Bull. Aust. Math. Soc. 80 (2009), 83–90 doi:10.1017/S0004972709000227

EXTENSION ALGEBRAS OF CUNTZ ALGEBRA, II

SHUDONG LIU[™] and XIAOCHUN FANG

(Received 11 August 2008)

Abstract

In this paper, we construct the unique (up to isomorphism) extension algebra, denoted by E_{∞} , of the Cuntz algebra \mathcal{O}_{∞} by the C^* -algebra of compact operators on a separable infinite-dimensional Hilbert space. We prove that two unital monomorphisms from E_{∞} to a unital purely infinite simple C^* -algebra are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.

2000 *Mathematics subject classification*: primary 46L05. *Keywords and phrases*: *C**-algebra, extension, Cuntz algebra.

1. Introduction and preliminaries

The study of extension theory for C^* -algebras was initiated by Busby [5] and further developed by Brown *et al.* [3, 4]. It provides an important way to construct new C^* -algebras.

Let A be a separable C*-algebra. An extension of A by \mathcal{K} , the C*-algebra of compact operators on a separable infinite-dimensional Hilbert space H, is a short exact sequence

$$0 \longrightarrow \mathcal{K} \xrightarrow{i} E \xrightarrow{q} A \longrightarrow 0$$

of C^* -algebras. The Busby invariant $\tau : A \to Q(H) = B(H)/\mathcal{K}$ of the above extension is the unique homomorphism for which there is a commutative diagram

We also refer to τ as an extension of A by K and call E an extension algebra of A (see [1, 9] for details). The invariant τ is said to be *essential* if τ is injective, and

This work was supported by the National Natural Science Foundation of China (grant no. 10771161) and the Natural Science Foundation of Shandong Province (grant no. Y2006A03). © 2009 Australian Mathematical Society 0004-9727/2009 \$16.00

trivial if τ lifts to a homomorphism from A to B(H), which will be the case if and only if the associated exact sequence splits.

If A is unital, an extension $\tau : A \to Q(H)$ is called unital if τ is unital. A trivial extension τ is called *strongly unital* if τ lifts to a unital homomorphism from A to B(H).

Let $\tau_1, \tau_2 : A \to Q(H)$ be two extensions of A. Then τ_1 and τ_2 are said to be *strongly equivalent* if there is a unitary $u \in B(H)$ such that $\tau_2(a) = \pi(u)\tau_1(a)\pi(u)^*$ for all $a \in A$. Let $\mathbf{Ext}_s(A)$ be the set of strong equivalence classes of essential extensions of A. If A is unital, we denote by $\mathbf{Ext}_s^u(A)$ the set of strong equivalence classes of unital essential extensions of A. We define the sum of τ_1 and τ_2 by $\tau_1 \oplus \tau_2 : A \to Q(H) \oplus Q(H) \subset M_2(Q(H)) \cong Q(H)$. Then $\mathbf{Ext}_s(A)$ and $\mathbf{Ext}_s^u(A)$ are semigroups. Let $\mathbf{Ext}(A)$ be the quotient of $\mathbf{Ext}_s(A)$ by the subsemigroup of essential trivial extensions.

Extensions of Cuntz algebras were first studied by Cuntz [6, 7], and further investigations were undertaken by Paschke and Salinas [15], Lin [8, 11], and the authors [12]. In [12], we constructed and classified all extension algebras of the Cuntz algebra \mathcal{O}_n for $n \ge 2$. In this paper, we consider the case of \mathcal{O}_{∞} , and show that there is only one extension algebra (up to isomorphism) of \mathcal{O}_{∞} , which we denote by E_{∞} . We construct this extension algebra and describe its K-theory. We also prove that two unital monomorphisms from E_{∞} to a unital purely infinite simple C^* -algebra are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.

Throughout this paper, \mathbb{Z} will denote the group of integers and \mathbb{Z}_+ the semigroup of nonnegative integers; we write $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}^n = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (*n* copies of \mathbb{Z}).

2. Extension algebras of \mathcal{O}_{∞}

Recall that the Cuntz algebra \mathcal{O}_{∞} is the universal C^* -algebra generated by a sequence of isometries $\{s_i\}$ with mutually orthogonal range projections. It is well-known that \mathcal{O}_{∞} is a unital purely infinite simple C^* -algebra and that $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$ and $K_1(\mathcal{O}_{\infty}) = 0$. Also, \mathcal{O}_{∞} is unique in the sense that for any sequence of isometries $\{s'_i\}$ with mutually orthogonal range projections, the C^* -algebra generated by $\{s'_i\}$ is isomorphic to \mathcal{O}_{∞} .

A separable nuclear C^* -algebra A is said to satisfy the UCT [1, 9] if for any separable C^* -algebra B there is the short exact sequence

$$0 \longrightarrow \operatorname{Ext}^{1}_{\mathbb{Z}}(K_{*}(A), \, K_{*}(B)) \stackrel{\delta}{\longrightarrow} KK^{*}(A, \, B) \stackrel{\gamma}{\longrightarrow} \operatorname{Hom}(K_{*}(A), \, K_{*}(B)) \longrightarrow 0.$$

Here the map γ has degree zero and δ has degree one. In particular, taking $B = \mathcal{K}$, since Ext(A, B) = KK(A, SB) we have the following short exact sequence:

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}(K_{0}(A), \mathbb{Z}) \longrightarrow \operatorname{Ext}(A) \longrightarrow \operatorname{Hom}(K_{1}(A), \mathbb{Z}) \longrightarrow 0.$$

PROPOSITION 2.1. $\mathbf{Ext}_{s}^{u}(\mathcal{O}_{\infty}) = 0.$

PROOF. Since \mathcal{O}_{∞} is a unital separable nuclear C^* -algebra, $\text{Ext}(\mathcal{O}_{\infty})$ is a group. Since $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$ and $K_1(\mathcal{O}_{\infty}) = 0$, $\text{Ext}(\mathcal{O}_{\infty}) = 0$ by the *UCT*. Because $[\mathbf{1}_{\mathcal{O}_{\infty}}]_0$ is a generator of $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$,

$$\{h([\mathbf{1}_{\mathcal{O}_{\infty}}]_0) \mid h \in \operatorname{Hom}(K_0(\mathcal{O}_{\infty}), \mathbb{Z})\} = \mathbb{Z}.$$

Since $\mathcal{O}_{\infty} \otimes C(\mathbb{T})$ satisfies the *UCT*, it follows from [2, Proposition 1] that

$$\operatorname{Ext}^{\mathrm{u}}_{\mathrm{s}}(\mathcal{O}_{\infty}) = \mathbb{Z}/\{h([\mathbf{1}_{\mathcal{O}_{\infty}}]_{0}) \mid h \in \operatorname{Hom}(K_{0}(\mathcal{O}_{\infty}), \mathbb{Z})\} = 0.$$

The following lemma is well-known, but we give its proof for completeness.

LEMMA 2.2. Let A be a (unital) separable C^* -algebra, and let

$$0 \longrightarrow \mathcal{K} \xrightarrow{i_1} E_1 \xrightarrow{q_1} A \longrightarrow 0$$

and

 $0 \longrightarrow \mathcal{K} \xrightarrow{i_2} E_2 \xrightarrow{q_2} A \longrightarrow 0$

be two (unital) essential extensions of A with Busby invariants τ_1 and τ_2 , respectively. Then τ_1 and τ_2 are strongly equivalent if and only if there is an isomorphism $\varphi : E_1 \rightarrow E_2$ such that the following diagram is commutative:

$$0 \longrightarrow \mathcal{K} \xrightarrow{i_1} E_1 \xrightarrow{q_1} A \longrightarrow 0$$
$$\downarrow^{\varphi|_{\mathcal{K}}} \varphi \downarrow \qquad \qquad \downarrow^{\text{id}}$$
$$0 \longrightarrow \mathcal{K} \xrightarrow{i_2} E2 \xrightarrow{q_2} A \longrightarrow 0$$

PROOF. If τ_1 and τ_2 are strongly equivalent, then there is a unitary $u \in B(H)$ such that

$$\tau_2(x) = \pi(u)\tau_1(x)\pi(u)^* \quad \forall x \in A.$$

Define $\varphi: E_1 \to E_2$ by $\varphi(x) = uxu^*$. Now, for $x \in E_1$,

$$\pi(\varphi(x)) = \pi(uxu^*) = \pi(u)\pi(x)\pi(u)^*$$

= $\pi(u)\tau_1(q_1(x))\pi(u)^* = \tau_2(q_1(x)),$

so $\varphi(x) \in E_2$. Therefore φ is well-defined and it is obvious that φ is an isomorphism. Since $\tau_2(q_2(\varphi(x))) = \pi(\varphi(x)) = \tau_2(q_1(x))$ and τ_2 is injective, we have $q_2(\varphi(x)) = q_1(x)$. Thus, the above diagram is commutative.

Conversely, suppose that there is an isomorphism $\varphi : E_1 \to E_2$ such that the diagram is commutative. It is well-known that $\varphi|_{\mathcal{K}}$ is an isomorphism from \mathcal{K} onto \mathcal{K} and there is a unitary $u \in B(H)$ such that $\varphi(x) = uxu^*$ for all $x \in \mathcal{K}$. For any $x \in \mathcal{K}$ and $y \in E_1$,

$$\varphi(y)(uxu^*) = \varphi(yx) = uyxu^* = (uyu^*)(uxu^*).$$

Since the range of $u\mathcal{K}u^*$ is dense in H, $\varphi(y) = uyu^*$. For $x = q_1(y) \in A$ with $y \in E_1$,

$$\pi(u)\tau_1(x)\pi(u)^* = \pi(u)\tau_1(q_1(y))\pi(u)^*$$

= $\pi(u)\pi(y)\pi(u)^* = \pi(\varphi(y))$
= $\tau_2(q_2(\varphi(y))) = \tau_2(q_1(y)) = \tau_2(x).$

By Proposition 2.1 and Lemma 2.2, there exists a unique (up to isomorphism) extension algebra of \mathcal{O}_{∞} . We now construct it concretely.

Let $\{t_i \mid i = 1, 2, ...\}$ be a sequence of partial isometries with mutually orthogonal range projections such that $t_1^*t_1 < 1$, $t_i^*t_i = 1$ for $i \ge 2$, and $p + \sum_{i=1}^n t_i t_i^* < 1$ for any positive integer *n*, where $p = 1 - t_1^*t_1$ is a projection of rank one. Let E_{∞} be the universal C^* -algebra generated by $\{t_i \mid i = 1, 2, ...\}$, and let $I(E_{\infty})$ be the (only closed) ideal of E_{∞} generated by *p*.

THEOREM 2.3. $I(E_{\infty}) \cong \mathcal{K}$ and $E_{\infty}/I(E_{\infty}) \cong \mathcal{O}_{\infty}$; that is, E_{∞} is an essential unital extension of \mathcal{O}_{∞} by \mathcal{K} .

PROOF. Let *l* be a positive integer and W_l the set of all *l*-tuples (i_1, \ldots, i_l) with $i_j \in \mathbb{N} = \{1, 2, \ldots, \}, j = 1, \ldots, l$. We assume that $W_0 = \{0\}$ and $W = \bigcup_{l \ge 0} W_l$. Let $T_0 = 1$ and, for $\alpha = (i_1, \ldots, i_l) \in W_l$, denote by T_{α} the partial isometry $T_{\alpha} = t_{i_1} \cdots t_{i_l}$. Note that $pT_{\alpha} = 0$ for any $\alpha \in W$.

Let \mathcal{F} be the set of all linear combinations of elements of the form $T_{\alpha}pT_{\beta}^*$ for any $\alpha, \beta \in W$. It is easy to see that the closure of \mathcal{F} is an ideal of E_{∞} , and that \mathcal{F} is contained in every ideal containing p. It follows that the closure of \mathcal{F} is the ideal of E_{∞} generated by p, that is, $I(E_{\infty})$.

Let $X = (T_{\alpha} p T_{\mu}^*)(T_{\nu} p T_{\beta}^*)$. It is easy to see that $X \neq 0$ if and only if $\mu = \nu$. One can check that

$$(T_{\alpha}pT_{\mu}^{*})(T_{\nu}pT_{\beta}^{*}) = \delta_{\mu\nu}T_{\alpha}pT_{\beta}^{*}$$

and

$$(T_{\alpha} p T_{\beta}^*)^* = T_{\beta} p T_{\alpha}^*.$$

Then the set $\{T_{\alpha} p T_{\beta}^* \mid \alpha, \beta \in W\}$ is a self-adjoint system of matrix units generating \mathcal{F} . It follows that $I(E_{\infty})$ is isometric to \mathcal{K} .

Let $\pi : E_{\infty} \to E_{\infty}/I(E_{\infty})$ be the quotient map. It is easy to see that $\{\pi(t_i)\}$ is a sequence of isometries in $E_{\infty}/I(E_{\infty})$ with orthogonal ranges. Since $E_{\infty}/I(E_{\infty})$ is a unital C^* -algebra generated by $\{\pi(t_i)\}, E_{\infty}/I(E_{\infty}) \cong \mathcal{O}_{\infty}$ by the uniqueness of \mathcal{O}_{∞} . Therefore E_{∞} is an essential unital extension of \mathcal{O}_{∞} by \mathcal{K} , since \mathcal{O}_{∞} is a unital simple C^* -algebra.

REMARK 2.4. Let *H* be a separable infinite-dimensional Hilbert space. It is easy to see that there exist partial isometries t_1, t_2, \ldots in B(H) satisfying the conditions in the definition of E_{∞} .

COROLLARY 2.5 (Uniqueness of E_{∞}). Let $\{t'_i \mid i = 1, 2, ...\}$ be a sequence of partial isometries with mutually orthogonal range projections such that $t'_1^*t'_1 < 1$,

 $t'_i^*t'_i = 1$ for $i \ge 2$, and $p' + \sum_{i=1}^n t'_i t'^*_i < 1$ for any positive integer n, where $p' = 1 - t'_1^*t'_1$ is a projection of rank one. Then the C*-algebra E generated by $\{t'_i | i = 1, 2, ...\}$ is isomorphic to E_{∞} . In other words, E_{∞} is independent of the choice of the generators.

PROOF. As in Theorem 2.3, we may prove that the ideal *I* of *E* generated by the projection p' is isomorphic to \mathcal{K} and that $E/I \cong \mathcal{O}_{\infty}$. Since there is only one extension algebra of \mathcal{O}_{∞} , we have $E \cong E_{\infty}$.

THEOREM 2.6. $K_0(E_\infty) = \mathbb{Z} \oplus \mathbb{Z}$ and $K_1(E_\infty) = 0$.

PROOF. By Theorem 2.3, we have the short exact sequence

$$0\longrightarrow \mathcal{K}\longrightarrow E_{\infty}\longrightarrow \mathcal{O}_{\infty}\longrightarrow 0.$$

By the six-term exact sequence of K-theory, we have the following commutative diagram:

Since $K_0(\mathcal{O}_\infty) = \mathbb{Z}$ and $K_1(\mathcal{O}_\infty) = 0$, $K_1(E_\infty) = 0$ and the sequence

 $0 \longrightarrow \mathbb{Z} \longrightarrow K_0(E_\infty) \longrightarrow \mathbb{Z} \longrightarrow 0$

is exact. Therefore $K_0(E_\infty) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Let A be a unital C*-algebra. Two projections p and q in A are said to be (Murray-von Neumann) *equivalent*, denoted by $p \sim q$, if there is a partial isometry $v \in A$ such that $v^*v = p$ and $vv^* = q$; we let [p] denote the equivalence class of projections in A containing p. The projections p and q are called *unitarily equivalent*, denoted by $p \sim_u q$, if there is a unitary u in A such that $u^*pu = q$; [p]_u denotes the unitary equivalence class of projections in A containing p. Moreover, p and q are called *homotopically equivalent*, denoted by $p \sim_h q$, if p and q are in the same path component of projections in A; [p]_h denotes the homotopic equivalence class of projections in A containing p.

The following proposition can be obtained immediately from results in [13] and [14].

PROPOSITION 2.7.

(1)
$$K_0(E_{\infty}) = \{[p] \mid p \in E_{\infty} \setminus \mathcal{K} \text{ is a projection} \}$$

 $= \{[p] \mid p \in E_{\infty} \setminus \mathcal{K} \text{ is a projection and } 1 - p \in E_{\infty} \setminus \mathcal{K} \}$
 $= \{[p]_h \mid p \in E_{\infty} \setminus \mathcal{K} \text{ is a projection and } 1 - p \in E_{\infty} \setminus \mathcal{K} \}$
 $= \{[p]_u \mid p \in E_{\infty} \setminus \mathcal{K} \text{ is a projection and } 1 - p \in E_{\infty} \setminus \mathcal{K} \}.$

(2) Let p and q be projections in $E_{\infty} \setminus \mathcal{K}$ such that 1 - p and $1 - q \in E_{\infty} \setminus \mathcal{K}$. Then $p \sim q$, $p \sim_{u} q$ and $p \sim_{h} q$ are equivalent.

Recall that E_n is the universal C^* -algebra generated by isometries t_1, t_2, \ldots, t_n with $\sum_{i=1}^n t_i t_i^* < 1$. It is well-known that E_n is a unital essential extension of \mathcal{O}_n by \mathcal{K} and that $\mathcal{O}_{\infty} = \lim E_n$.

Let F_n $(n \ge 2)$ be the C^* -subalgebra of E_∞ generated by t_1, t_2, \ldots, t_n , and let $I(F_n)$ be the ideal of F_n generated by $p = 1 - t_1^* t_1$. We can prove the following results as above, so the details are omitted.

PROPOSITION 2.8.

- (1) $\mathbf{Ext}^{\mathbf{u}}_{\mathbf{s}}(E_n) = 0.$
- (2) $I(F_n) \cong \mathcal{K}$ and $F_n/I(F_n) \cong E_n$; moreover, F_n is the only unital essential extension algebra of E_n by \mathcal{K} .
- (3) $K_0(F_n) = \mathbb{Z} \oplus \mathbb{Z}$ and $K_1(F_n) = 0$.
- (4) $E_{\infty} = \lim_{i \to \infty} F_n$, where the map $F_n \to F_{n+1}$ of the system sends t_i to t_i for i = 1, 2, ..., n.

COROLLARY 2.9. Let *H* be a separable infinite-dimensional Hilbert space. Suppose that $\varphi, \psi : A \to Q(H)$ are two unital injective homomorphisms, where $A = \mathcal{O}_{\infty}$ or E_n . Then there is a unitary $u \in B(H)$ such that $\varphi(x) = \pi(u)^* \psi(x) \pi(u)$ for all $x \in A$.

PROOF. Now, φ and ψ are two unital essential extensions of *A* by \mathcal{K} , so the result follows immediately from the fact that $\mathbf{Ext}_s^u(A) = 0$.

COROLLARY 2.10. Let H be a separable infinite-dimensional Hilbert space.

- (1) Let v_1, v_2, \ldots, v_n $(n \ge 2)$ be isometries in the Calkin algebra Q(H) with mutually orthogonal range projections such that $\sum_{i=1}^{n} t_i t_i^* < 1$. Then there are isometries V_1, V_2, \ldots, V_n in B(H) with mutually orthogonal range projections such that $\pi(V_i) = v_i$ for $i = 1, 2, \ldots, n$.
- (2) Let $\{v_i\}$ be a sequence of isometries in Q(H) with mutually orthogonal range projections. Then there is a sequence of isometries $\{V_i\}$ in B(H) with mutually orthogonal range projections such that $\pi(V_i) = v_i$ for i = 1, 2, ...

PROOF. For part (1), the map $\tau : E_n \to Q(H)$ defined by $\tau(t_i) = v_i$ is a unital essential extension of E_n by \mathcal{K} . It is trivial since $\mathbf{Ext}^{\mathrm{u}}_{\mathrm{s}}(E_n) = 0$; thus τ lifts to a unital injective homomorphism $\sigma : E_n \to B(H)$. Now put $V_i = \sigma(t_i)$. The proof of (2) is similar, since $\mathbf{Ext}^{\mathrm{u}}_{\mathrm{s}}(\mathcal{O}_{\infty}) = 0$.

3. Homomorphisms from E_{∞}

DEFINITION 3.1. Let *A* and *B* be *C*^{*}-algebras, let *F* be a finite subset of *A*, and let φ and ψ be two homomorphisms from *A* into *B*. Let $\varepsilon > 0$. We say that φ and ψ are approximately unitarily equivalent within ε , with respect to *F*, if there is a unitary $u \in \tilde{B}$ such that

$$\|\varphi(x) - u\psi(x)u^*\| < \varepsilon$$

for all $x \in F$, where \tilde{B} is the unitization of B. We abbreviate this as $\varphi \sim_{\varepsilon} \psi$ with respect to F. When the set F is understood, we shall omit mention of it.

We further say that φ and ψ are approximately unitarily equivalent if for every finite $F \subset A$ and $\varepsilon > 0$, we have $\varphi \sim_{\varepsilon} \psi$ with respect to F.

THEOREM 3.2. Let A be a unital purely infinite simple C^* -algebra, and let φ, ψ : $E_{\infty} \rightarrow A$ be two unital monomorphisms. Then the following statements are equivalent:

- (i) φ and ψ are approximately unitarily equivalent;
- (ii) $[\varphi] = [\psi]$ in $KK(E_{\infty}, A)$;
- (iii) $\varphi_* = \psi_* : K_0(E_\infty) \to K_0(A);$
- (iv) $\varphi(p) \sim \psi(p)$ in A, where $p = 1 t_1^* t_1$;
- (v) $\varphi(t_1^*t_1) \sim \psi(t_1^*t_1)$ in *A*.

PROOF. (i) \Leftrightarrow (ii). Since $K_*(E_{\infty})$ is finitely generated, $KK(E_{\infty}, A) = KL(E_{\infty}, A)$. The result then follows immediately from [10, Theorem 2.9], since every unital purely infinite simple C^* -algebra has properties $(P_1), (P_2)$ and (P_3) and every monomorphism into a simple C^* -algebra is full in the sense of [10].

(ii) \Leftrightarrow (iii). Since $K_0(E_\infty) = \mathbb{Z} \oplus \mathbb{Z}$ is a free abelian group and $K_1(E_\infty) = 0$, by the *UCT* we have $KK(E_\infty, A) \cong \text{Hom}(K_0(E_\infty), K_0(A))$. Note that $\gamma(\varphi) = \varphi_*$. Therefore, $[\varphi] = [\psi]$ in $KK(E_\infty, A)$ if and only if $\varphi_* = \psi_* : K_0(E_\infty) \to K_0(A)$.

(iii) \Leftrightarrow (iv). Since $K_0(E_\infty) = \mathbb{Z} \oplus \mathbb{Z}$ is an abelian group generated by [1]₀ and [*p*]₀, $\varphi_* = \psi_* : K_0(E_\infty) \to K_0(A)$ if and only if $[\varphi(1)]_0 = [\psi(1)]_0$ and $[\varphi(p)]_0 = [\psi(p)]_0$ in $K_0(A)$; this occurs if and only if $[\varphi(p)]_0 = [\psi(p)]_0$, since φ and ψ are unital. But *A* is a purely infinite simple *C**-algebra, so $[\varphi(p)]_0 = [\psi(p)]_0$ in $K_0(A)$ if and only if $\varphi(p) \sim \psi(p)$ in *A*.

(iv) \Leftrightarrow (v). This is obvious since $\varphi(p)$, $\psi(p)$, $\varphi(t_1^*t_1) = 1 - \varphi(p)$ and $\psi(t_1^*t_1) = 1 - \psi(p)$ are nonzero projections in a purely infinite simple *C**-algebra.

Similar results hold for F_n , with the same proof.

PROPOSITION 3.3. Let A be a unital purely infinite simple C^* -algebra, and let $\varphi, \psi: F_n \to A$ be two unital monomorphisms. Then the following statements are equivalent:

- (i) φ and ψ are approximately unitarily equivalent;
- (ii) $[\varphi] = [\psi]$ in $KK(F_n, A)$;
- (iii) $\varphi_* = \psi_* : K_0(F_n) \to K_0(A);$
- (iv) $\varphi(p) \sim \psi(p)$ in A, where $p = 1 t_1^* t_1$;
- (v) $\varphi(t_1^*t_1) \sim \psi(t_1^*t_1)$ in *A*.

References

- [1] B. Blackadar, K-Theory for Operator Algebras (Springer, New York, 1986).
- [2] L. G. Brown and M. Dadarlat, 'Extensions of C*-algebras and quasidiagonality', J. London Math. Soc. (2) 53 (1996), 582–600.

S. Liu and X. Fang

- [3] L. G. Brown, R. G. Douglas and P. A. Fillmore, 'Unitary equivalence modulo the compact operators and extensions of C*-algebras', in: *Proc. Conf. Operator Theory (Dalhousie Univ., Halifax, 1973)*, Lecture Notes in Mathematics, 345 (Springer, Berlin, 1973), pp. 58–128.
- [4] _____, 'Extensions of C*-algebras and K-homology', Ann. of Math. (2) **105**(2) (1977), 265–324.
- [5] R. C. Busby, 'Double centralizers and extensions of C*-algebras', Trans. Amer. Math. Soc. 132 (1968), 79–99.
- [6] J. Cuntz, 'Simple C*-algebras generated by isometries', Comm. Math. Phys. 52(2) (1977), 173–185.
- [7] _____, 'K-theory for certain C*-algebras', Ann. of Math. (2) 113 (1981), 181–197.
- [8] H. Lin, 'On the classification of C^* -algebras of real rank zero with zero K_1 ', *J. Operator Theory* **35** (1996), 147–178.
- [9] —, An Introduction to the Classification of Amenable C*-algebras (World Scientific, Singapore, 2001).
- [10] _____, 'Full extension and approximate unitary equivalences', *Pacific J. Math.* **229**(2) (2007), 389–428.
- [11] H. Lin and N. C. Phillips, 'Approximate unitary equivalence of homomorphisms from O_∞', J. Reine Angew. Math. 464 (1995), 173–186.
- [12] S. Liu and X. Fang, 'Extension algebras of Cuntz algebra', J. Math. Anal. Appl. 329 (2007), 655–663.
- [13] _____, 'K-theory for extensions of purely infinite simple C*-algebras', Chinese Ann. of Math. Ser. A 29(2) (2008), 195–202.
- [14] _____, 'K-theory for extensions of purely infinite simple *C**-algebras: II', *Chinese Ann. of Math. Ser. A* to appear.
- [15] W. L. Paschke and N. Salinas, 'Matrix algebras over \mathcal{O}_n ', *Michigan Math. J.* **26**(1) (1979), 3–12.

SHUDONG LIU, School of Mathematical Sciences, Qufu Normal University, Qufu, People's Republic of China e-mail: lshd008@163.com

XIAOCHUN FANG, Department of Mathematics, Tongji University, Shanghai, People's Republic of China e-mail: xfang@mail.tongji.edu.cn

90