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Abstract

Biles has called a subring A of the ring C(X) a Wallman ring on X whenever
Z(A), the zero sets of function belonging to A, forms a normal base on X
in the sense of Frink (1964). In the following, we are concerned with the
uniform topology of C(X). We formulate and prove some generalizations
of the Stone-Weierstrass theorem in this setting.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 C 30, 54C40,
54 C 50.

1. Introduction
Wallman (1938) gave a method for associating a compact Tx space w(F) with a
distributive lattice F; w(F) is the space of all jF-ultrafilters and the topology of
w(F) has as a base for closed sets a lattice F* which is isomorphic to the lattice F.
Frink (1964) defined the concept of a normal base f o n a Tychonoff space X and
he applied Wallman's construction to obtain Hausdorff compactifications w(F)
of X. Throughout this paper, X will denote a Tychonoff space (= completely
regular+Hausdorff).

1.1. DEFINITION. A collection F of closed subsets of X is called a lattice of
closed subsets of X provided that:

(1) 0,J5feF; and
(2) if A,BeFthsn AnBeFand AuBeF.

1.2. DEFINITION. A base F for the closed subsets of X is called a normal base
on X provided:

(1) Fis a lattice of closed subsets of X.
(2) F is disjunctive (that is, if A eF and xeX-A, then there exists BeF with

xeB and AnB = <f>).
(3) F is normal (that is, if A,BeF with AnB = 0, then there exist C,DeF

with AnD = 0, BnC = 0 and CuD = X).
If Fis a normal base on X, then w(F) is the set of all F-ultrafilters which becomes

a space as follows: If AeF, let A* be the set of all F-ultrafilters having F as a
member. F* then denotes the set of all A* with A eF. F* is a base for the closed
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[2] Stone-Weierstrass theorem for Wallman rings 231

sets of a topology on w(F). w(F) with this topology is always a Hausdorff compacti-
fication of X. Here X is embedded into w(F) by the map which sends each point
x E l t o the F-ultrafilter {AeF\xeA}.

Frink observed that the family Z(X) of all zero sets of continuous real valued
functions on X is a normal base on X which gives rise to a compactification
w(Z(X)) equivalent to the Stone-Cech compactification jSXof X. He also observed
that if Y is any given compactification (all spaces are Hausdorff) of X, and if
E(X, Y) denotes the subset of C(X) consisting of those real-valued continuous
functions on X which are continuously extendible to all of Y, then Z(E(X, Y)),
the zero sets of such functions, is a normal base on X. Biles (1970) later called a
subring A of C(X) a Wallman ring on X provided Z(A), the zero sets of functions
in A, is a normal base on X. Bentley and Taylor (1975) studied relationships
between algebraic properties of a Wallman ring A and topological properties of
the c&mpactification w(Z(AJ) of X.

We adopt our notation and terminology from our two earlier papers; these are
mostly consistent with that of Gillman and Jerison (1960).

2. Generalizations of the Stone-Weierstrass Theorem
We investigate the consequences of having a Wallman ring which is uniformly

closed; that is, closed in the uniform topology of C(X). Two theorems motivate
this work. One is Urysohn's Extension Theorem which states: "A subspace S of
X is C*-embedded in X if and only if any two completely separated sets in S are
completely separated in X." The proof of this theorem as it appears in Gillman
and Jerison uses the uniform closeness of C*(X) to construct a function in C*(X)
whose restriction to S is a given function in C*(S). The other is the Stone-
Weierstrass Theorem for real-valued functions which states: "If Y is compact
and A is a closed subalgebra of C( Y) which separates points and contains a non-
zero constant function then A = C( Y)."

In generalizing the Stone-Weierstrass Theorem, we will consider a compacti-
fication Y of a space X and a Wallman ring A on X which is a closed subalgebra
of E(X, Y). This means each function / e A is extendible to Y. Therefore in much
of what follows our Wallman rings will satisfy certain extendibility hypotheses.

We start by presenting a condition which implies that a Wallman ring A contains
only functions which are extendible to w(Z(A)).

2.1. DEFINITION (Isbell, 1958). A<=C(X) is closed under composition if and
only if for'each/e.4 and geC(R), gofeA.

2.2. THEOREM. Let A <= C(X) be closed under composition, then Z(A) = {f~x[B]: B
is closed in R andfe A}.
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PROOF. Let B be closed in R. B is a zero set of C(R) so there is a function
geC(R) such that B = Z(g). LetfeA, then f~1[B]=Z(g of) eZ[A]. Conversely
if F is a zero set of A, F = Z(f) for some fe A and F=f-1[{0}].

We will need to use the Talmanov Theorem.

TAIMANOV THEOREM (Taimanov, 1952). Let X be dense in Y and let f. X-*Tbe
a continuous map of X into a compact space T. Then f can be extended over Y if
and only if for any two subsets B1 and B2 which are closed in T and disjoint, we have

[iy) = 0.

2.3. THEOREM. Let A be a Wallman ring on X such that A is closed under
composition and A <= C*(X), then A <= E(X, w(Z(A))).

PROOF. Let/ev4 and let F be a compact subset of R such that f(X]<=F. Let B1

and B2 be disjoint closed subsets of F. T h e n / " 1 ^ ] a n d / " 1 ^ ] are disjoint zero
sets of A and

-1[JB2] = 0.

Therefore, by the Taimanov Theorem,/has an extension to w(Z[AJ).

To further our investigation we make the following definitions which generalize
the "completely separated" concept from Urysohn's Extension Theorem.

2.4. DEFINITION. Let F be a family of subsets of X and let L<= C(X). Then L
discriminates F-sets if and only if Fls F2eF, F1nF2 = 0 and a,beR implies there is
a function feL such that/[i?

1]<={a} and/[F2]<={Z>}.

2.5. DEFINITION. If L<=C(X), then
(1) L discriminates points of X if and only if L discriminates {{x}: xe Assets;
(2) L discriminates compact sets of X if and only if L discriminates

{K<^ X: K is compact}-sets.

2.6. THEOREM. Let L be a sublattice of C(X) which contains the real constants.
IfL discrimiantes points of X, then L discriminates compact sets of X.

PROOF. Let Fx and F2 be disjoint compact subsets of Xand let a,beR.\ia = b,
then the constant function/= a yields/[FJ = {a} and/[F2] = {b}. Suppose ai=b.
Let b>a and set s = b—a. For each xeFlt yeF2 there is a function fxy eL such
thatfxy(x) = a-s andfxy(y) = b + e.

Let Gxy = {zeX:fxy{z)<a}. Then xeGxy and so Fxc\JXeFlGxv. Since Fx is
compact, there exist x1,...,xneF1 such that Fx<= U w ^ r Let

gy = (inf{/XiJ/: / = 1,...,«})va.
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If zeFx then zeGX[V for some ie{l,...,«} and fX(U(z)< a which implies gy(z) — a.
Therefore g J F J c {a}.

Let Hy = {zeH: gy{z)>b}.fx.y(y) = b + e for i = 1,...,«, and so

(inf{fXiV:i=l,...,n})(y)>b and gy(y)>b.

Therefore y eHy.
Now we let y vary. JF2<= \JyeF2Hy. Since F2 is compact, there are y1,...,ymeF2

such that F2c: U™i^- Let h = (sup{gVj:j = l,...,mJ)Ab. If z e Fx then gy(z) = a
for eachyeF2 and (sup{g^ :j = 1, ...,/w})(z) = a which implies A(z) = a. Therefore
A[i?i]c:{a}. If zeF2 then there exists &e{l, ...,/w} such that zeHf t and so gyt(z)>b
which implies that (sup {#„: _/ = 1,..., m}) (z) > fc and finally that h{z) = b. Therefore

{b}. heL since L is a lattice and L contains the constant functions.

2.7, THEOREM. If F is a normal base on X, then E(X, w(Fj) is a sublattice of
C(X) -which contains all real constants.

PROOF. Iff,geE(X,w(F)), then there a re / ' and g'eC(w(f)) such t h a t / = / ' | X
and g = g'\X.f'Ag' and f'vg'eC(w(F)) so fAg = (f'Ag')\XeE(X,w(F)) and
fvg = (J'vg')\XeE(X,w(F)). Therefore E(X,w(F)) is a sublattice of C(X)).
Obviously the real constants are in E(X, w(F)).

Since E(X, w(F)) is a lattice, we can consider sublattices of E(X, w(F)). We find
that a sublattice of E(X, w(F)) which contains the real constants discriminates
F-sets if and only if the extensions of functions from this sublattice discriminate
points of w(F).

2.8. THEOREM. If F is a normal base on X, L is a sublattice of E(X, w(FJ) which
contains the real constants, and H = {/e C{w{F)): f\ XeL}, then H discriminates
points ofw(F) if and only ifL discriminates F-sets.

PROOF. Assume H discriminates points of X. Let Fx and F2eF such that
FxnFz = 0, and let a,beR. ClwiF)F1 and ClwiF)F2 are disjoint, compact subsets
of w(F). By Theorem 2.6, H discriminates compact sets of w{F), so there exists a
function geH such that

(g\X)[F1]<=g[C\wmF1]^{a} and (g\X)[F2]^g[Clw{F)F2]<={b}.

g\ XeL and so L discriminates F-sets.
Now assume L discriminates F-sets. Let x,yew(F) such that x-^y and let

a,beR. There exist Fx and F2 in F such that JC e CLj,(ir) Fly yeClw{P)F2 and
FxnF2 = 0. Then there exists feL such thatf[F1]<={a} and/[F2]<={£>}. Also, there
is a function geH such that g\X=f. Then gMeCWjC/TFtftcte} and

We are interested in subsets of C(X) which discriminate their own zero sets so
we make the following definition.
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2.9. DEFINITION. Let A be a subset of C(X), then A is discriminating if and only if
the following condition is satisfied: FvF2eZ(A), F1nF2 = 0 and a,beR implies
there is a function feA such that/fFJc:^} and/[F2]<={g}.

2.10. THEOREM. Z-e* A be a subset ofC(X), then A is discriminating if and only if
A discriminates Z(A)-sets.

2.11. THEOREM. If A is an inverse closed Wallman ring on X which contains all the
real constants, then A is discriminating.

PROOF. Let Fx and F2eZ(A) such that F1nF2 = 0 , and let a,beR. There are
functions/x andf2eA such that Fx = ZUd and F2 = ZC/a). Let

Then g e ^ , ^ ^ ^ { a } and g[F2]^{b}.

If we consider what happens when E(X, Y) is discrimintaing we obtain the
following theorem.

2.12. THEOREM. Let Y be a compactification of X, then Y^w(Z[E(X, Y)]) if
and only ifE(X, Y) is discriminating.

PROOF. Assume Y^ w{Z{E(X, Y))). Let Hx, H2 eZ(E(X, Y)) such that Hj n H2 = 0,
and let a, b £ R. Y is a normal space and Cl r Hx n Cl r //2 = 0 , so there is a function
feC(Y) such that /[ClFH1]c={a} and f[C\¥H^)b}. Let g = / | X Then
geE(X, Y), glH^ia} and g[H2]^{6}.

Assume E(X, Y) is discriminating. Let Hx and i/2 be disjoint closed subsets of X.
If ClyHi^nClyHz = 0, then there is a function /?eC(F) such that
and A[ClFi/2]c{l}. Let g = /z|Z. Then geE(X, 7), H^Z^g) and
Therefore y^w(Z(£(Z, 7))).

If Clw(Z[E(X,F)])HlnClw,Z[s(X>F)])H2 = 0 then there are FvF2eZ(E(X, Y))
such that HjCFi, H2

CF2 and FxnF2 = 0 . Since ^(A', y) is discriminating there
is a function geE(X, Y) such that g[Fx]c:{0} and g[F2]<={l}. There is a function
heC(X) such that A| X= g. Then A[Fi]c{0} and /z[F2]<={l}. Therefore

ClFF1nClFF2 = 0 and w(Z(£(Z, Y))) < y.

2.13. COROLLARY. C*(X) is discriminating.

PROOF. C*(Z) = E(X,pX) and j8Z=

2.14. THEOREM. IfA<=C(X) andS<=X, then {f\S:feA} is discriminating if and
only if A discriminates {SnH: HeZ(A))}-sets.
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PROOF. Let {f\S:feA} be discriminating. Let Ht and H2eZ[A] such that
SciHxr\H2 = 0, a nd let a,beR. Sn^ and SnH2 are disjoint zero sets of
{f\S:feA}, so there is a function geA such that (gl^fi^nS]<={«} and
(g|5) [H2nS]<={b} so /I discriminates {Sni/: HeZ[A]}-sets.

Let 4̂ discriminate {SnH: HeZ[A]}-sets. Let Fx and f2 be disjoint zero sets of
{f\S:feA} and let a,beR. There are zero sets Hx and H2eZ(A) such that
F1 = H1nS and F2 = H2n5 and there is a function/e^ such that/[^n5]<={«}
a n d / ^ n S ] ^ } . Therefore (/"|S)[F1]<={a} and (f\S)[FJ<={b) so {/ |5: /e^}
is discriminating.

Since "discriminating" is a generalization of the "completely separated" concept
from Urysohn's Extension Theorem and Z(/4)-embedding is a generalization of
C*-embedding, it is logical that there be some relationship between the two
concepts. In the following theorems we investigate this relationship.

2.15. THEOREM. Let A<=C(X) be discriminating, let S<=Z and let S be Z(A)-
embedded in X, then {f\ S:feA} is discriminating.

PROOF. Let Fx and F2 be disjoint zero sets of {f\S:feA} and let a,beR. Then
there are functions gx, and g2eA such that F1 = Z(g^)nS and F2 = Z(g2)nS.
Since S is Z|/l]-embedded in X, there are functions fx and f2^A such that
F1 = Z(/1)n5, F2 = Z(fz)nS and Z(f1)nZ(f2) = 0. Since A is discriminating,
there is a function heA such that glZif^ia) and (̂ZC/a)]<=#>}. Therefore
(h\S)[F1]cz{a} and (A|5)[F2]c={fe}. Hence {/|S:/e,4} is discriminating.

2.16. THEOREM. Let A be a subring of C(X) which contains a non-zero constant
function a and let S<^ X be such that {f\ SifeA} is discriminating, then S isZ[A]-
embedded in X.

PROOF. Let/X and/2e,4 such that Z(/1)nZ(/2)niS' is empty. Then there is a
function geA such that (g\S)[Z(f1)nS]^{0} and (g\S)[Z(f2)nS]<={a}. Let
h = g-a, then heA, ZifJnS<=Z(g), Z{f£nS<=z(h) and Z(g)nZ(h) = 0 . There-
fore S is Z[/4]-embedded in X.

2.17. COROLLARY. Let A be a subring ofC(X) such that A is discriminating and A
contains a nonzero constant function. IfS<= X, then X is Z(A)-embedded in X if and
only if{f\S:feA} is discriminating.

A closed sublattice of E(X, w(FJ) which discriminates .F-sets actually equals
E(X, w(F)). To prove this we will use the following lemma as stated by Simmons
(1963), p. 158.

2.18. LEMMA. Let Xbe a compact space, and let Lbe a closed sublattice of C(X)
with the following property: if x and y are distinct points of X and a and b are any
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two real numbers, then there exists a function fin L such thatf(x) = a and/(j) = b.
Then L = C(X).

2.19. THEOREM. IfF is a normal base on X andL is a closed sublattice ofE(X, w(F))
such that L discriminates F-sets, then L = E{X, w(F)).

PROOF. Let H = {fe C(w(F)): f\ XeL).
(1) His closed. LetfneH, andg = linvA. Then

geC(w(F)) and g\X =\imn(fn\X)eL.

(2) H is a sublattice of C(w(F)). Let / , g e H. (/v g) \ X = (J\ X) v (g | X) e L and
C/Ag)|*= (f\X)A(g\X)eL. Thereforefvg undfAgeH.

(3) If x,yew(F), x^y and a,beR, then there is a function feH such that
f(x) = a andf(y) = b. There exist Fx and F2 e F such that x e Clu,(i?) Ft, y e Clw(i?) F2

and F1nF2 = 0. Then there exists geL such that gt^il^W and g[F2]c{b}.
LcE(X,w(F)) so there is a function / in QH-CF)) such that g=f\X. Then
/WeCl^/tFJ = ClxglF^la} andf(y)eClRf[F2]cz{b}.

Therefore by the previous lemma H = C(w(F)). If feE(X, w(F)), then there is a
function g in C(w(F)) such that g| X = / . geH so feL. Therefore I- = E(X, w(F)).

Simmons (1963), p. 159 also has a proof of the lemma which states:

2.20. LEMMA. Every closed subring ofC(X) is a closed sublattice.

Therefore Theorem 2.19 could also have been stated as follows:

2.21. THEOREM. Let F be a normal base on X. Let A be a closed subring of
E(X, w(F)) which discriminates F-sets, then A = E(X, w(F)).

Conversely, if A = E(X, w(F)), then A discriminates F-sets.

2.22. THEOREM. Let F be a normal base on X, then E(X,w(F)) discriminates
F-sets.

PROOF. Let FvFzeF such that F1nFi = 0 and let a,beR. C\w{F)F1 and
Cl^FiFz are disjoint closed subsets of the normal space w(F); so by Urysohn's
Lemma there is a function h e C(w(F)) such that

W and
If g = h\X, then geE(X,W(F)), g [ f i ] c W and g[F2]^{b}. Therefore E(X,w(F))
discriminates .F-sets.

Combining the results of previous theorems we obtain the following necessary
and sufficient conditions for a subset of E(X, w(F)) to be all of E(X, w(F)).
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2.23. THEOREM. Let F be a normal base on X. Let L<=-E(X,w(F)). Then
L = E(X, w(F)) if and only if

(1) L is closed in C(X);
(2) L is a sublattice ofC(X); and
(3) L discriminates F-sets.

PROOF. If L = E(X, w(F)), L is closed since C(w(F)) is closed. L is a sublattice of
C(X) by Theorem 2.7. L discriminates F-sets by Theorem 2.22.

If L satisfies the three conditions then L = E(X, w(F)) by Theorem 2.19.
By Lemma 2.20, L is a closed sublattice of C(X) if and only if L is a closed

subring of C(X). Therefore Theorem 2.23 could also have been stated as follows.

2.24. THEOREM. Let F be a normal base on X, Let A<=E(X,w(F)), then
A =E(X, w(F)) if and only if

(1) A is closed in C(X);
(2) A is a subring ofC(X); and
(3) A discriminates F-sets.

By Theorem 2.11 we know that an inverse closed Wallman ring A which contains
all the real constant functions discriminates Z(4)-sets. Therefore as a corollary to
Theorem 2.24 we have the following.

2.25. THEOREM. Let A be a Wallman ring on X such that A<=E(X, w(Z(A))). If A
is uniformly closed, and inverse closed then A = E{X, w(Z(A))).

PROOF. AS was noted in Bentley and Taylor (1975), Corollary 3.4, an inverse
closed Wallman ring contains all the rationals. Therefore a Wallman ring which is
both inverse closed and uniformly closed contains all the real constants.

The next theorem generalizes the Stone-Weierstrass Theorem so we call it the
Stone-Weierstrass Theorem for Wallman lattices.

2.26. THEOREM. Let Abe a subset ofC(X) such that Z[A] is a normal base on X
and A <= E(X, w(Z(A))). Let Lbe a sublattice of C(X) such that L is closed in A and
L discriminates Z[A]-sets. Then L = A.

PROOF. Let H = C\E{X>w{Z{AmL. L^H and H is a closed sublattice of
E(X, w(Z(A))). Since L discriminates ZL4]-sets, H discriminates Z(^)-sets. There-
fore H = E(X, w(Z(A))). L is closed in A so Hn A = L. Also AcH,soHnA = A.
Therefore L = A.

Similarly we have the Stone-Weierstrass Theorem for Wallman rings.
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2.27. THEOREM. Let Abe a sublattice ofC(X) such that Z(A) is a normal base on
X and A<=E(X, w{Z{A))). Let L be closed in A, let L be a subring of C(X) which
contains the real constants, and let L discriminate Z(A)-sets. Then L = A.

PROOF. The hypotheses of Theorem 2.27 include all the hypotheses of Theorem
2.26 except L being a sublattice of C(X). To show L is a sublattice of C(X), it
suffices to show | / | eL for each/eZ,.

Let t = sup{|/(x)|: xeX} and let e>0. There is a polynomial p: [—t, t]-+R
such that/? has real coefficients and \\r\— p(r)\<s for all re[—t,t] (Weierstrass
Approximation Theorem). Then \\f\(x)-p(f(x))\ = \\f(x)\-p(f(x))\<e for all
xeX.pofeL and \f\eA so | / | eCIAL = L. L is a sublattice of C(X).

If we let A<=C*(X) be an algebra on X we find A = E(X, w(Z[A])) and also
obtain some interesting results involving (B, ̂ 4)-embedding.

2.28. DEFINITION (Hager, 1969). A is an algebra on X if and only if:
(1) A is a subring of C(X);
(2) A contains all real valued constant functions;
(3) A separates points and closed sets;
(4) A is closed under uniform convergence; and
(5) A is inverse closed.

We will show that every algebra on JSfis a Wallman subring of C(X). Lemma 2.20
established that every closed subring of C(X) is a closed sublattice of C(X) and
so we have the following result which was observed by Mrowka (1964).

2.29. THEOREM. If A is an algebra on X, then A is a lattice.

Biles (1970) established the following.

2.30. THEOREM. Let A be a subring of C(X) such that Z[A] is a base for the
closed sets of X and iffeA, then \f\ eA. Then A is a Wallman ring on X.

If A is a lattice and/e^4, then |/|ey4. So \f\eA for each/in an algebra A.
Therefore we have proven that every algebra on X is a Wallman ring on X.

2.31. THEOREM. Every algebra on X is a Wallman subring of C(X).

In fact, if A <= C*(X) is an algebra on X, then A is the Wallman ring E(X, w(Z(A))).
To prove this we will use the following theorem which is due to Isbell (1958).

2.32. THEOREM. If A is an algebra on X, then A is closed under composition.

2.33. THEOREM. If A<=C*(X) is an algebra on X, then A = E(X, w(Z(A))).
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PROOF. A is a Wallman ring which is closed under composition so by Theorem
2.3, AcE(X,w(Z(A))). By Theorem 2.11, A discriminates Z(y4)-sets. Therefore the
hypotheses of Theorem 2.24 are satisfied and A = E(X, w(Z(A))).

From this we are able to show that if A is an algebra of bounded functions on X
and B is an algebra of bounded functions on S, where S<^ X, then S is (B, A)-
embedded in X if and only if B = {f\ S: feA}.

2.34. THEOREM. Let A be an algebra on X such that A<=C*(X). Let S<=X.
Let B be an algebra on S such that B^C*(S). Then S is (B, A)-embedded in X if
and only ifB = {f\ S: feA}.

PROOF. A = E(X, w(Z(A))) and B ••= E(S, w(Z(B))). Let S be (B, ̂ -embedded
in X. If feA, then there is a function geC(w(Z(A))) such that /=g|X. If
h' = g | ClwiZU)) S, then since C\w{ZiA)) S^ w(Z{B)) there is a function h e C(w(Z(B)))
such that h\S = h'\S=f\S. Therefore f\SeB and {f\S:feA}cB.

iffeB, then there is a function geC{w(Z(B))) such that f=g\S, and conse-
quently a function h e C(Clw{ZiA)) S) such that h\S =f. Since Clw(z(A)) S is compact,
it is C*-embedded in w(Z(A)) and h has a continuous extension h' to w(Z(A)).
Then h'\XeA, and (A'| JT)| 5 = / , so B<={f\S:feA}.

Conversely, if B = (f\S:feA), then by Theorem 2.39 of Bentley and Taylor
(1978), S is Z(^)-embedded in X and by Theorem 2.40 of Bentley and Taylor
(1978), S is (fl, ̂ -embedded in X.

The next two theorems are corollaries to this theorem.

2.35. THEOREM. If A is a sublattice of C(X), Z{A) is a normal base on X, A is
discriminating, A<=E(X, w{Z(A))), S<= X, S is Z(A)-embedded in X, 5<= C(S), Z(B)
is a normal base on S, B<=E(S,w(Z[B])) and {f\S:feA} is closed in B, then S is
{B, A}-embedded in X if and only ifB = {f\ S: feA}.

PROOF. Let L = {/| S: fe A}. L is a sublattice of C(S) and L is closed in B. Since
S is Z(^)-embedded in X, A s S

L> by Corollary 2.37 of Bentley and Taylor (1978).
If S is (B, ̂ )-embedded in X, then by Theorem 2.23 of Bentley and Taylor (1978),
A^8B. Therefore L = 5 . Since A is discriminating and S is Z(/4)-embedded in X,
L is discriminating. Therefore L discriminates Z(#)-sets. Now we have satisfied
the hypotheses of Theorem 2.26 so L = B.

Conversely, if L = B, then since {f\S:feA}^xA, B^SA. So by Theorem 2.23
of Bentley and Taylor (1978), S is (B, v4)-embedded in X.

2.36. THEOREM. If A<=C(X), Z(A) is a normal base on X, A<=E(X,w(Z(A))),
S<= X, S is Z(A)-embedded in X, B is closed in {f\S:fe A}, B is a sublattice of C{S)
and B is discriminating, then S is (B, A)-embedded in X if and only ifB = {f\S:fe A}.
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PROOF. Let S be (B, ̂ -embedded in X. Let H={f\ S:fe A}. Z(H) is a normal
base on S, by Theorem 2.34 of Bentley and Taylor (1978). Since S is (B,A)-
embedded in X, A^SB. But H^SA so H^B. heH implies h has an extension
to a function in A, hence to a function in C(w(Z(A))). But ClwlzumS^w(Z(H)),
so A has an extension to a function in C(w(Z(H))). Therefore HcE(S,w(Z(H))).
B discriminates Z(2?)-sets, consequently Z(H)-sets. Now by Theorem 2.26, H = B.

If B = {/ |S:/e^}, then 5 ^ s ^ . So, by Theorem 2.23 of Bentley and Taylor
(1978), S is (5,^)-embedded in X.
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