8 �3-orbits. We give orbit representatives and their transfer systems as
follows:

U →K(U) U →K(U)

R∞ ···
·· ·

(R ⊕ H)∞ ···
·· ·

(R ⊕ σk)
∞ ···

·· ·
(R ⊕ σk ⊕ H)∞ ···

·· ·

(R ⊕ σj ⊕ σk)
∞ ···

·· ·
(R ⊕ σj ⊕ σk ⊕ H)∞ ···

·· ·

(R ⊕ σi ⊕ σj ⊕ σk)
∞ ···

·· ·
(R ⊕ σi ⊕ σj ⊕ σk ⊕ H)∞ ···

·· ·

EXAMPLE 4.9. If G = �3, then the nontrivial, irreducible real representations are the
sign representation σ : �3��3/〈(123)〉 σ→ O(1) and the representation � : �3 → O(2)

of �3 as the symmetries of a triangle. We have Orb(σ ) = {(〈(123)〉, �3)} and Orb(�) =
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{(〈(12)〉, �3), (〈(13)〉, �3), (〈(23)〉, �3), (1, �3)}, and hence the transfer systems for �3-
Steiner operads are as follows:

U →K(U)

R∞ ·· · ···

(R ⊕ σ)∞ ·· · ···

(R ⊕ �)∞ ·· · ···

(R ⊕ σ ⊕ �)∞ ·· · ···

4.2. Finite abelian groups. Theorem 4.6 gives a reasonable procedure for comput-
ing the image of AK : Uni(G) → Tr(G), but it is another matter to find a clean description
of im(AK) purely in terms of the algebra of transfer systems. We do not believe there is a
uniform solution for all finite groups. However, there is a uniform solution if we restrict to
finite abelian groups.

DEFINITION 4.10. Suppose that G is a finite group and that H ⊂ G is a subgroup of
G. We say that H is G-cocyclic if H is a normal subgroup of G and the quotient group G/H
is cyclic.

THEOREM 4.11. Suppose G is a finite abelian group and → is a G-transfer system.
Then → corresponds to a G-Steiner operad if and only if there is an integer n ≥ 0 and
G-cocyclic subgroups H1, . . . , Hn ⊂ G such that → = 〈(Hi, G) | 1 ≤ i ≤ n〉.

Proof. There are two kinds of irreducible real G-representations. There are one-
dimensional representations, where each g ∈ G acts as multiplication by +1 or −1,
and there are two-dimensional representations, where each g ∈ G acts as a rotation by
θ(g) ∈ [0, 2π), and at least one θ(g) is not 0 or π . In the former case, we obtain a map
V : G → O(1) ∼= C2, and in the latter case we obtain a map V : G → C|G| ↪→ SO(2), where
C|G| embeds in SO(2) as the rotations by multiples of 2π/|G|. Therefore, G/kerV embeds
into C2 or CG, and therefore kerV is G-cocyclic. Now consider the orbit decomposition of
V . The actions of C2 on R and C|G| on R2 are free away from the origin. Pulling back to G,
we see that G0 = G, Gx = kerV for every x �= 0, and therefore Orb(V) = {(kerV , G)}.

Now suppose → is a G-transfer system. If → = →K(U) for some G-universe U ∼=
[R ⊕ ⊕n

i=1 Vi]∞, where each of the representations Vi is nontrivial and irreducible, then
→ = 〈(kerVi, G) | 1 ≤ i ≤ n〉 by Proposition 4.5. As noted above, each of the subgroups
kerVi is G-cocyclic.

Conversely, suppose → = 〈(Hi, G) | 1 ≤ i ≤ n〉 for some G-cocyclic subgroups
H1, . . . , Hn ⊂ G. For each i, choose an embedding G/Hi ↪→ O(2) of G/Hi as the rotations
by multiples of 2π/[G : Hi], and let λi : G�G/Hi ↪→ O(2) be the pullback to G. Then
Orb(λi) = {(Hi, G)}. Thus, if U = [R ⊕ ⊕n

i=1 λi]∞, then →K(U) = 〈(Hi, G) | 1 ≤ i ≤ n〉 =
→ by Proposition 4.5 again.

This simplifies further for finite cyclic groups.

COROLLARY 4.12. Let n > 0 be a natural number. A Cn-transfer system → corre-
sponds to a Steiner operad if and only if → = 〈(Hi, Cn) | 1 ≤ i ≤ m〉 for some subgroups
H1, . . . , Hm ⊂ Cn.
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EXAMPLE 4.13. The Cp3 -transfer systems corresponding to Steiner operads are

···
·

···
·

···
·

···
·

···
·

···
·

···
·

···
·
.

The Cpq-transfer systems corresponding to Steiner operads are

·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· .

Requiring Hi ⊂ G to be G-cocyclic is a nontrivial constraint. The next example
generalizes Example 4.7.

EXAMPLE 4.14. Suppose that G = (Cp)
×n for a prime p and integer n > 0. A proper

subgroup H ⊂ G is G-cocyclic if and only if it is a codimension 1 subspace of Fn
p under

the identification (Cp)
×n ∼= (Fn

p, +). Therefore, a (Cp)
×n-transfer system → arises from a

Steiner operad if and only if it is generated by relations of the form (Cp)
×n−1 → (Cp)

×n,
for some embedded copies of (Cp)

×n−1 in (Cp)
×n.

We can also combine Theorem 4.11 with Proposition 5.1 to exclude transfer systems
from the images of AK and AL. The next result generalizes the fact that no K4-Steiner or

linear isometries operad realizes the transfer system ·· · ·· .

THEOREM 4.15. Suppose that G is a noncyclic finite abelian group. Then the G-
transfer system → = 〈(0, G)〉 generated by (0, G) alone is not realized by a G-Steiner
or a G-linear isometries operad.

Proof. We have → = {(M, M) | M ⊂ G} ∪ {(0, M) | M ⊂ G}, by Corollary A.8 or by
inspection. Thus, if H → G, then either H = 0 or H = G.

On the other hand, suppose U is a G-universe such that 0 →K(U) G. Then by Theorem
4.11, →K(U) = 〈(Hi, G) | 1 ≤ i ≤ n〉 for some G-cocyclic subgroups Hi ⊂ G. Since →K(U)

is nontrivial, some Hi must be a proper subgroup of G, and since G is noncyclic, the
subgroup Hi must also be nontrivial. Thus 0 � Hi � G and Hi →K(U) G. It follows that
→K(U) �= → for every G-universe U .

Finally, suppose U is a G-universe such that 0 →L(U) G. Then H →L(U) G for every
H ⊂ G because →L(U) is saturated. Since G is noncyclic, any nonidentity element x ∈
G generates a proper, nontrivial subgroup 0 � 〈x〉� G such that 〈x〉 →L(U) G. Therefore,
→L(U) �= → for every G-universe U .

4.3. Parametrizing a transfer map. The previous two sections explain how to com-
pute the transfers parametrized by K(U), for any given universe U . In this section, we turn
the problem around. When G is finite abelian, we construct minimal universes U such that
K(U) parametrizes a given transfer K → H .

For any finite abelian group G and proper, G-cocyclic subgroup H � G, let λH be a
two-dimensional real G-representation G�G/H ∼= Cn ↪→ SO(2), obtained by choosing an
isomorphism G/H ∼= Cn for some n ≥ 2, and then embedding Cn into SO(2) as the rotations
by multiples of 2π/n.

LEMMA 4.16. Suppose that V ⊂ λH is an irreducible G-representation. Then Gx = H
for every nonzero x ∈ V.
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Proof. Every nonzero x ∈ λH has Gx = H , as explained in the proof of Theorem 4.11.
This proves the lemma when λH is irreducible. If λH is reducible, then it has an invari-
ant one-dimensional subspace. Therefore, G/H ∼= C2 and λH

∼= σH ⊕ σH , where σH is

G�G/H ∼= C2
σ

↪→ O(1). In this case, V ⊂ λH is isomorphic to σH , and Gx = H for every
nonzero x ∈ σH .

We use the representations λH to construct the desired universes.

PROPOSITION 4.17. Suppose that G is a finite abelian group and that K � H ⊂ G
are subgroups. Choose distinct, proper, G-cocyclic subgroups H1, . . . , Hm � G such that
H ∩ H1 ∩ · · · ∩ Hm = K, and let

U = [R ⊕ λH1 ⊕ · · · ⊕ λHm]∞.

Then K →K(U) H, and [U] ∈ Uni(G) is minimal with this property if and only if H ∩ H1 ∩
· · · ∩ Hi−1 ∩ Hi+1 ∩ · · · ∩ Hm � K for every i = 1, . . . , m.

Proof. Let U be as above. Then →K(U) = 〈(Hi, G) | 1 ≤ i ≤ m〉 by Lemma 4.16 and
Proposition 4.5, and Proposition A.7 implies K →K(U) H because we have assumed H ∩
H1 ∩ · · · ∩ Hm = K.

Next, let λi = λHi and Ui = [R ⊕ ⊕
j �=i λj]∞. Then, there is no G-embedding λi ↪→ Ui.

For if there were an embedding, then an irreducible subrepresentation V ⊂ λi would
embed in R or λj for some j �= i, but Lemma 4.16 implies this is impossible because
the subgroups G, H1, . . . , Hm are all distinct. Therefore, Ui is a proper subuniverse
of U , and it is maximal proper because each λi is either irreducible, or splits as
λHi

∼= σHi ⊕ σHi .
We now consider the minimality of U . First, note that →K(Ui)= 〈(Hj, G) | j �= i〉.

Thus, if H ∩ H1 ∩ · · · ∩ Hi−1 ∩ Hi+1 ∩ · · · ∩ Hm = K for some i, then K →K(Ui) H by
Proposition A.7. In this case, [U] is not minimal among the classes [U ′] ∈ Uni(G) such
that K →K(U ′) H .

Now suppose that H ∩ H1 ∩ · · · ∩ Hi−1 ∩ Hi+1 ∩ · · · ∩ Hm � K for each i = 1, . . . , m.
Then K �→K(Ui) H for every i, by Proposition A.7. Therefore [U] is minimal, because any
proper subuniverse U ′ ↪→ U of U G-embeds into one of the Ui, and hence K �→K(U ′) H as
well.

EXAMPLE 4.18. We indicate how this works for G = K4. Keep notation as in Example
4.7. The proper, K4-cocyclic subgroups are 〈a〉, 〈b〉, and 〈c〉, and the corresponding λ

representations are λ〈a〉 ∼= σa ⊕ σa, λ〈b〉 ∼= σb ⊕ σb, and λ〈c〉 ∼= σc ⊕ σc.
Suppose we wish to parametrize 〈a〉 → K4 with a Steiner operad. Following

Proposition 4.17, we need a set of K4-cocyclic subgroups that intersect to 〈a〉. The sin-
gleton {〈a〉} works, and U = [R ⊕ λ〈a〉]∞ ∼= [R ⊕ σa]∞ is a minimal universe such that
〈a〉 →K(U) K4.

Now suppose we wish to parametrize 1 → 〈a〉. We need K4-cocyclic subgroups
H1, H2, . . . such that 〈a〉 ∩ H1 ∩ H2 ∩ · · · = 1. This holds as long as we include one of
〈b〉 or 〈c〉. Therefore, 1 →K(U) 〈a〉 holds whenever σb or σc embed in U , and the universes
U = [R ⊕ σb]∞ and [R ⊕ σc]∞ are minimal for this transfer.

Finally, suppose we wish to parametrize 1 → K4. Since any two of 〈a〉, 〈b〉, and 〈c〉
intersect trivially, we have 1 →K(U) K4 for any U = [R ⊕ σx ⊕ σy]∞ such that x �= y, or for
U = [R ⊕ σa ⊕ σb ⊕ σc]∞. The former are minimal.
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In general, if 0 →K(U) G for a noncyclic finite abelian group G, then we should expect
U to be reasonably large. The next example illustrates.

EXAMPLE 4.19. Let G = (Cp)
×n ∼= (Fn

p, +) and suppose V � Fn
p is a proper subspace.

Choose lines �1, . . . , �m such that Fn
p = V ⊕ �1 ⊕ · · · ⊕ �m, let Wi = V ⊕ �1 ⊕ · · · ⊕ �i−1 ⊕

�i+1 ⊕ · · · ⊕ �m, and let λi = λWi be the pullback of the representation λ : Cp ↪→ SO(2)

along the quotient πi : Fn
p� Fn

p/Wi
∼= Cp. Then U = [R ⊕ λ1 ⊕ · · · ⊕ λm]∞ is a minimal

universe such that V →K(U) Fn
p.

REMARK 4.20. Thus, Steiner operads have difficulty parametrizing a transfer K → G
when K is low in Sub(G), at least when G is finite abelian and has many cyclic summands.
This is a representation-theoretic issue, which is not at all suggested by the general algebra
of transfer systems.

5. Linear isometries operads. In this section, we continue Blumberg and Hill’s
analysis of equivariant linear isometries operads. We begin with some generalities, and
then we restrict our ambient group G to finite cyclic groups. When the order of G is a
prime power or a product of two distinct primes, we obtain a complete description of the
image of AL : Uni(G) → Tr(G) (Theorems 5.18 and 5.20).

5.1. General results. Suppose that U is a G-universe, and consider the linear
isometries operad L(U). If K ⊂ H ⊂ G are subgroups, then by [3, Theorem 4.18],

K →L(U) H if and only if indH
K resG

KU H-embeds into resG
H U .

Such H-embeddings may be constructed one subrepresentation at a time because ind and
res preserve direct sums, and U is a universe. In particular, it is enough to show that
for every irreducible H-representation V ⊂ resG

H U and every irreducible W ⊂ indH
K resH

K V ,
there is an H-embedding of W into resG

H U .
The condition above always determines if a relation K →L(U) H holds or not, but

checking it for every possible inclusion K ⊂ H is recipe for boredom. We review a few gen-
eral constraints on the transfer systems associated to linear isometries operads, following
Blumberg and Hill.

PROPOSITION 5.1 [3, p. 17]. The transfer system →L(U) is saturated for every G-
universe U.

Briefly, if K ⊂ L ⊂ H , then indH
L resH

L V embeds into indH
K resH

K V because the unit of
the adjunction resL

K � coindL
K

∼= indL
K is injective, and the right adjoint indH

L preserves
monomorphisms.

Saturation is a tight constraint, and as mentioned in the introduction, it was the best
guess for a necessary and sufficient condition to detect linear isometries operads. We had
hoped to verify this, but those hopes were dashed by the counterexamples in the following.
Nevertheless, we shall carry out our original goal when G = Cpn for a prime p and n ≥ 0
(Theorem 5.18), and when G = Cpq for distinct primes, provided that p, q > 3 (Theorem
5.20).

REMARK 5.2. In light of Corollary 3.10, the cardinality condition on p and q for Cpq-
transfer systems should come as a surprise. The lattices Tr(Cpq) are isomorphic for all
distinct primes and have trivial conjugation actions, and therefore their algebra is indistin-
guishable. The issue when p ≤ 3 or q ≤ 3 is representation-theoretic. In these cases, there
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are not enough real Cpq-representations to distinguish all saturated transfer systems. We
reiterate that the map

AL : Uni(G) → Ind(G) ∼= Tr(G)

of Proposition 2.11 has laughably poor properties.

Our results for Cpn and Cpq are established by direct computation, and this approach
is not likely to extend because the lattices Tr(CN ) become unmanageably large as the
number of prime factors of N = pr1

1 , . . . , prk
k grows. There are already hundreds of pos-

sibilities when N is a product of three distinct primes [2, Section 5]. Nevertheless, we
suspect that saturation is enough to detect CN -linear isometries operads, provided that the
primes p1, . . . , pk are sufficiently large relative to k. Indeed, as p1, . . . , pk → ∞, the lattice
Tr(CN ) remains the same, but the number of available CN -representations increases.

We continue reviewing the general properties of the transfer systems →L(U).

PROPOSITION 5.3 [3, Corollary 4.20]. The transfer system →L(U) is a refinement of
→K(U) for any G-universe U.

The transfer system →K(U) can be computed using Proposition 4.5, which gives an
easy upper bound on →L(U). From here, we can start ruling out relations K →L(U) H on a
case-by-case basis.

PROPOSITION 5.4. Suppose U is a G-universe and assume K ⊂ H ⊂ G are sub-
groups such that K →L(U) H. Then resG

H U contains every irreducible H-representation
with nonzero K-fixed points.

Proof. The trivial G-representation R embeds into U , and therefore there is a chain of
H-embeddings indH

K R ↪→ indH
K resG

KU ↪→ resG
H U . If W is an irreducible H-representation

such that W K �= {0}, then any nonzero x ∈ W K determines a nonzero map indH
K R → W .

Therefore, W H-embeds into indH
K R and resG

H U .

The following special case is used in the proof of [3, Theorem 4.22].

COROLLARY 5.5. Keep notation as above. If 1 →L(U) G, then U is complete.

These tricks will only take us so far, because they are based on one-way implications.
There are saturated transfer systems that are not realized by linear isometries operads (cf.
Examples 5.9–5.11), there are universes U such that →L(U) strictly refines →K(U) (cf. [3,
Theorem 4.22]), and as the next example shows, the relation K →L(U) H need not hold
even if resG

H U contains all irreducible H-representations with nonzero K-fixed points.

EXAMPLE 5.6. Suppose G = K4 is the Klein four-group and keep notation as in
Example 4.7. Let K = 〈a〉, H = K4, and consider the universe U = [R ⊕ σa ⊕ σb]∞. Then
every irreducible K4-representation with nonzero 〈a〉-fixed points embeds into U . However,
〈a〉 �→L(U) K4 because indK4

{1,a}resK4
{1,a}σb

∼= indK4
{1,a}σ ∼= σb ⊕ σc, and σc does not embed

into U .

Ultimately, we need to start checking relations K →L(U) H individually, i.e. we need to
compute the universe resG

H U and, if it is not complete, the universe indH
K resG

KU . Fortunately,
saturation implies we do not need to consider all possible inclusions K ⊂ H . It is sometimes
simpler to study the longest possible transfer relations, and it is sometimes simpler to study
the shortest possible relations. The next result will be useful in our analysis of Cpn -linear
isometries operads.

https://doi.org/10.1017/S001708952000021X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952000021X


332 JONATHAN RUBIN

DEFINITION 5.7. Suppose G is a finite group and K ⊂ H ⊂ G are subgroups. We say
that the pair (K, H) is irreducible if K is a maximal, proper subgroup of H .

PROPOSITION 5.8. If → is a saturated G-transfer system, then → is generated by the
relation {(K, H) | K → H and (K, H) is irreducible}.

Proof. Let � = 〈(K, H) | K → H and (K, H) is irreducible〉. Then � refines → by
definition. For the other refinement, suppose that K → H for some subgroups K ⊂ H ⊂ G.
Since G is a finite group, we can choose a (nonunique) chain of subgroups K = K0 �

K1 � · · ·� Kn = H such that (Ki, Ki+1) is irreducible for every i. Since K0 → Kn and → is
saturated, we have Ki → Ki+1, and hence Ki�Ki+1 for all i. The chain K = K0� · · ·�
Kn = H implies K�H .

There is not much more we can say about →L(U) at this level of generality. We give a
few examples, and then specialize to finite cyclic groups.

EXAMPLE 5.9. Let G = K4 and keep notation as in Example 4.7. The next table
depicts →L(U) for a set of �3-orbit representatives of Uni(K4).

U →L(U)

R∞ ·· · ··
(R ⊕ σc)

∞ ·· · ··
(R ⊕ σb ⊕ σc)

∞ ·· · ··
(R ⊕ σa ⊕ σb ⊕ σc)

∞ ·· · ··

Thus, the saturated K4-transfer systems

·· · ·· and ·· · ··

are not realized by K4-linear isometries operads, and the inclusion of the second universe
into the third is not preserved. Combined with Example 4.7, we see that the �3-orbits of
the K4-transfer systems

·· · ·· ·· · ·· ·· · ·· ·· · ··

are not realized by Steiner or linear isometries operads.

EXAMPLE 5.10. Let G = Q8 and keep notation as in Example 4.8. The next table
depicts →L(U) for a set of �3-orbit representatives of Uni(Q8).

U →L(U) U →L(U)

R∞ ···
·· ·

(R ⊕ H)∞ ···
·· ·

(R ⊕ σk)
∞ ···

·· ·
(R ⊕ σk ⊕ H)∞ ···

·· ·

(R ⊕ σj ⊕ σk)
∞ ···

·· ·
(R ⊕ σj ⊕ σk ⊕ H)∞ ···

·· ·

(R ⊕ σi ⊕ σj ⊕ σk)
∞ ···

·· ·
(R ⊕ σi ⊕ σj ⊕ σk ⊕ H)∞ ···

·· ·
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Thus, the saturated Q8-transfer systems

···
·· · ···

·· · ···
·· · ···

·· ·

are not realized by Q8-linear isometries operads, and the inclusions of the universes on the
second line into the universes on the third are not preserved. Combined with Example 4.8,
we see that the �3-orbits of the Q8-transfer systems

···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· · ···

·· · ···
·· ·

are not realized by Steiner or linear isometries operads.

EXAMPLE 5.11. Let G = �3 and keep notation as in Example 4.9. The transfer
systems for �3-linear isometries operads are

U →L(U)

R∞ ·· · ···

(R ⊕ σ)∞ ·· · ···

(R ⊕ �)∞ ·· · ···

(R ⊕ σ ⊕ �)∞ ·· · ···

Thus, the saturated �3-transfer systems

·· · ··· and ·· · ···

are not realized by �3-linear isometries operads. Combined with Example 4.9, we see that
the �3-transfer systems

·· · ··· ·· · ··· ·· · ··· ·· · ···

are not realized by Steiner or linear isometries operads.

In Examples 5.9–5.11, every saturated transfer system not realized by a linear isome-
tries operad also is not realized by a Steiner operad. We see no reason why this should be
true in general, but we also do not know any counterexamples.

5.2. Finite cyclic groups. Let G = Cn for some natural number n. We shall describe
an arithmetic method for computing the transfer systems of Cn-linear isometries operads,
in terms of two-dimensional rotation representations.

NOTATION 5.12. For any finite cyclic group Cn with chosen generator g, let

λn(m) : Cn → S1 ∼= SO(2)

be the Cn-representation that sends g to e2π im/n. The character of λn(m) is

χ(g j) = 2cos(2πmj/n) = e2π imj/n + e−2π imj/n.
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Suppose d and n are natural numbers such that d | n. We write resn
d and indn

d for restric-
tion and induction along the inclusion Cd ↪→ Cn that sends the chosen generator of Cd to
the n

d th power of the chosen generator of Cn.

The representations λn(m) have the following properties.

LEMMA 5.13. Suppose m, m′, n, and d are natural numbers.

(1) If m ≡ m′ mod n, then λn(m) = λn(m′).
(2) There are isomorphisms λn(m) ∼= λn(−m) for all m and n.
(3) If d | n, then resn

dλn(m) = λd(m).

(4) If d | n, then indn
dλd(m) ∼= ⊕n/d−1

a=0 λn(m + da).

Proof. The first three statements are clear. For the fourth statement, we compute
characters. The character of indn

dλd(m) is

χ(g j) =
⎧⎨⎩

n
d (e2π imj/n + e−2π imj/n) if n

d | j,

0 otherwise,

and the character of
⊕n/d−1

a=0 λn(m + da) is

χ(g j) =
[

e2π imj/n ·
n/d−1∑

a=0

(e2π idj/n)a

]
+

[
e−2π imj/n ·

n/d−1∑
a=0

(e−2π idj/n)a

]
.

These two functions are equal.

The representation λn(m) is irreducible, unless

(a) m ≡ 0 mod n, in which case λn(m) ∼= R ⊕ R, or
(b) n is even and m ≡ n/2 mod n, in which case λn(m) ∼= σ ⊕ σ .

By parts (1) and (2) of Lemma 5.13, it follows that the irreducible, real Cn-representations
are

n odd n even

R R

λn(1) ∼= λn(n − 1) λn(1) ∼= λn(n − 1)

λn(2) ∼= λn(n − 2) λn(2) ∼= λn(n − 2)

...
...

λn(
n−1

2 ) ∼= λn(
n+1

2 ) λn(
n
2 − 1) ∼= λn(

n
2 + 1)

σ

We may treat both cases simultaneously, because every Cn-universe contains infinitely
many copies of its irreducible subrepresentations.

LEMMA 5.14. Every Cn-universe U is of the form U ∼= ⊕
i∈I λn(i)∞, where I is a

subset of Z/n ∼= {0, 1, . . . , n − 1} that contains 0, and which is closed under additive
inversion.

Proof. The representation λn(i) is well-defined for every [i] ∈ Z/n, by Lemma 5.13.
Given an arbitrary Cn-universe U , rewrite the R∞-summand of U as λn(0)∞, and rewrite
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each λn(i)∞-summand as λn(i)∞ ⊕ λn(n − i)∞. If n is even, rewrite any σ∞-summand as
λn(

n
2 )∞.

The next result computes the transfer system corresponding to L(
⊕

i∈I λn(i)∞) in
terms of the translation invariance of I and its reductions. Requiring I to be closed under
additive inversion eliminates an ambiguity arising from the isomorphism λn(m) ∼= λn(−m).

PROPOSITION 5.15. Let U = ⊕
i∈I λn(i)∞, where I ⊂ Z/n contains 0 and is closed

under additive inversion. Then for any natural numbers d | e | n

Cd →L(U) Ce if and only if (I mod e) + d = (I mod e).

Proof. By [3, Theorem 4.18] and Lemma 5.13, we have Cd →L(U) Ce if and only if
there is a Ce-equivariant embedding

⊕
i∈I

e/d−1⊕
a=0

λe(i + da)∞ ∼= inde
dresn

dU ↪→ resn
eU ∼=

⊕
i∈I

λe(i)
∞.

We unwind this condition. First, note that we have a Ce-equivariant embedding as above
if and only if we have Ce-embedding λe(i + da) ↪→ ⊕

i∈I λe(i)∞ for every λe(i + da) on
the left-hand side. In turn, we have such embeddings if and only if every such λe(i + da)

is isomorphic to some λe( j) with j ∈ I , regardless of whether these representations are
irreducible or not.

Now λe(a) ∼= λe(b) if and only if a ≡ ±b mod e. Since I is closed under additive inver-
sion, it follows Cd →L(U) Ce if and only if for every i ∈ I and a = 0, . . . , e/d − 1, there
is some j ∈ I such that i + da ≡ j mod e. By induction, it is enough to check when a = 1.
Therefore, Cd →L(U) Ce if and only if (I mod e) + d ⊂ (I mod e), which is equivalent to
(I mod e) + d = (I mod e) because I is finite.

Thus, the characterization problem for Cn-linear isometries operads is a problem in
modular arithmetic.

EXAMPLE 5.16. The transfer systems for C4-linear isometries operads are

U →L(U)

λ4(0)∞ ···

(λ4(0) ⊕ λ4(1) ⊕ λ4(3))∞ ···

(λ4(0) ⊕ λ4(2))∞ ···

(λ4(0) ⊕ λ4(1) ⊕ λ4(2) ⊕ λ4(3))∞ ···

These are precisely the saturated C4-transfer systems. Since the Steiner operad K(λ4(0) ⊕
λ4(1) ⊕ λ4(3))∞ realizes ··· , every C4-transfer system is realized by some K(U) or L(U).

The analogous statement for Cp2 is true in general (Corollary 5.19).

https://doi.org/10.1017/S001708952000021X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952000021X


336 JONATHAN RUBIN

EXAMPLE 5.17. The transfer systems for C6-linear isometries operads are

U →L(U)

λ6(0)∞ ·· ··
(λ6(0) ⊕ λ6(1) ⊕ λ6(5))∞ ·· ··
(λ6(0) ⊕ λ6(2) ⊕ λ6(4))∞ ·· ··

(λ6(0) ⊕ λ6(3))∞ ·· ··
(λ6(0) ⊕ λ6(1) ⊕ λ6(2) ⊕ λ6(4) ⊕ λ6(5))∞ ·· ··

(λ6(0) ⊕ λ6(1) ⊕ λ6(3) ⊕ λ6(5))∞ ·· ··
(λ6(0) ⊕ λ6(2) ⊕ λ6(3) ⊕ λ6(4))∞ ·· ··

(λ6(0) ⊕ λ6(1) ⊕ λ6(2) ⊕ λ6(3) ⊕ λ6(4) ⊕ λ6(5))∞ ·· ··

We miss the saturated C6-transfer systems ·· ·· and ·· ·· , and many inclusions of (λ6(0) ⊕
λ6(1) ⊕ λ6(5))∞ and (λ6(0) ⊕ λ6(3))∞ into larger universes are not preserved.

5.3. Two special cases. In this section, we assume G is a finite cyclic group whose
order is either a prime power or a product of two distinct primes, and we identify when
every saturated G-transfer system is realized by a linear isometries operad.

First, suppose G is a prime power. Write Gk = Cpk for k = 0, . . . , n, so that the
subgroup lattice of Cpn is

{1} = G0 ↪→ G1 ↪→ · · · ↪→ Gn−1 ↪→ Gn = Cpn .

We choose generators such that each inclusion Gj ↪→ Gj+1 above sends the generator of Gj

to the pth power of the generator of Gj+1.

THEOREM 5.18. Let → be a Cpn -transfer system, where p is a prime and n > 0 is
a natural number. Then → is realized by a linear isometries operad if and only if → is
saturated.

Proof. The “only if” direction is Proposition 5.1. We prove the “if” direction by direct
construction. Suppose → is saturated. By Proposition 5.8, → is generated by its irreducible
relations. Thus, there are integers 0 ≤ k1 < · · · < km < n such that → = 〈(Gki , Gki+1) | 1 ≤
i ≤ m〉. Let I ⊂ Z/pn be the set

I =
{

±(a1pk1 + · · · + ampkm)

∣∣∣ 0 ≤ a1, . . . , am < p
}
,

and let U = ⊕
i∈I λpn(i)∞. We shall prove that → = →L(U). To start, note that →L(U) is

saturated by [3, p. 17], and therefore Proposition 5.8 implies →L(U) = 〈(K, H) | K →L(U)

H and (K, H) is irreducible〉. Thus, it will be enough to show that the irreducible relations
in →L(U) are precisely the pairs (Gki , Gki+1) for →.

Suppose (Gki , Gki+1) is an irreducible generator of →. The set (I mod pki+1) consists
of all residues of the form ±(a1pk1 + · · · + aipki) with 0 ≤ a1, . . . , ai < p, and this subset
of Z/pki+1 is closed under (−) + pki . Therefore Gki →L(U) Gki+1 .

Now consider an irreducible pair (Gj, Gj+1) for some j �= k1, . . . , km. We shall
show Gj �→L(U) Gj+1. We study the cases j < k1, ki < j < ki+1, and km < j separately. In
each case, it will be enough to show p j /∈ (I mod pj+1). If j < k1, then (I mod pj+1) =
{0} ⊂ Z/pj+1, which does not contain p j. If ki < j < ki+1, then (I mod pj+1) = {±(a1pk1 +
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· · · aipki)} as above, and 0 ≤ a1pk1 + · · · + aipki < p j for all 0 ≤ a1, . . . , ai < p. Therefore
0 < p j ∓ (a1pk1 + · · · + aipki) < pj+1, and hence p j /∈ (I mod pj+1). The case where km < j
is similar.

COROLLARY 5.19. Suppose that p is a prime and that n > 0 is a natural number. If
n = 1 or 2, then every Cpn -transfer system is realized by some Steiner or linear isometries
operad. If n ≥ 3, then there are Cpn -transfer systems that are not realized by any such
operad.

Proof. The result for Cp is trivial, because the minimum and maximum transfer sys-
tems are always realized by Steiner and linear isometries operads. For Cp2 , Theorem 4.6

ensures that ··· , ··· , ··· , and ··· are realized by Steiner operads, and Theorem 5.18 ensures

that ··· , ··· , ··· , and ··· are realized by linear isometries operads. These transfer systems

exhaust Tr(Cp2). If n ≥ 3, then Theorem 4.3 implies the Cpn -transfer system 〈(1, Cp2)〉 is
not realized by any Steiner or linear isometries operad.

Finally, suppose G = pq for primes p < q, and recall the notational conventions from
Figure 2. In the remainder of this section, we shall prove the following result for Cpq-linear
isometries operads.

THEOREM 5.20. Suppose p and q are primes such that p < q.

(1) If p = 2 and q = 3, then every saturated Cpq-transfer system except ·· ·· and ·· ·· is

realized by a linear isometries operad.

(2) If p = 2 or 3 and q > 3, then every saturated Cpq-transfer system except ·· ·· is

realized by a linear isometries operad.
(3) If p, q > 3, then a Cpq-transfer system is realized by a linear isometries operad if

and only if it is saturated.

Combining this result with Example 4.13 shows the unrealized transfer systems in
(1)–(3) also are not realized by Steiner operads.

Proof. Part (1) is just Example 5.17, and Lemmas 5.21 and 5.22 handle parts (2)
and (3).

We fix notation. For any set I ⊂ Z/pq that contains 0 and is closed under additive
inversion, let →I be the transfer system for L(

⊕
i∈I λpq(i)∞).

LEMMA 5.21. Suppose p and q are prime, p < q, and q > 3. Then we have the
following transfer systems:

I ⊂ Z/pq →I

{0} ·· ··
{0, ±1, ±2, . . . , ±�p/2�} ·· ··
{0, ±1, ±2, . . . , ±�q/2�} ·· ··
{0, p, 2p, . . . , p(q − 1)} ·· ··
{0, q, 2q, . . . , (p − 1)q} ·· ··
{0, 1, 2, . . . , pq − 1} ·· ··
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Proof. We apply Proposition 5.15 repeatedly. The computations for I = {0} and I =
{0, 1, . . . , pq − 1} are clear, because these index sets correspond to a trivial universe and
a complete universe.

If I = {0, 1, . . . , � p/2�, pq − � p/2�, . . . , pq − 1}, then the inequalities � p/2� <

� p/2� + 1, p, q < pq − � p/2� imply (I mod pq) has no translation invariance. We obtain
� p/2� < � p/2� + 1 < q − � p/2� using the assumption q > 3, and this implies (I mod q)

also has no translation invariance. Finally, (I mod p) = {0, 1, . . . , p − 1} is invariant under
(−) + 1. Thus, the only nontrivial transfer is C1 →I Cp.

If I = {0, 1, . . . , �q/2�, pq − �q/2�, . . . , pq − 1}, then the inequalities �q/2� <

�q/2� + 1, �q/2� + p, q < pq − �q/2� imply that I has no translation invariance. We have
(I mod p) = {0, 1, . . . , p − 1} and (I mod q) = {0, 1, . . . , q − 1}, which both are invariant
under (−) + 1. Thus, the transfers are C1 →I Cp and C1 →I Cq.

If I = {0, p, 2p, . . . , p(q − 1)}, then 0 < 1 < p and q /∈ I . Therefore I is only invari-
ant under (−) + p. Next, (I mod p) = {0}, so it has no translation invariance. Finally,
(I mod q) = {0, 1, . . . , q − 1}, which is invariant under (−) + 1. Thus, the transfers are
Cp →I Cpq and C1 →I Cq. A similar argument works for I = {0, q, 2q, . . . , (p − 1)q}.

LEMMA 5.22. Suppose that p and q are prime and p < q. If p = 2 or 3, then ·· ·· is not

realized by any Cpq-linear isometries operad. If p > 3, then it is realized by the Cpq-linear
isometries operad over U

(±1, 0, p, 2p, . . . , p(q − 1)
)
.

Proof. Suppose first that p > 3, and let I = {0, 1, p, 2p, . . . , p(q − 1), pq − 1}.
Then I ⊂ Z/pq has no translation invariance because p < p + 1 < 2p and q /∈ I . Next,
(I mod p) = {0, 1, p − 1} also has no translation invariance because 1 < 2 < p − 1. Finally,
(I mod q) = {0, 1, . . . , q − 1}, which is invariant under (−) + 1. Therefore, C1 →I Cq is
the only nontrivial transfer.

Now suppose that p = 2 or 3. We shall prove that ·· ·· cannot be realized by a lin-

ear isometries operad. Suppose I ⊂ Z/pq is such that C1 →I Cq but C1 �→I Cp. Then
I ⊂ p(Z/pq), because if (I mod p) �= {0}, then respq

p U(I) is complete. The reduction map
π : Z/pq → Z/q induces a bijection π : p(Z/pq) → Z/q, and since C1 →I Cq, we must
have π(I) = Z/q. Therefore, I = p(Z/pq), and Cp →I Cpq. Thus, no Cpq-linear isometries

operad L(U(I)) can realize ·· ·· .

Appendix: Generating transfer systems This appendix explains how to gener-
ate a transfer system from a prescribed set of relations. We describe the basic technique
(Construction A.1), calculate a few general cases (Propositions A.5 and A.7), and then rein-
terpret our construction in terms of indexing systems and indexing categories (Propositions
A.9 and A.11).

CONSTRUCTION A.1. Suppose G is a finite group, and R is binary relation on Sub(G)

that refines inclusion, i.e. if KRH , then K ⊂ H . Define

R0 := R,

R1 :=
⋃

(K,H)∈R0

{(gKg−1, gHg−1) | g ∈ G},
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R2 :=
⋃

(K,H)∈R1

{(L ∩ K, L) | L ⊂ H},

R3 :=
{
(K, H)

∣∣∣∣ there is n ≥ 0 and subgroups H0, H1, . . . , Hn ⊂ G

such that K = H0R2H1R2 · · · R2Hn = H

}
.

Thus, we close R under conjugation to get R1, close R1 under restriction to get R2, and take
the reflexive and transitive closure of R2 to get R3.

THEOREM A.2. Suppose R is a binary relation on Sub(G) that refines inclusion. Then
〈R〉 := R3 is the transfer system generated by R, i.e. R3 the smallest transfer system that
contains R.

Proof. Let R be a binary relation on Sub(G) that refines inclusion. Then R = R0 ⊂
R1 ⊂ R2 ⊂ R3, and if S is any G-transfer system that contains R, then its closure properties
imply that it must also contain R3. Thus, the argument will be complete once we prove that
R3 is a transfer system.

To start, observe that R2 is closed under conjugation and restriction, and that it refines
inclusion. Now consider R3. It is a preorder by construction, and it refines inclusion
because R2 does. Therefore, R3 is also antisymmetric. Conjugating R2-chains proves that
R3 is closed under conjugation. To see that R3 is closed under restriction, suppose that
the chain K = H0R2H1R2 · · · R2Hn = H witnesses the relation KR3H , and that L ⊂ H . Let
Li = L ∩ Hi. Restricting the relation HiR2Hi+1 to Li+1 yields Li = (Li+1 ∩ Hi)R2Li+1 for 0 ≤
i < n. We obtain a chain (L ∩ K) = L0R2L1R2 · · · R2Ln = L that witnesses (L ∩ K)R3L.

Here is how Construction A.1 works in practice.

EXAMPLE A.3. We compute the �3-transfer system generated by C2 → �3, where
C2 = 〈(12)〉. Recall the notation from Figure 4.

R0 R1 R2 R3

·
· · ·

· ·
·

· · ·
· ·

·
· · ·

· ·
·

· · ·
· ·

Strictly speaking, each dot · above represents a relation H → H , and

R0 = {(H, H) | H ⊂ �3} ∪ {(C2, �3)}.
This distinction is irrelevant because 〈R0〉 = 〈(C2, �3)〉. We produced Figures 1–4 by
performing calculations like these ad nauseum, and then analyzing the results.

There are a few things we can say about the transfer system 〈R〉 on general grounds.
To start, Theorem A.2 implies the following rough bounds. Say that a relation K → H
nontrivial if K �= H .

PROPOSITION A.4. Let R be a binary relation on Sub(G) that refines inclusion, and
let N ⊂ G be a normal subgroup.

(1) Suppose that for every relation KRH, we have H ⊂ N. Then H ⊂ N for every
nontrivial relation (K, H) ∈ 〈R〉.

(2) Suppose that for every relation KRH, we have N ⊂ K. Then H �⊂ N for every
nontrivial relation (K, H) ∈ 〈R〉.
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Proof. We start with (1). Assume that KR0H implies H ⊂ N . Then KR1H implies H ⊂
N , because N is normal, and KR2H implies H ⊂ N from the transitivity of ⊂. Finally, if
(K, H) ∈ R3 is nontrivial, then there is a chain K = H0R2H1R2 · · · R2Hn = H with n > 0,
and Hn−1R2Hn implies H = Hn ⊂ N .

Now consider (2). Assume that KR0H implies N ⊂ K. Then KR1H implies N ⊂
K because N is normal. Now suppose that KR2H . We shall prove that if H ⊂ N ,
then K = H . For this case, there are subgroups K ′ ⊂ H ′ ⊃ L′ such that K ′R1H ′ and
(K, H) = (L′ ∩ K ′, L′). If H ⊂ N , then L′ = H ⊂ N ⊂ K ′ and therefore K = L′ ∩ K ′ = L′ =
H . Finally, we prove that for every (K, H) ∈ R3, if H ⊂ N , then K = H . For suppose
K = H0R2H1R2 · · · R2Hn = H ⊂ N for n ≥ 0. If n = 0, there is nothing to check. If n > 0,
then since R2 refines inclusion, we have Hi+1 ⊂ N and HiR2Hi+1 for every 0 ≤ i < n. It
follows from the above that K = H0 = H1 = · · · = Hn = H .

We now identify 〈R〉 in a two simple cases. We assume that all relations in R have a
shared, normal source or a shared, normal target.

PROPOSITION A.5. Suppose G is a finite group, K �G is a normal subgroup, and K ⊂
H1, . . . , Hn ⊂ G are subgroups such that the set {H1, . . . , Hn} is closed under conjugation
by elements of G. Then 〈(K, Hi) | 1 ≤ i ≤ n〉 is equal to the relation

→ = {(M, M) | M ⊂ G} ∪
n⋃

i=1

{(M ∩ K, M) | M ⊂ Hi}.

Proof. Let R = {(K, Hi) | 1 ≤ i ≤ n} and keep notation as in Construction A.1. Then
R = R0 = R1, and R2 = ⋃n

i=1{(L ∩ K, L) | L ⊂ Hi}.
Suppose that LR3M . Then either L = M , or there is a chain of relations L =

L0R2L1R2 · · · R2Lm = M for some m > 0. The relation L → M is trivial in the former
case, so assume the latter is true. Then for each 1 ≤ j ≤ m, we have Lj−1 = Lj ∩ K and
Lj ⊂ Hij for some 1 ≤ ij ≤ n. Therefore, L0 = L1 ∩ K = L2 ∩ K = · · · = Lm ∩ K, so that
(L, M) = (M ∩ K, M) and M ⊂ Hi for some 1 ≤ i ≤ n. Therefore, R3 refines →.

Conversely, suppose L → M and write � = 〈R〉 = R3. If L = M , then L�M by
reflexivity. Now suppose L = M ∩ K, where M ⊂ Hi for some i. The relation K�Hi holds
by definition, and hence L�M holds by restriction. Therefore → refines� = R3.

If the set {H1, . . . , Hn} is not closed under conjugation, we close up and then apply
Proposition A.5. This computes 〈(K, H)〉 for any normal subgroup K �G.

The next observation is useful in the dual computation, and in Proposition 4.5.

LEMMA A.6. Suppose → is a G-transfer system and K1, . . . , Kn ⊂ H ⊂ G are
subgroups such that Ki → H for every i = 1, . . . , n. Then K1 ∩ · · · ∩ Kn → H.

Proof. We have K1 → H , and for any i = 1, . . . , n − 1, restricting Ki+1 → H along⋂i
j=1 Kj ⊂ H gives

⋂i+1
j=1 Kj → ⋂i

j=1 Kj. Therefore, there is a chain
⋂n

j=1 Kj → ⋂n−1
j=1 →

· · · → K1 → H , and
⋂n

j=1 Kj → H follows by transitivity.

PROPOSITION A.7. Suppose G is finite group, H �G is a normal subgroup, and
K1, . . . , Kn ⊂ H are subgroups such that the set {K1, . . . , Kn} is closed under conjugation
by elements of G. Then 〈(Ki, H) | 1 ≤ i ≤ n〉 is equal to the relation

→ =
{
(M, M)

∣∣∣∣ M ⊂ G

}
∪

{
(M ∩ Ki1 ∩ · · · ∩ Kim , M)

∣∣∣∣ M ⊂ H and

1 ≤ i1, . . . , im ≤ n

}
.
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Proof. Let R = {(Ki, H) | 1 ≤ i ≤ n} and keep notation as in Construction A.1. Then
R = R0 = R1, and R2 = ⋃n

i=1{(L ∩ Ki, L) | L ⊂ H}.
Suppose that LR3M . As in Proposition A.5, we may assume there is a chain of relations

L = L0R2L1R2 · · · R2Lm = M for some m > 0. For every 1 ≤ j ≤ m, we have Lj−1 = Lj ∩
Kij for some 1 ≤ ij ≤ n and Lj ⊂ H . Therefore, L0 = L1 ∩ Ki1 = L2 ∩ Ki1 ∩ Ki2 = · · · = Lm ∩⋂m

j=1 Kij , so that (L, M) = (M ∩ ⋂m
j=1 Kij , M) for some M ⊂ H . Therefore, R3 refines →.

Conversely, suppose L → M and write� = 〈R〉 = R3. The relation L�M is trivial if
L = M , so assume L = M ∩ Ki1 ∩ · · · ∩ Kim for some M ⊂ H and indices 1 ≤ i1, . . . , im ≤ n.
The relation Kij �H holds for all j by definition, hence

⋂m
j=1 Kij �H by Lemma A.6, and

hence L = M ∩ ⋂m
j=1 Kij �M by restriction. Therefore → refines� = R3.

If the set {K1, . . . , Kn} is not closed under conjugation, we close up and then apply
Proposition A.7. This computes 〈(K, H)〉 for any normal subgroup H �G.

If K, H �G are both normal, then Propositions A.5 and A.7 have the following
common specialization.

COROLLARY A.8. Suppose G is a finite group, K, H �G are normal subgroups of G,
and K ⊂ H. Then 〈(K, H)〉 = {(M, M) | M ⊂ G} ∪ {(M ∩ K, M) | M ⊂ H}.

The transfer system → = 〈(K, H)〉 can be quite complicated when neither K nor H
is normal in G, but we can say the following for certain. Recall that the normal closure
of H is the join of all conjugates of H in G, and dually, the normal core of K is the inter-
section of all conjugates of K in G. Proposition A.4 bounds 〈(K, H)〉 above and below by
these subgroups. Additionally, Lemma A.6 implies that for any g1, . . . , gn ∈ NH , we have⋂n

i=1 giKg−1
i → H .

We conclude by recasting Construction A.1 in terms of indexing systems and indexing
categories. We start with indexing systems. Suppose that O is a set of orbits H/K, for some
subgroups H ⊂ G. Define the graph →O of O exactly as in Definition 3.2:

K →O H if and only if K ⊂ H and H/K ∈ O.

Thus →O is a binary relation on Sub(G) that refines inclusion, and the transfer system
〈→O〉 is well-defined. Recall the isomorphism →• : Ind(G)�Tr(G) : I• of Theorem 3.7.

PROPOSITION A.9. Suppose that O is a set of orbits. Then I〈→O〉 is the indexing
system generated by O. Equivalently, →〈O〉= 〈→O〉.

Proof. For any indexing system I, we have

O ⊂ I ⇐⇒ →O refines →I ⇐⇒ 〈→O〉 refines →I ⇐⇒ I〈→O〉 ⊂ I.

Taking I = I〈→O〉 proves that O is contained in the indexing system I〈→O〉, and the
equivalences above prove that I〈→O〉 is the least such indexing system.

COROLLARY A.10. Suppose that O is a set of orbits, and let 〈O〉 be the indexing
system that it generates. Then H/K ∈ 〈O〉 if and only if (K, H) ∈ 〈→O〉.

Now for indexing categories, let Oπ
G be the wide subcategory of OG that consists of all

projection maps of the form π(gK) = gH : G/K → G/H , for some subgroups K ⊂ H ⊂ G.
Suppose G ⊂ Oπ

G is a wide subgraph, by which we mean a sub-directed graph of Oπ
G that

contains all objects of Oπ
G . We define a relation →G on Sub(G) by

K →G H if and only if K ⊂ H and (π : G/K → G/H) ∈ G .
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Thus, →G is a binary relation on Sub(G) that refines inclusion, and the transfer sys-
tem 〈→G 〉 is well-defined. Recall the isomorphism SetG

• : Tr(G)� IndCat(G) : →• of
Corollary 3.9. The next result is proven in the same way as Proposition A.9.

PROPOSITION A.11. Suppose G is a wide subgraph of Oπ
G . Then SetG

〈→G 〉 is the
indexing category generated by G . Equivalently, →〈G 〉= 〈→G 〉.

COROLLARY A.12. Suppose G is a wide subgraph of Oπ
G and let 〈G 〉 be the indexing

category that it generates. Then a morphism f : S → T is in 〈G 〉 if and only if (Gs, Gf (s)) ∈
〈→G 〉 for every s ∈ S.
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