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ABSTRACT

A model for the claim number process is considered. The claim number process
is assumed to be a weighted Poisson process with a three-parameter gamma
distribution as the structure function. Fitting of this model to several data
encountered in the literature is considered, and the model is compared with the
two-parameter gamma model giving the negative binomial distribution. Some
credibility theory formulae are also presented.
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1. INTRODUCTION

In this note we consider a model for the claim number process. Our model is a
weighted Poisson process with a three-parameter gamma distribution as a struc-
ture function. This has been considered earlier by DELAPORTE (1960), see also
KUPPER (1962). This is equivalent to the fact that the claim number process con-
sists of two independent component processes, a Poisson process and a negative
binomial process. The Poisson component may be thought of as the common
part for all risks, and the negative binomial component as the individual con-
tribution of a particular risk. This means that we can write the number of claims
in time t, N, as the sum of two components,

N, = Nu + N2t,

where N\t has a Poisson distribution with the expected value yt, say, and A r̂ has
the negative binomial distribution. We consider here the fitting of our model to
real data using the method of moments and the maximum likelihood estimation.
Unfortunately the maximum likelihood estimators for the parameters cannot be
obtained in a closed form. Hence, they are calculated via maximization of the
likelihood function numerically.

We test the hypothesis Ho:y = 0 against the one-sided alternative H\: y > 0.
This tests the existence of the Poisson component in the model. We derive also
some credibility theory formulae for our model. The corresponding formulae for
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the two parameter model can be found in SEAL (1969). The flavour our model
gives to credibility considerations is the fact that even the best claim history, i.e.
no claims at all, does not lead to zero premium in the limit. This is due to the
existence of the background intensity which gives rise to the Poisson process.

2. DEFINITION OF THE MODEL

We assume that the claim number process Nt, t ^ 0, is a weighted Poisson
process, i.e., if the claim intensity is A, then the conditional process (TV, | A)/^o
is a Poisson process. If the intensity A has the distribution function U, then

(1) pn(t)=P(N, = n) = \ QQ-£— dU(\).
Jo n\

We now assume that

when X ^ 7, and zero otherwise, with positive a, j3 and 7. This amounts to the
fact that A has the three-parameter gamma distribution V(a, /3, 7), see JOHNSON

and KOTZ (1969). From (2) it follows that the intensity has a strictly positive
lower bound 7. By substituting (2) into (1) we obtain

n-ke-yl

(n-k)\

Formula (3) exhibits p,,(t) as the convolution of a negative binomial and a
Poisson distribution.

From this or directly from (2) we may observe that the intensity A can be
written as the sum A = 7 + Ai, where 7 is a positive real number, and Ai has the
usual two-parameter gamma distribution F(a,/3). The interpretation of these
components is

7 = background Poisson intensity which is common for all risks

Ai = additional individual intensity that varies from one risk to another.

With this interpretation we can assume that the process N, itself consists of two
mutually independent component processes 7VW and N2l, where N\, is a Poisson
process with intensity 7 and N2, is a weighted Poisson process whose intensity Ai
has the distribution F(a,/3). Then

(4) TV, = Nu + N2I,

where Nu~ Po(yt) and N2t~ NB(a,l3l(t + (3)). Here ~ stands for "obeys the
distribution", Po means the Poisson distribution and NB means the negative
binomial distribution.

The moments of N, may be obtained from the theory of doubly stochastic
Poisson processes. The stochastic intensity A has the moments

£A = - + 7, Var(A) = a//32, E((A - £A)3) = 2a//33.
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With the help of the moments of A the moments of N, can be written as

EN, = tEA

Var(M) = t1 Var(A) + tEA

E((N, - £W,)') = r'£((A - £A)3) + 3/2 Var(A) + tEA,

(see SNYDER 1975). By substitution we then obtain

(5) Var(/V,) = (a/fS )t + (ajj3 + 7)/
E({N, - EN,)3) = (2a//33)?3 + (3a//?2)r2 + (a/0 + 7)r .

These could have also been obtained by using the representation (4).

3. FITTING THE DISTRIBUTION

We say that a parameter vector (a,/3,7) is feasible if all the components are
positive. Analogously we say that an estimator is feasible if all three components
are positive. We consider here three alternatives for fitting the distribution (3) to
data. For convenience we take / = 1.

Method 1

We consider first the method of moments. Let the first three sample moments be
x (the sample mean), s2 (the sample variance) and xj (the third central sample
moment), the two latter calculated with weights l/(« — 1). Equating these with the
population moments (5) we obtain

0 = 2(s2 - x)j(Xi - 2s2 + 2x),

(6) a = (s2 - x)02,

y = x- a/0.

Necessary and sufficient conditions for the feasibility are

S2>x, X3>2s4lx-s2.

The first condition implies that the sample variance has to be larger than the
sample mean. This is due to the presence of the negative binomial part in the
model. The Poisson part gives equal variance and mean value. The second con-
dition means that the distribution has a larger third central sample moment than
a M?-distribution with the same first two moments.

Method 2

Because the use of the third moment in estimation may give undue weight on the
tail we consider here a variant of the method of moments. The idea is to fit x,
s2 and /7o, the relative frequency of the zero class. Then we have to solve the
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system of equations

a//3 + 7 = x

(7) alf3 + y + al(32 = s2

This leads to the solution

(8) a = (x-y)2l(s2-x), 0={x-y)l(s2-x),

with y being the solution of the equation

(9) 7 = _ l n / t * 4 f 4 7f4
5 - X 5 - 7

The solution given in (8) and (9) is feasible if 7 lies in the open interval (0, x) and
52 > x. We consider next the necessary and sufficient conditions for the existence
of a unique solution of (9) in this interval. For this purpose, denote

f(y) = 7 + In A 2 f
S X \ X - y

The solution of (9) is then equivalent to the solution of the equation f(y) = 0.
Now we have

/(0) = In A> + (x2l(s2 - x))\n(s2lx)

and

f(x) = x+ In po-

We also have

X-y) \ X-y

If we denote y = (s2 - x)j(x - 7), h(y) = yf'(y), then

h{y) = (2y + y2)l(l + y) - 2 ln(l + y).

From this it is easy to see that h (0) = 0 and h' (y) > 0, when y > 0. But this means
that, if s2 > x, then / ' (7) > 0 for 0 < 7 < x. Because the condition s2 > x is also
necessary for a > 0, we have that the conditions

s2 > x, - x < In po < ( - x2j{s2 - x))\n(s2jx).

are necessary and sufficient for the existence of a unique feasible solution. These
mean that the zero class probability must lie between those of a Poisson distri-
bution and a negative binomial distribution with due first moments.

Method 3

Let us assume that we have the data n0, « i , . . . , >U, where rij is the number of risks
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having had j claims in unit time. The maximum likelihood method gives us the
estimator (a, (3, y) which maximizes the likelihood function

L(a,(3,y) = (PAD)"

In

* f 0
-- S njXot I n — - - 7 -

In

18)

1 + / 3

where AZ = no + ••• + «* is the total number of observed risks. To facilitate the
maximization we denote -q = y(\ + (3), and substitute (77 - 7^7 for /3 in L. Then
the new likelihood function is

L(a,rj,y) = no. In - — - - ny + nx
V

If we put the derivative with respect to 7 equal to zero we get the equation

(10) -naj(t) - 7) - n + nxjy = 0,

or equivalently

x= 7 + a/0.

In order to handle the partial derivatives with respect to a and 77 we denote

, , ^ T(i+a) 1

for which

and

d Wj

r(a) i]U-i)W'

r . . S II (a

(-1)
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With the help of these we have

_ *
In -—- - ny + nx ln(7) + 2 "j In(w7(a,rj)),

V j=o
and

^- L = na((r)-y) ' - rj ' ) + 2 rij— Wj(a, r))(Wj(a, rj)) '
or) j=o or)

— L = n ln((r/ - y)\r)) + Xi n-, — wj(a, r))(Wj(a,ri)) .
da ./ = o oa

Because of (10) our three-dimensional maximization problem has been reduced
to a two-dimensional one. This problem may be solved using an optimization
method, which makes use of the gradient given in (11).

4. TESTING THE MODEL

After having fitted the model using the maximum likelihood method we can
naturally test the goodness of fit of the model using a x2-test.

If we have a good fit, there lies the question whether y differs from zero
significantly. The case 7 = 0 corresponds to the pure negative binomial distribu-
tion, i.e., the Poisson background is absent. We need to test the null hypothesis
7/0:7 = 0 against the alternative 7/i: 7 > 0. Under the null hypothesis the number
of claims has the negative binomial distribution. This distribution is fitted to the
data using the maximum likelihood method. Description of this method for
negative binomial distribution can be found for example in JOHNSON and KOTZ

(1969). This gives us the estimator (a, /3). If we denote by pi and pi the class /
probabilities given by the estimators (a, /3,7) and (a, (3), respectively, then we can
form the test variable

k

(12) Y= — 2 XI n,In (pi I pi).
1=0

For the conditions under which a likelihood ratio has the x2(l)-distribution as its
asymptotic distribution we refer to RAO (1973). In our case the value 7 = 0 lies
on the boundary of the parameter space. Hence, the asymptotic distribution is
not x2(l) but a 50:50 mixture of x 2 ( 0 and a distribution degenerate at origin,
as has been shown by SELF and LIANG (1987). This means that if we choose the
significance level e, the critical value will be the (1 - 2f)-fractile of the x2(O
distribution. The other conditions given by Rao are met by our distribution but
the positive-defmiteness of the information matrix. The verification of this fact
seems to be a hopeless task in general. We have only shown that the determinant
of the information matrix becomes zero when a and /? tend to infinity with their
ratio constant. This means that the results of our tests become unreliable as a or
/3 becomes large. We have also verified numerically that the information matrix
is positive definite when a = 1 and /3 is finite. The applicability of our test is not
rigorously verified, and the tests to be performed later are only of guiding nature.

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press

https://doi.org/10.2143/AST.18.1.2014960


ON A MODEL FOR THE CLAIM NUMBER PROCESS 63

5. CREDIBILITY

We now look at what some credibility theory formulae look like for our
model. We denote

the conditional probability of / claims in time s after having had n claims in time
/. Now we have

Pi\n(s | 0 =
l+n

n \t + s \t + s

(see SEAL, 1969 p. 27). For example the probability of no claims after having
had no claims in time / is

po\o(s 11) = (J + t I e

The conditional expectation of the intensity A after n claims in time t is

n + 1 p , , + ] ( t )
E(A\n,t) = '

t P,,(t)

n + 1 k=o

Further the conditional density of A after n claims in time t can after some
manipulation be written as

^ j
T(a) n\ pn(t)

for X > 7. The first factor here is the density function of the distribution
F(a,(3 + t,7). Especially after claim-free time t we have

so that

E(Nl + i - N, I N, = 0) = (a/(j8 + /) + y)s

Var(M + 5 - N, \ N, = 0) = as2/(/3 + t)2 + (a/(/3 + /) + 7)5.

Further, if we let / tend to infinity, then

Equivalently we can write that

£(A N, = 0) = .

Var(A N, = 0) =
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as /Too. This means that (A | N, = 0) -> 7 in probability, so that a claimless risk
will approach a risk with pure Poisson claim process. This means also that the
credibility premium would converge to 7 and not to zero. Similar to the preceding
results, various results concerning the bonus class systems can be presented in a
computable form in our case.

6. FITTING THE MODEL TO REAL DATA

In this section we consider the fitting of our model to some data that can be found
in the actuarial literature. We calculate the maximum likelihood estimates for a
and /3 in the case when 7 = 0, and for a, 0 and 7 in the general case. To get started
we solve 7 from (9) using 7 = xj2 as the first guess. Then we use this 7 together
with a and /3 obtained from (8) as the initial guess for the calculation of the
maximum likelihood estimation. These estimates were computed using the
Davidon-Fletcher-Powell method, see RAO (1978). Also (12) we compute in
order to perform the likelihood ratio test.

Our first fit is to the TROBLIGER (1961) data. Trobliger fitted to his data a
model in which the risks were classified into two classes "the good' and "the
bad". The fit was good with x

2 ( l ) = 0.44. These data give x-= 0.14421976,
s2 = 0.1638699 and p0 = 0.872949. If the negative binomial distribution is fitted,
t h e n d = 1.117895, J3 = 7.751332, and if our model is fitted, then 5 = 0.2766328,
/5 = 3.7597937 and 7 = 0.07064318. The frequencies of different classes for our
model and the negative binomial distribution together with the observed frequen-
cies are given in Table 1.

If the three last classes and the class " ^ 7 " are joined together, the x2(l)-value
for goodness of fit test of our model is 0.0042. This extremely low value is due
to the fact that three parameters were fitted. The likelihood ratio test has now
the x2O)-value 3.93 which exceeds the critical value 2.706 at the 0,95-level.
Hence, the hypothesis Ho : 7 = 0 is rejected. We now have the estimate 0.071 for
the background intensity. This may be compared with the mean intensity
x = 0.144 and the "good" intensity 0.109 in Trobliger's model. The estimated
background intensity is 49% of the estimated mean intensity and 66% of the
estimated "good" value.

WILLMOT (1988) has fitted an extended negative binomial distribution to this
data. The \2 value was 0.0282 which indicates a very good fit.

TABLE 1

No. of claims

0
1
2
3
4
5
6

Observed

20592
2651
297
41

7
0
1

Our model

20591.87
2651.45

296.42
41.12

6.70
1.18
0.21

NB

20596.76
2631.03

318.37
37.81
4.45
0.52
0.06
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bad fit of the negative binomial distribution cannot be corrected using this model
with positive y. However, the knowledge we have of fitting this model indicates
that in most of the cases the background intensity is somewhere around the half
of the mean, approximately between 0.4x and 0.6x. Additionally this model can
be used to build up a bonus-malus system with some definite lower boundary for
the premium.

7. ADDITIONAL TOPICS

Several Years' Data

Let the same portfolio be observed during a period of several years. Let us
assume that our model is the true one. Let the a,, j3, and y, be the parameters
a, (3 and y, if t is selected to be the time unit. Equating the first three moments
for the number of claims in time / calculated using time units i and /, repectively,
we obtain

This means that if our model is the true one, then the observed values of a,, 1(3,
and y,\t should be fairly constant during the observation period.

Two Portfolios

Let us join two portfolios which have the distribution (3) for the number of
claims with parameters a,,/3/ and 7/,/= 1,2, respectively. Let the sizes of the
portfolios be in ratio pj{\ — p). Let, further,

_ 1, if the risk is from the portfolio 1
X 0, if the risk is from the portfolio 2.

Then for a randomly chosen risk we have

TV, = Nux + N2,(l - x) = (Nn,x + N2i,(l - x))

l ~ X)) = Mr + N2I.

where Ny, is the number of claims in time t in portfolio / due to the component
j as in (4). Then TV, is divided into two components the first of which is a mixture
of two Poisson distributions and the second a mixture of two negative binomial
distributions. Hence, the combined portfolio no longer has the claim number
distribution (3). In spite of this we tried this model for two composite data. We
pooled Biihlmann's data with Trobliger's data, I, and then with Lemaire's data,
II. The fit was excellent in both cases, and the null hypothesis of zero background
intensity was rejected with great significance. The interesting feature is that the
parameters obtained are close to those of Biihlmann's, and are not near the linear
combinations of the original parameters. This can be seen in Table 3. For
example the linear combination of the 7-parameters in the Buhlmann-Lemaire
case would give 0.04887 against the obtained 0.05708.

https://doi.org/10.2143/AST.18.1.2014960 Published online by Cambridge University Press

https://doi.org/10.2143/AST.18.1.2014960


ON A MODEL FOR THE CLAIM NUMBER PROCESS 67

TABI E 3

Data

Biihlmann
Trobliger
mixture 1
Lemaire
mixture 11

.V

.15514

.14422

.15334

.10108

.12965

s1

.17932

.16387

.17679

.10745

.14615

a

.40015

.27663

.37838

.58881

.31966

4.068
3.760
4.018
9.641
4.405

7

.05679

.07064

.05918

.04001

.05708

il*
0.37
0.49
0.39
0.40
0.44

As a last example we joined together the data of Lemaire, Thyrion, Pesonen,
Trobliger and Biihlmann and considered how our model fits with these
heterogeneous data. The fitted /Vfi-distribution had a x2 (3)-value 61.14, which
means poor fit. When our model was fitted, the \2 (2)-value was 5.18, which
means a moderate fit. The likelihood ratio test value was 47, 55 which is a highly
significant value. The estimated background intensity was y = 0.0654328, which
is 49% of the estimated mean.

A more detailed exposition of methods and results of this paper is found in a
technical report RUOHONEN (1983).
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