THE STONE-WEIERSTRASS THEOREM FOR WALLMAN RINGS

H. L. BENTLEY and B. J. TAYLOR

(Received 20 May 1976) Communicated by E. Strzelecki

Abstract

Biles has called a subring A of the ring C(X) a Wallman ring on X whenever Z(A), the zero sets of function belonging to A, forms a normal base on X in the sense of Frink (1964). In the following, we are concerned with the uniform topology of C(X). We formulate and prove some generalizations of the Stone-Weierstrass theorem in this setting.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 C 30, 54 C 40, 54 C 50.

1. Introduction

Wallman (1938) gave a method for associating a compact T_1 space w(F) with a distributive lattice F; w(F) is the space of all F-ultrafilters and the topology of w(F) has as a base for closed sets a lattice F^* which is isomorphic to the lattice F. Frink (1964) defined the concept of a normal base F on a Tychonoff space X and he applied Wallman's construction to obtain Hausdorff compactifications w(F) of X. Throughout this paper, X will denote a Tychonoff space (= completely regular + Hausdorff).

- 1.1. DEFINITION. A collection F of closed subsets of X is called a *lattice of closed subsets* of X provided that:
 - (1) $\emptyset, X \in F$; and
 - (2) if $A, B \in F$ then $A \cap B \in F$ and $A \cup B \in F$.
- 1.2. DEFINITION. A base F for the closed subsets of X is called a *normal base* on X provided:
 - (1) F is a lattice of closed subsets of X.
- (2) F is disjunctive (that is, if $A \in F$ and $x \in X A$, then there exists $B \in F$ with $x \in B$ and $A \cap B = \phi$).
- (3) F is normal (that is, if $A, B \in F$ with $A \cap B = \emptyset$, then there exist $C, D \in F$ with $A \cap D = \emptyset$, $B \cap C = \emptyset$ and $C \cup D = X$).

If F is a normal base on X, then w(F) is the set of all F-ultrafilters which becomes a space as follows: If $A \in F$, let A^* be the set of all F-ultrafilters having F as a member. F^* then denotes the set of all A^* with $A \in F$. F^* is a base for the closed

sets of a topology on w(F). w(F) with this topology is always a Hausdorff compactification of X. Here X is embedded into w(F) by the map which sends each point $x \in X$ to the F-ultrafilter $\{A \in F | x \in A\}$.

Frink observed that the family Z(X) of all zero sets of continuous real valued functions on X is a normal base on X which gives rise to a compactification w(Z(X)) equivalent to the Stone-Čech compactification βX of X. He also observed that if Y is any given compactification (all spaces are Hausdorff) of X, and if E(X, Y) denotes the subset of C(X) consisting of those real-valued continuous functions on X which are continuously extendible to all of Y, then Z(E(X, Y)), the zero sets of such functions, is a normal base on X. Biles (1970) later called a subring A of C(X) a Wallman ring on X provided Z(A), the zero sets of functions in A, is a normal base on X. Bentley and Taylor (1975) studied relationships between algebraic properties of a Wallman ring A and topological properties of the compactification w(Z(A)) of X.

We adopt our notation and terminology from our two earlier papers; these are mostly consistent with that of Gillman and Jerison (1960).

2. Generalizations of the Stone-Weierstrass Theorem

We investigate the consequences of having a Wallman ring which is uniformly closed; that is, closed in the uniform topology of C(X). Two theorems motivate this work. One is Urysohn's Extension Theorem which states: "A subspace S of X is C^* -embedded in X if and only if any two completely separated sets in S are completely separated in X." The proof of this theorem as it appears in Gillman and Jerison uses the uniform closeness of $C^*(X)$ to construct a function in $C^*(X)$ whose restriction to S is a given function in $C^*(S)$. The other is the Stone-Weierstrass Theorem for real-valued functions which states: "If Y is compact and A is a closed subalgebra of C(Y) which separates points and contains a non-zero constant function then A = C(Y)."

In generalizing the Stone-Weierstrass Theorem, we will consider a compactification Y of a space X and a Wallman ring A on X which is a closed subalgebra of E(X, Y). This means each function $f \in A$ is extendible to Y. Therefore in much of what follows our Wallman rings will satisfy certain extendibility hypotheses.

We start by presenting a condition which implies that a Wallman ring A contains only functions which are extendible to w(Z(A)).

- 2.1. DEFINITION (Isbell, 1958). $A \subseteq C(X)$ is closed under composition if and only if for each $f \in A$ and $g \in C(R)$, $g \circ f \in A$.
- 2.2. THEOREM. Let $A \subseteq C(X)$ be closed under composition, then $Z(A) = \{f^{-1}[B]: B \text{ is closed in } R \text{ and } f \in A\}.$

PROOF. Let B be closed in R. B is a zero set of C(R) so there is a function $g \in C(R)$ such that B = Z(g). Let $f \in A$, then $f^{-1}[B] = Z(g \circ f) \in Z[A]$. Conversely if F is a zero set of A, F = Z(f) for some $f \in A$ and $F = f^{-1}[\{0\}]$.

We will need to use the Tajmanov Theorem.

TAIMANOV THEOREM (Taimanov, 1952). Let X be dense in Y and let $f: X \to T$ be a continuous map of X into a compact space T. Then f can be extended over Y if and only if for any two subsets B_1 and B_2 which are closed in T and disjoint, we have $Cl_Y(f^{-1}[B_1]) \cap Cl_Y(f^{-1}[B_2]) = \emptyset$.

2.3. THEOREM. Let A be a Wallman ring on X such that A is closed under composition and $A \subseteq C^*(X)$, then $A \subseteq E(X, w(Z(A)))$.

PROOF. Let $f \in A$ and let F be a compact subset of R such that $f(X) \subseteq F$. Let B_1 and B_2 be disjoint closed subsets of F. Then $f^{-1}[B_1]$ and $f^{-1}[B_2]$ are disjoint zero sets of A and

$$Cl_{m(Z(A))}f^{-1}[B_1] \cap Cl_{m(Z(A))}f^{-1}[B_2] = \emptyset.$$

Therefore, by the Taimanov Theorem, f has an extension to w(Z[A]).

To further our investigation we make the following definitions which generalize the "completely separated" concept from Urysohn's Extension Theorem.

- 2.4. DEFINITION. Let F be a family of subsets of X and let $L \subseteq C(X)$. Then L discriminates F-sets if and only if $F_1, F_2 \in F$, $F_1 \cap F_2 = \emptyset$ and $a, b \in R$ implies there is a function $f \in L$ such that $f[F_1] \subseteq \{a\}$ and $f[F_2] \subseteq \{b\}$.
 - 2.5. DEFINITION. If $L \subseteq C(X)$, then
 - (1) L discriminates points of X if and only if L discriminates $\{\{x\}: x \in X\}$ -sets;
 - (2) L discriminates compact sets of X if and only if L discriminates

$$\{K \subseteq X : K \text{ is compact}\}\text{-sets.}$$

2.6. THEOREM. Let L be a sublattice of C(X) which contains the real constants. If L discriminates points of X, then L discriminates compact sets of X.

PROOF. Let F_1 and F_2 be disjoint compact subsets of X and let $a, b \in R$. If a = b, then the constant function f = a yields $f[F_1] = \{a\}$ and $f[F_2] = \{b\}$. Suppose $a \neq b$. Let b > a and set $\varepsilon = b - a$. For each $x \in F_1$, $y \in F_2$ there is a function $f_{xy} \in L$ such that $f_{xy}(x) = a - \varepsilon$ and $f_{xy}(y) = b + \varepsilon$.

Let $G_{xy} = \{z \in X: f_{xy}(z) < a\}$. Then $x \in G_{xy}$ and so $F_1 \subset \bigcup_{x \in F_1} G_{xy}$. Since F_1 is compact, there exist $x_1, \ldots, x_n \in F_1$ such that $F_1 \subset \bigcup_{i=1}^n G_{x_i}$. Let

$$g_y = (\inf\{f_{x_iy}: i = 1, ..., n\}) \vee a.$$

If $z \in F_1$ then $z \in G_{x_iy}$ for some $i \in \{1, ..., n\}$ and $f_{x_iy}(z) < a$ which implies $g_y(z) = a$. Therefore $g_y[F_1] \subset \{a\}$.

Let
$$H_y = \{z \in H: g_y(z) > b\}$$
. $f_{x_iy}(y) = b + \varepsilon$ for $i = 1, ..., n$, and so $(\inf\{f_{x,y}: i = 1, ..., n\})(y) > b$ and $g_y(y) > b$.

Therefore $y \in H_y$.

Now we let y vary. $F_2 \subset \bigcup_{y \in F_2} H_y$. Since F_2 is compact, there are $y_1, ..., y_m \in F_2$ such that $F_2 \subset \bigcup_{j=1}^m H_{y_j}$. Let $h = (\sup\{g_{y_j}: j=1,...,m\}) \land b$. If $z \in F_1$ then $g_y(z) = a$ for each $y \in F_2$ and $(\sup\{g_{y_j}: j=1,...,m\})(z) = a$ which implies h(z) = a. Therefore $h[F_1] \subset \{a\}$. If $z \in F_2$ then there exists $k \in \{1,...,m\}$ such that $z \in H_{y_k}$ and so $g_{y_k}(z) > b$ which implies that $(\sup\{g_{y_j}: j=1,...,m\})(z) > b$ and finally that h(z) = b. Therefore $h[F_2] \subset \{b\}$. $h \in L$ since L is a lattice and L contains the constant functions.

2.7. THEOREM. If F is a normal base on X, then E(X, w(F)) is a sublattice of C(X) which contains all real constants.

PROOF. If $f, g \in E(X, w(F))$, then there are f' and $g' \in C(w(f))$ such that $f = f' \mid X$ and $g = g' \mid X$. $f' \land g'$ and $f' \lor g' \in C(w(F))$ so $f \land g = (f' \land g') \mid X \in E(X, w(F))$ and $f \lor g = (f' \lor g') \mid X \in E(X, w(F))$. Therefore E(X, w(F)) is a sublattice of C(X). Obviously the real constants are in E(X, w(F)).

Since E(X, w(F)) is a lattice, we can consider sublattices of E(X, w(F)). We find that a sublattice of E(X, w(F)) which contains the real constants discriminates F-sets if and only if the extensions of functions from this sublattice discriminate points of w(F).

2.8. THEOREM. If F is a normal base on X, L is a sublattice of E(X, w(F)) which contains the real constants, and $H = \{ f \in C(w(F)) : f \mid X \in L \}$, then H discriminates points of w(F) if and only if L discriminates F-sets.

PROOF. Assume H discriminates points of X. Let F_1 and $F_2 \in F$ such that $F_1 \cap F_2 = \emptyset$, and let $a, b \in R$. $\operatorname{Cl}_{w(F)} F_1$ and $\operatorname{Cl}_{w(F)} F_2$ are disjoint, compact subsets of w(F). By Theorem 2.6, H discriminates compact sets of w(F), so there exists a function $g \in H$ such that

$$(g|X)[F_1] \subseteq g[Cl_{w(F)}F_1] \subseteq \{a\}$$
 and $(g|X)[F_2] \subseteq g[Cl_{w(F)}F_2] \subseteq \{b\}$.

 $g \mid X \in L$ and so L discriminates F-sets.

Now assume L discriminates F-sets. Let $x, y \in w(F)$ such that $x \neq y$ and let $a, b \in R$. There exist F_1 and F_2 in F such that $x \in \operatorname{Cl}_{w(F)} F_1$, $y \in \operatorname{Cl}_{w(F)} F_2$ and $F_1 \cap F_2 = \emptyset$. Then there exists $f \in L$ such that $f[F_1] \subset \{a\}$ and $f[F_2] \subset \{b\}$. Also, there is a function $g \in H$ such that $g \mid X = f$. Then $g(x) \in \operatorname{Cl}_{w(F)}(f[F_1]) \subset \{a\}$ and $g(y) \in \operatorname{Cl}_{w(F)}(f[F_2]) \subset \{b\}$.

We are interested in subsets of C(X) which discriminate their own zero sets so we make the following definition.

- 2.9. DEFINITION. Let A be a subset of C(X), then A is discriminating if and only if the following condition is satisfied: $F_1, F_2 \in Z(A)$, $F_1 \cap F_2 = \emptyset$ and $a, b \in R$ implies there is a function $f \in A$ such that $f[F_1] \subseteq \{a\}$ and $f[F_2] \subseteq \{g\}$.
- 2.10. THEOREM. Let A be a subset of C(X), then A is discriminating if and only if A discriminates Z(A)-sets.
- 2.11. THEOREM. If A is an inverse closed Wallman ring on X which contains all the real constants, then A is discriminating.

PROOF. Let F_1 and $F_2 \in Z(A)$ such that $F_1 \cap F_2 = \emptyset$, and let $a, b \in R$. There are functions f_1 and $f_2 \in A$ such that $F_1 = Z(f_1)$ and $F_2 = Z(f_2)$. Let

$$g = (b-a)[f_1^2/(f_1^2+f_2^2)]+a.$$

Then $g \in A$, $g[F_1] \subseteq \{a\}$ and $g[F_2] \subseteq \{b\}$.

If we consider what happens when E(X, Y) is discrimintaing we obtain the following theorem.

2.12. THEOREM. Let Y be a compactification of X, then $Y \cong w(Z[E(X, Y)])$ if and only if E(X, Y) is discriminating.

PROOF. Assume $Y \cong w(Z(E(X, Y)))$. Let $H_1, H_2 \in Z(E(X, Y))$ such that $H_1 \cap H_2 = \emptyset$, and let $a, b \in R$. Y is a normal space and $\operatorname{Cl}_Y H_1 \cap \operatorname{Cl}_Y H_2 = \emptyset$, so there is a function $f \in C(Y)$ such that $f[\operatorname{Cl}_Y H_1] \subseteq \{a\}$ and $f[\operatorname{Cl}_Y H_2] \subseteq b\}$. Let g = f|X. Then $g \in E(X, Y), g[H_1] \subseteq \{a\}$ and $g[H_2] \subseteq \{b\}$.

Assume E(X, Y) is discriminating. Let H_1 and H_2 be disjoint closed subsets of X. If $\operatorname{Cl}_Y H_1 \cap \operatorname{Cl}_Y H_2 = \emptyset$, then there is a function $h \in C(Y)$ such that $h[\operatorname{Cl}_Y H_1] \subseteq \{0\}$ and $h[\operatorname{Cl}_Y H_2] \subseteq \{1\}$. Let $g = h \mid X$. Then $g \in E(X, Y)$, $H_1 \subseteq Z(g)$ and $H_2 \subseteq Z(g = 1)$. Therefore $Y \leq w(Z(E(X, Y)))$.

If $Cl_{w(Z[E(X,Y)])}H_1 \cap Cl_{w(Z[E(X,Y)])}H_2 = \emptyset$ then there are $F_1, F_2 \in Z(E(X,Y))$ such that $H_1 \subseteq F_1$, $H_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$. Since E(X,Y) is discriminating there is a function $g \in E(X,Y)$ such that $g[F_1] \subseteq \{0\}$ and $g[F_2] \subseteq \{1\}$. There is a function $h \in C(X)$ such that $h \mid X = g$. Then $h[F_1] \subseteq \{0\}$ and $h[F_2] \subseteq \{1\}$. Therefore

$$\operatorname{Cl}_Y F_1 \cap \operatorname{Cl}_Y F_2 = \emptyset$$
 and $w(Z(E(X, Y))) \leq Y$.

2.13. COROLLARY. $C^*(X)$ is discriminating.

PROOF. $C^*(X) = E(X, \beta X)$ and $\beta X = w(Z(X))$.

2.14. THEOREM. If $A \subseteq C(X)$ and $S \subseteq X$, then $\{f \mid S : f \in A\}$ is discriminating if and only if A discriminates $\{S \cap H : H \in Z(A)\}$ -sets.

PROOF. Let $\{f \mid S: f \in A\}$ be discriminating. Let H_1 and $H_2 \in Z[A]$ such that $S \cap H_1 \cap H_2 = \emptyset$, and let $a, b \in R$. $S \cap H_1$ and $S \cap H_2$ are disjoint zero sets of $\{f \mid S: f \in A\}$, so there is a function $g \in A$ such that $(g \mid S)[H_1 \cap S] \subseteq \{a\}$ and $(g \mid S)[H_2 \cap S] \subseteq \{b\}$ so A discriminates $\{S \cap H: H \in Z[A]\}$ -sets.

Let A discriminate $\{S \cap H : H \in Z[A]\}$ -sets. Let F_1 and F_2 be disjoint zero sets of $\{f \mid S : f \in A\}$ and let $a, b \in R$. There are zero sets H_1 and $H_2 \in Z(A)$ such that $F_1 = H_1 \cap S$ and $F_2 = H_2 \cap S$ and there is a function $f \in A$ such that $f[H_1 \cap S] \subseteq \{a\}$ and $f[H_2 \cap S] \subseteq \{b\}$. Therefore $(f \mid S)[F_1] \subseteq \{a\}$ and $(f \mid S)[F_2] \subseteq \{b\}$ so $\{f \mid S : f \in A\}$ is discriminating.

Since "discriminating" is a generalization of the "completely separated" concept from Urysohn's Extension Theorem and Z(A)-embedding is a generalization of C^* -embedding, it is logical that there be some relationship between the two concepts. In the following theorems we investigate this relationship.

2.15. THEOREM. Let $A \subseteq C(X)$ be discriminating, let $S \subseteq X$ and let S be Z(A)-embedded in X, then $\{f \mid S: f \in A\}$ is discriminating.

PROOF. Let F_1 and F_2 be disjoint zero sets of $\{f \mid S: f \in A\}$ and let $a, b \in R$. Then there are functions g_1 , and $g_2 \in A$ such that $F_1 = Z(g_1) \cap S$ and $F_2 = Z(g_2) \cap S$. Since S is Z[A]-embedded in X, there are functions f_1 and $f_2 \in A$ such that $F_1 = Z(f_1) \cap S$, $F_2 = Z(f_2) \cap S$ and $Z(f_1) \cap Z(f_2) = \emptyset$. Since A is discriminating, there is a function $h \in A$ such that $g[Z(f_1)] \subset \{a\}$ and $h(Z(f_2)] \subset \{b\}$. Therefore $(h \mid S)[F_1] \subset \{a\}$ and $(h \mid S)[F_2] \subset \{b\}$. Hence $\{f \mid S: f \in A\}$ is discriminating.

2.16. THEOREM. Let A be a subring of C(X) which contains a non-zero constant function a and let $S \subseteq X$ be such that $\{f \mid S : f \in A\}$ is discriminating, then S is Z[A]-embedded in X.

PROOF. Let f_1 and $f_2 \in A$ such that $Z(f_1) \cap Z(f_2) \cap S$ is empty. Then there is a function $g \in A$ such that $(g \mid S)[Z(f_1) \cap S] \subseteq \{0\}$ and $(g \mid S)[Z(f_2) \cap S] \subseteq \{a\}$. Let h = g - a, then $h \in A$, $Z(f_1) \cap S \subseteq Z(g)$, $Z(f_2) \cap S \subseteq Z(h)$ and $Z(g) \cap Z(h) = \emptyset$. Therefore S is Z[A]-embedded in X.

2.17. COROLLARY. Let A be a subring of C(X) such that A is discriminating and A contains a nonzero constant function. If $S \subseteq X$, then X is Z(A)-embedded in X if and only if $\{f \mid S: f \in A\}$ is discriminating.

A closed sublattice of E(X, w(F)) which discriminates F-sets actually equals E(X, w(F)). To prove this we will use the following lemma as stated by Simmons (1963), p. 158.

2.18. Lemma. Let X be a compact space, and let L be a closed sublattice of C(X) with the following property: if x and y are distinct points of X and a and b are any

two real numbers, then there exists a function f in L such that f(x) = a and f(y) = b. Then L = C(X).

2.19. THEOREM. If F is a normal base on X and L is a closed sublattice of E(X, w(F)) such that L discriminates F-sets, then L = E(X, w(F)).

PROOF. Let $H = \{ f \in C(w(F)) : f | X \in L \}$.

(1) H is closed. Let $f_n \in H$, and $g = \lim_n f_n$. Then

$$g \in C(w(F))$$
 and $g \mid X = \lim_{n} (f_n \mid X) \in L$.

- (2) *H* is a sublattice of C(w(F)). Let $f, g \in H$. $(f \lor g) | X = (f | X) \lor (g | X) \in L$ and $(f \land g) | X = (f | X) \land (g | X) \in L$. Therefore $f \lor g$ and $f \land g \in H$.
- (3) If $x, y \in w(F)$, $x \neq y$ and $a, b \in R$, then there is a function $f \in H$ such that f(x) = a and f(y) = b. There exist F_1 and $F_2 \in F$ such that $x \in \operatorname{Cl}_{w(F)} F_1$, $y \in \operatorname{Cl}_{w(F)} F_2$ and $F_1 \cap F_2 = \emptyset$. Then there exists $g \in L$ such that $g[F_1] \subset \{a\}$ and $g[F_2] \subset \{b\}$. $L \subset E(X, w(F))$ so there is a function f in C(w(F)) such that $g = f \mid X$. Then $f(x) \in \operatorname{Cl}_R f[F_1] = \operatorname{Cl}_R g[F_1] \subset \{a\}$ and $f(y) \in \operatorname{Cl}_R f[F_2] \subset \{b\}$.

Therefore by the previous lemma H = C(w(F)). If $f \in E(X, w(F))$, then there is a function g in C(w(F)) such that $g \mid X = f$. $g \in H$ so $f \in L$. Therefore L = E(X, w(F)).

Simmons (1963), p. 159 also has a proof of the lemma which states:

2.20. Lemma. Every closed subring of C(X) is a closed sublattice.

Therefore Theorem 2.19 could also have been stated as follows:

2.21. THEOREM. Let F be a normal base on X. Let A be a closed subring of E(X, w(F)) which discriminates F-sets, then A = E(X, w(F)).

Conversely, if A = E(X, w(F)), then A discriminates F-sets.

2.22. THEOREM. Let F be a normal base on X, then E(X, w(F)) discriminates F-sets.

PROOF. Let $F_1, F_2 \in F$ such that $F_1 \cap F_2 = \emptyset$ and let $a, b \in R$. $\operatorname{Cl}_{w(F)} F_1$ and $\operatorname{Cl}_{w(F)} F_2$ are disjoint closed subsets of the normal space w(F); so by Urysohn's Lemma there is a function $h \in C(w(F))$ such that

$$h[\operatorname{Cl}_{w(F)} F_1] \subseteq \{a\}$$
 and $h[\operatorname{Cl}_{w(F)} F_2] \subseteq \{b\}$.

If $g = h \mid X$, then $g \in E(X, w(F))$, $g[F_1] \subset \{a\}$ and $g[F_2] \subset \{b\}$. Therefore E(X, w(F)) discriminates F-sets.

Combining the results of previous theorems we obtain the following necessary and sufficient conditions for a subset of E(X, w(F)) to be all of E(X, w(F)).

- 2.23. THEOREM. Let F be a normal base on X. Let $L \subseteq E(X, w(F))$. Then L = E(X, w(F)) if and only if
 - (1) L is closed in C(X);
 - (2) L is a sublattice of C(X); and
 - (3) L discriminates F-sets.

PROOF. If L = E(X, w(F)), L is closed since C(w(F)) is closed. L is a sublattice of C(X) by Theorem 2.7. L discriminates F-sets by Theorem 2.22.

If L satisfies the three conditions then L = E(X, w(F)) by Theorem 2.19.

By Lemma 2.20, L is a closed sublattice of C(X) if and only if L is a closed subring of C(X). Therefore Theorem 2.23 could also have been stated as follows.

- 2.24. THEOREM. Let F be a normal base on X. Let $A \subseteq E(X, w(F))$, then A = E(X, w(F)) if and only if
 - (1) A is closed in C(X);
 - (2) A is a subring of C(X); and
 - (3) A discriminates F-sets.

By Theorem 2.11 we know that an inverse closed Wallman ring A which contains all the real constant functions discriminates Z(A)-sets. Therefore as a corollary to Theorem 2.24 we have the following.

2.25. THEOREM. Let A be a Wallman ring on X such that $A \subseteq E(X, w(Z(A)))$. If A is uniformly closed, and inverse closed then A = E(X, w(Z(A))).

PROOF. As was noted in Bentley and Taylor (1975), Corollary 3.4, an inverse closed Wallman ring contains all the rationals. Therefore a Wallman ring which is both inverse closed and uniformly closed contains all the real constants.

The next theorem generalizes the Stone-Weierstrass Theorem so we call it the Stone-Weierstrass Theorem for Wallman lattices.

2.26. THEOREM. Let A be a subset of C(X) such that Z[A] is a normal base on X and $A \subseteq E(X, w(Z(A)))$. Let L be a sublattice of C(X) such that L is closed in A and L discriminates Z[A]-sets. Then L = A.

PROOF. Let $H = \operatorname{Cl}_{E(X,w(Z(A)))}L$. $L \subseteq H$ and H is a closed sublattice of E(X,w(Z(A))). Since L discriminates Z[A]-sets, H discriminates Z(A)-sets. Therefore H = E(X,w(Z(A))). L is closed in A so $H \cap A = L$. Also $A \subseteq H$, so $H \cap A = A$. Therefore L = A.

Similarly we have the Stone-Weierstrass Theorem for Wallman rings.

2.27. THEOREM. Let A be a sublattice of C(X) such that Z(A) is a normal base on X and $A \subseteq E(X, w(Z(A)))$. Let L be closed in A, let L be a subring of C(X) which contains the real constants, and let L discriminate Z(A)-sets. Then L = A.

PROOF. The hypotheses of Theorem 2.27 include all the hypotheses of Theorem 2.26 except L being a sublattice of C(X). To show L is a sublattice of C(X), it suffices to show $|f| \in L$ for each $f \in L$.

Let $t = \sup\{|f(x)| : x \in X\}$ and let $\varepsilon > 0$. There is a polynomial $p: [-t, t] \to R$ such that p has real coefficients and $||r| - p(r)| < \varepsilon$ for all $r \in [-t, t]$ (Weierstrass Approximation Theorem). Then $||f|(x) - p(f(x))| = ||f(x)| - p(f(x))| < \varepsilon$ for all $x \in X$. $p \circ f \in L$ and $|f| \in A$ so $|f| \in \operatorname{Cl}_A L = L$. L is a sublattice of C(X).

If we let $A \subset C^*(X)$ be an algebra on X we find A = E(X, w(Z[A])) and also obtain some interesting results involving (B, A)-embedding.

- 2.28. DEFINITION (Hager, 1969). A is an algebra on X if and only if:
- (1) A is a subring of C(X);
- (2) A contains all real valued constant functions;
- (3) A separates points and closed sets;
- (4) A is closed under uniform convergence; and
- (5) A is inverse closed.

We will show that every algebra on X is a Wallman subring of C(X). Lemma 2.20 established that every closed subring of C(X) is a closed sublattice of C(X) and so we have the following result which was observed by Mrówka (1964).

2.29. THEOREM. If A is an algebra on X, then A is a lattice.

Biles (1970) established the following.

2.30. THEOREM. Let A be a subring of C(X) such that Z[A] is a base for the closed sets of X and if $f \in A$, then $|f| \in A$. Then A is a Wallman ring on X.

If A is a lattice and $f \in A$, then $|f| \in A$. So $|f| \in A$ for each f in an algebra A. Therefore we have proven that every algebra on X is a Wallman ring on X.

2.31. THEOREM. Every algebra on X is a Wallman subring of C(X).

In fact, if $A \subseteq C^*(X)$ is an algebra on X, then A is the Wallman ring E(X, w(Z(A))). To prove this we will use the following theorem which is due to Isbell (1958).

- 2.32. THEOREM. If A is an algebra on X, then A is closed under composition.
- 2.33. THEOREM. If $A \subseteq C^*(X)$ is an algebra on X, then A = E(X, w(Z(A))).

PROOF. A is a Wallman ring which is closed under composition so by Theorem 2.3, $A \subseteq E(X, w(Z(A)))$. By Theorem 2.11, A discriminates Z(A)-sets. Therefore the hypotheses of Theorem 2.24 are satisfied and A = E(X, w(Z(A))).

From this we are able to show that if A is an algebra of bounded functions on X and B is an algebra of bounded functions on S, where $S \subseteq X$, then S is (B, A)-embedded in X if and only if $B = \{f | S : f \in A\}$.

2.34. THEOREM. Let A be an algebra on X such that $A \subseteq C^*(X)$. Let $S \subseteq X$. Let B be an algebra on S such that $B \subseteq C^*(S)$. Then S is (B, A)-embedded in X if and only if $B = \{f | S : f \in A\}$.

PROOF. A = E(X, w(Z(A))) and B := E(S, w(Z(B))). Let S be (B, A)-embedded in X. If $f \in A$, then there is a function $g \in C(w(Z(A)))$ such that $f = g \mid X$. If $h' = g \mid Cl_{w(Z(A))} S$, then since $Cl_{w(Z(A))} S \cong w(Z(B))$ there is a function $h \in C(w(Z(B)))$ such that $h \mid S = h' \mid S = f \mid S$. Therefore $f \mid S \in B$ and $\{f \mid S : f \in A\} \subseteq B$.

If $f \in B$, then there is a function $g \in C(w(Z(B)))$ such that $f = g \mid S$, and consequently a function $h \in C(\operatorname{Cl}_{w(Z(A))} S)$ such that $h \mid S = f$. Since $\operatorname{Cl}_{w(Z(A))} S$ is compact, it is C^* -embedded in w(Z(A)) and h has a continuous extension h' to w(Z(A)). Then $h' \mid X \in A$, and $(h' \mid X) \mid S = f$, so $B \subseteq \{f \mid S: f \in A\}$.

Conversely, if $B = \{f \mid S: f \in A\}$, then by Theorem 2.39 of Bentley and Taylor (1978), S is Z(A)-embedded in X and by Theorem 2.40 of Bentley and Taylor (1978), S is (B, A)-embedded in X.

The next two theorems are corollaries to this theorem.

2.35. THEOREM. If A is a sublattice of C(X), Z(A) is a normal base on X, A is discriminating, $A \subseteq E(X, w(Z(A)))$, $S \subseteq X$, S is Z(A)-embedded in X, $B \subseteq C(S)$, Z(B) is a normal base on S, $B \subseteq E(S, w(Z[B]))$ and $\{f \mid S : f \in A\}$ is closed in B, then S is (B, A)-embedded in X if and only if $B = \{f \mid S : f \in A\}$.

PROOF. Let $L = \{f \mid S: f \in A\}$. L is a sublattice of C(S) and L is closed in B. Since S is Z(A)-embedded in X, $A \cong_S L$, by Corollary 2.37 of Bentley and Taylor (1978). If S is (B, A)-embedded in X, then by Theorem 2.23 of Bentley and Taylor (1978), $A \cong_S B$. Therefore $L \cong B$. Since A is discriminating and S is Z(A)-embedded in X, L is discriminating. Therefore L discriminates Z(B)-sets. Now we have satisfied the hypotheses of Theorem 2.26 so L = B.

Conversely, if L = B, then since $\{f \mid S: f \in A\} \cong_X A$, $B \cong_S A$. So by Theorem 2.23 of Bentley and Taylor (1978), S is (B, A)-embedded in X.

2.36. THEOREM. If $A \subseteq C(X)$, Z(A) is a normal base on X, $A \subseteq E(X, w(Z(A)))$, $S \subseteq X$, S is Z(A)-embedded in X, B is closed in $\{f \mid S: f \in A\}$, B is a sublattice of C(S) and B is discriminating, then S is (B, A)-embedded in X if and only if $B = \{f \mid S: f \in A\}$.

PROOF. Let S be (B, A)-embedded in X. Let $H = \{f \mid S: f \in A\}$. Z(H) is a normal base on S, by Theorem 2.34 of Bentley and Taylor (1978). Since S is (B, A)-embedded in X, $A \cong_S B$. But $H \cong_S A$ so $H \cong B$. $h \in H$ implies h has an extension to a function in A, hence to a function in C(w(Z(A))). But $\operatorname{Cl}_{w(Z(A))} S \cong w(Z(H))$, so h has an extension to a function in C(w(Z(H))). Therefore $H \subseteq E(S, w(Z(H)))$. B discriminates Z(B)-sets, consequently Z(H)-sets. Now by Theorem 2.26, H = B. If $B = \{f \mid S: f \in A\}$, then $B \cong_S A$. So, by Theorem 2.23 of Bentley and Taylor (1978), S is (B, A)-embedded in X.

REFERENCES

All references refer to those listed at the end of the immediately preceding paper: H. L. Bentley and B. J. Taylor (1978), "On generalizations of C*-embedding for Wallman rings", J. Austral. Math. Soc. 25 (Ser. A), 215-229.

The University of Toledo Toledo Ohio 43606, USA IBM Corporation Sylvania Ohio 43560, USA