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In this work we tackle the Cartan determinant conjecture for finite-dimensional algebras through monoid
gradings. Given an adequate 1-grading on the left Artinian ring A, where Z is a monoid, we construct a
generalized Cartan matrix with entries in Z£, which is right invertible whenever gl.dim A < oo. That gives a
positive answer to the conjecture when A admits a strongly adequate grading by an aperiodic commutative
monoid. We then show that, even though this does not give a definite answer to the conjecture, it strictly
widens the class of known graded algebras for which it is true.
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If {F,,...,PB} is a family of representatives, up to isomorphism, of the projective
indecomposable modules over a left Artinian ring A and [Sl=Pl/JPl Sn =
Pn/JPn] is the corresponding family of simple modules, then the Cartan matrix CA of A
is the n x n integer matrix whose (i,j)-entry is the multiplicity of S, as a composition
factor of Pj, for every (i,j). It is well-known (cf. [6]) that if gl.dim A < oo then
det CA = q=l. Based on the lack of examples with value —1, there has grown the so-
called Cartan determinant conjecture, which asserts that if gl.dim A < oo then
det CA = 1.

When looking at the different situations in which the Cartan determinant conjecture
has been settled, one clearly sees two types of arguments. The first is by direct
calculations, only possible in very particular cases. The second involves a certain
grading on the algebra. The reader is referred to [8] for a good survey. Our objective is
to give a new approach to the conjecture via monoid gradings on the algebra,
generalizing known results on the relationship between gradability of the algebra and
verification of the conjecture. In the first section we introduce the notion of (strongly)
adequate grading on a left Artinian ring A by a monoid Z and, associated with it, the
construction of a generalized Cartan matrix CA in Mnxn(Z£), where Z£ is the monoid
ring. The first main result (Theorem 1.7) states that if gl.dim A < oo then CA is right
invertible in Mnxn(ZE) and, when passing to the abelianization L of £, det CA is a unit
of Z£. The second main result (Theorem 1.8) states the verification of the conjecture
when A admits a strongly adequate grading by an aperiodic commutative monoid.
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540 MANUEL SAORIN

Once this result is at hand, one naturally asks if every f.d. algebra A with
gl.dim A < oo admits such a grading or, on the contrary, if any such algebra
admitting the grading is already graded in the Wilson sense ([14]). In the second
section we show that the answer to both questions is "no" (Propositions 2.6 & 2.8)
and, on our way towards proving the latter proposition, we give a method of
constructing explicitly a presentation by quiver and relations of the Auslander
algebra EndB(B © B/Jl~l © . . . © B/J), where B is a diagram algebra and £ = l(B) is
the Loewy length of B.

Most terminology in our work is standard and should be familiar for both people
working in Ring Theory and Representation of Algebras. By [10] we know that every
f.d. split basic algebra over a field K is isomorphic to KA/I, where A is a uniquely
determined quiver and I is an ideal of KA containing all paths of length m, for some
m > 2, and consisting of /C-linear combinations of paths of lengths >2. Every such / is
called an adequate ideal for A in KA and any finite subset p generating / is called an
adequate set of relations for A in KA. In the second section we will borrow from [12]
the concept of change of variable, which is an algebra endomorphism / : KA -> KA
fixing the vertices and being bijective modulo the ideal (/+)2 of KA generated by the
paths of length >2. Finally, on what concerns Z-gradability of an f.d. algebra A, we
will follow the terminology already used in [13]. So A will be called gradable by the
radical when A is isomorphic to its associated graded algebra G(A) with respect to the
powers of the radical. More generally, A will be said to be gradable in a semisimple
way when it admits a grading as in [14], i.e., a positive grading A = ®n>0An such that

All modules in this paper are left unitary modules and, unless otherwise stated, they
are always assumed to be finitely generated.

1. Adequate gradings by monoids: the generalized Cartan matrix

Throughout this section A will be a left Artinian ring, {e,, . . . ,eB} will stand for a
basic family of primitive orthogonal idempotents, so that {P, = Aelt..., Pn = Aen) and
{S, = AeJJe , Sn — Aen/Jen) are families of representatives, up to isomorphism, of
the indecomposable projective and the simple /1-modules, respectively.

Definition. Let A be a left Artinian ring and E a monoid (always with multiplicative
notation). A E-grading on A, A — ®t&A,, is said to be adequate when J(A) = ®a^Aa,
where J(A) denotes the Jacobson radical of A.

Remark 1.1. Notice that if A — (BoezAa is an adequate Z-grading of A, then
AaAx = 0 whenever ax = \ and a, T ^ I . Furthermore Ax = A/J(A) is a semisimple
subring of A. When, moreover, Aa = 0 for every unit a / 1 of Z, we shall say that the
grading is strongly adequate.

Given an adequate grading A — ®aeZ^c> a n important object of our study will be
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the skeletally small abelian category (A, Z) — gr whose objects are the Z-graded (always
finitely generated) ,4-modules. The above mentioned idempotents {e,,...,en} can be
chosen homogeneous of degree 1. That is equivalent to saying that each indecom-
posable projective P, has a canonical Z-grading for which it is a direct summand of AA
in the category (A, Z) — gr. The simple S, with the trivial grading is also an object of
(A, Z) - gr, that we still denote by S,. Finally, given M e (A, Z) — gr and a e l , we
define a new graded A-module, called the o-shifting M[a], which coincides with M as
an /4-module but has the following grading: M[a], — Z{Mv/v € Z and vo — r}. When
dealing with the skeletally small abelian category si, we can always consider the
Grothendieck group K0(sf). The next proposition is standard and its proof is left as an
exercise:

Proposition 1.2. Let si be a skeletally small abelian category all of whose objects
have finite composition length. Then K0(s#) is the free abelian group on the set of
isomorphism classes of simple objects of si.

It is hence important to identify the simple objects of {A, Z) — gr in order to deal
with K0((A, Z) — gr), a group that we shall denote by K0(A, Z) in the sequel.

Lemma 1.3. Let A and Z be as above, A = ®a^Aa being an adequate 'L-grading on
A. {Sj[a]/i = 1, . . . , n and a e Z} is a set of representatives, up to isomorphism, of the
simple objects of {A, Z) — gr.

Proof. Since J = J(A) is a graded ideal of A, for every object T of (A, Z) — gr
J(A)T is a graded submodule of T. By Nakayama's Lemma, J(A)T ^ T. When T is a
simple object, we get J(A)T = 0. From that it follows easily that each homogeneous
component To of T is actually a graded submodule of T. But the simplicity of T
implies that only one a e Z exists for which Ta ̂  0, and in that case Ta is a simple A-
module. It is clear now that T ^ S,[&\, where S, is the simple ,4-module which is
isomorphic to Ta. On the other hand, if S,[CT] = S;[T] a look at the non-zero
homogeneous component of both sides of the isomorphism shows that a = T. But
Si[a\ = Sj[a] clearly implies S, = Sj and so i =j. •

The above proof shows that J(A) c Jgr(A), where J9'(A) is the graded Jacobson
radical. But, since every simple ^-module is canonically graded, the converse inclusion
holds as well. Therefore J(A) = Jg\A).

We are now ready to prove a fundamental fact.

Proposition 1.4. Let A, Z and A = (BaezAa as above. Then K0(A, Z) is the free abelian
group on the set {S,[<j]/i = 1, . . . , n and a e Z}. Moreover, M • a = M[a] yields a structure
of a free right Z'L-module on K0(A, Z), with basis {S, Sn}.

Proof. The only thing that remains to be proved is the statement about the ZZ-
module structure on K0(A, Z). For that, bearing in mind the first part of the

https://doi.org/10.1017/S0013091500019878 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019878


542 MANUEL SAORIN

proposition, we only need to check that (S,[ff] • T) • v = St[a] • (TV), which is a direct
consequence of the associativity in Z and the fact that T[CT][T] — T[at\, for every simple
object T of (A, Z) - gr and all a, T e Z. Finally, {S,[o-]/i = 1 n & a e Z} being a
basis of Ko(/4, E) as abelian group easily implies that {S,,...,Sn} is a basis as ZZ-
module. •

In the proof of our first main result we will need the following property of
gradability of the projective covers.

Definition. Let M e (A, Z) — gr and e: P —> M be a homomorphism, where P is a
projective ,4-module. We shall say that e is gradable when it is possible to give P a
Z-grading so that P becomes a graded /I-module isomorphic in (A, Z) — grr to a finite
direct sum ©{P,[o-]u(l>)/i = 1 , . . . , n, CT e S} and e(Pr) c Aft, for every T e Z.

The crucial fact now is the following.

Proposition 1.5. Given an adequate "L-grading on the left Artinian ring A and a
"L-graded module M, there is a minimal projective resolution of M which is gradable, i.e.,
all its morphisms are gradable.

Proof. Let M e (A, Z) — gr. Since J = J(A ) is a homogeneous ideal JM is a graded
submodule of M, so that M/JM is also a graded module. Semisimplicity of M/JM as
an A-module immediately implies the same property as an object of {A, Z) — gr. But
then it admits a decomposition M/JM — ®"=i ©ffei {®l^{a)Xial), where Xicj is a graded
submodule of M/JM isomorphic to S,[cr], for every triple (i, aj) (notice that m(i, a) is
then the multiplicity of S,[cr] as a direct summand of M/JM and so m(i, a) = 0 for all
but finitely many pairs (i, a)). Since, clearly, MJ{JM\ =* (M/JM)a = ©JLi (ejj'iff)A"(tff,,-),
we can choose a family of homogeneous elements in M, {x1>J/(i, cr) e Nn x Z,
7 = 1, . . . , m(i, CT)} (almost all zero!) such that the degree of xI>7 is a and Axiaj — Xiaj,
where 3cI(7; is the class of x1>; modulo JM. Nakayama's Lemma tells as that
M = T.Axiaj. Now, for each nonzero xiaJ, we choose a projective cover
eia f P; = /4e, -> Axia j that maps e, onto xiaJ. By giving e, degree a, we can view e,„; as
a morphism in (>4, Z) — gr Pt[a] —• 4̂x, „;. It is now obvious that we get a graded
homomorphism from a suitable direct sum of the P,[a]'s onto M = T.Axiaj, which is
actually a projective cover of /4-modules. •

Given an adequate Z-grading A = ©ffeZ/4ff as above, we can define a n x n matrix
(n = the number of nonisomorphic simples) with entries in the monoid ring ZZ, that
we shall denote by CA and call the generalized Cartan matrix {associated with the given
H-grading). Its (ij)-th entry will be, by definition, ctj — 5ZffeE (̂CT)CT, where cit(a) denotes
the multiplicity of Sj[a] as a composition factor (in the category (A, Z) — gr) of P; with
the canonical grading mentioned at the beginning.

Remarks 1.6. (a) As an immediate consequence of the definition, we have the
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following equality in the ZZ-module K0(A, Z): P-} = £"=1 S, • ctj. In other words, the y-th
column of CA consists of the coordinates of Pt with respect to the basis of the right
ZZ-module K0(A, Z) given by the simple ^-modules.

(b) Cj, = 1 + £ff?£1 Cii(ff)ff, for all i, while cjj = £e j £ , CyO7)0'- Indeed from Remark 1.1
follows that JPj is a graded submodule of P; contained in ©a/i(Py)a and so JPj — (B01u(Pj)a-
But then S, = S,[l] is a composition factor of P; = Pj[\] in (A, Z) — gr if, and only if,
i =j in which case its multiplicity is exactly 1.

(c) The augmentation map ZZ -> Z, or its induced homomorphism Mnxn(ZZ) -*•
Mnxn(Z), takes CA onto the usual Cartan matrix CA.

We shall denote by Z the abelianization of Z, i.e., the factor of Z by the congruence
relation generated by the relations CTT = xa, with CT, T e Z. There is a canonical ring
homomorphism ZZ -»• ZZ which induces another one Mnxn(ZZ) ->• Mnxn(ZZ). The
image of CA by this latter homomorphism will be denoted by C'A and called the
abelianized version of CA. The first main result is now available.

Theorem 1.7. Let A = ®a&Aa be an adequate grading on the left Artinian ring A,
and let CA and C'A be the generalized Cartan matrix and its abelianized version,
respectively. If the global dimension of A is finite, then CA has a right inverse in
Mnxn(ZZ) and det C'A is an invertible element in ZZ.

Proof. Let S, be any of the simple /1-modules considered with its trivial grading.
We can take a minimal projective resolution of S, which is gradable, where the grading
of each term is a suitable direct sum of shiftings Pj[o]. Suppose O -* Qir -*•...-*•
Qi.i -»• Qi.o -»• Sf -»• 0 is that resolution. Then, in / C Q ^ . Z ) , we get 5, = Y^-lf Qi,k.
But, on the other hand, Qik = £"=1 X ^ j . P, [a] • u(i, k, I, a), where u(i, k, I, a) denotes the
multiplicity of P\[a) as a direct summand of Qik. Moreover P,[ff] = P, • a, by definition
of the ZZ-module structure on K0(A, Z). By suitable substitutions, we get the
following equality in the latter ZZ-module: S, = £ ( = 1 P, • {'E.k=o12aes.(.-l)ku(i> k< l< a)°}-
Since, by the first remark above, P, = ]T\=1 Ss • c;1 we also obtain S, — ^2j=l Sj[J2l=] cjt •
C C r e z Z ^ o ^ O V ' . k, I, a)a)]. By comparing with S,, = £\=i ^ A a n ( i bearing in mind
that {Sh ..., Sn] is a basis of the ZZ-module K0(A, Z), we conclude that, for all
i,j=l,...,n, 5jt = X,=, cjt • (5Z«j; Et=o(-1 )*"('. fc.'. ^)^)- I I i s n o w clear that dH =
EffeiZ!*=o(~')*"('. fe.'. cV yields the (1,0-th entry of a matrix in Mnxn(ZZ) which is
right inverse to CA.

Finally, via the canonical homomorphism Mnxn(ZZ) -> Mnxn(ZZ), we get that C'A is
an invertible matrix in MnxB(ZZ), which is equivalent to saying that detC^ is an
invertible element in ZZ. •

From the above theorem we shall derive a new partial affirmative answer to the
Cartan determinant conjecture, not only for finite dimensional algebras over a field,
but for left Artinian rings in general. First recall some terminology (see [11]).

Definition. Let Z be a commutative monoid. We shall say that Z is torsionfree in
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the case that a" = x" implies a = x, for a, x el. and n > 1. In the case that every
nontrivial cyclic submonoid of Z is infinite, we shall say that Z is aperiodic.

Theorem 1.8. Suppose that the left Artinian ring A admits a strongly adequate
grading A — ©0€r/4o, where Z of an aperiodic commutative monoid. If gl.dim A < oo then
detCA = 1.

Proof. Our previous theorem states that detC'^ is an invertible element in ZZ. On
the other hand, by construction of C'A, its entries can be written in the form ^,o^mou,
where m0 — 0 whenever Ao = 0. In particular, by Remark 1.1, the support of the entries
of C'A always consists of nonunits of Z and 1. Bearing in mind Remark 1.6(b), the
latter implies that detC',, = 1 + 5Zu6s:\(i)

 mu°> where m0 — 0 whenever o is a unit of Z.
Now the set of all relations of the form v = q> whenever there is a n > 1 such that
v" = cp" in Z is already a congruence relation, which is compatible with the multiplica-
tion in Z. When we factor by it, the new (commutative) monoid Z is aperiodic and
torsionfree. Moreover, if q: Z —v Z is the canonical projection and u e Ker q, then there
exists n > 1 such that o" — 1 in Z. The aperiodicity of Z implies that o — 1. As a
consequence, the induced homomorphism of monoid rings ZZ ->• ZZ maps det C'A onto
an element of the form 1 + £se£\(i) mss, which must be invertible in ZZ. By Theorem
11.15 in [11], that element is 1. By applying now the augmentation map ZZ -*• Z and
taking into account Remark 1.6(c), one gets detC^ = 1 as desired. •

We have now the following well-known extension of Wilson's result (see Section 6
in [9]) as a straightforward consequence:

Corollary 1.9. Let A = ®neftAn be a positively graded left Artinian ring such that
J(A) — ®n>0An. If gl.dim A < oo then detC'A = 1 = detC^. •

2. The monoid associated with a representation of an algebra by quiver and relations

As mentioned in the introduction, two natural questions arise for an f.d. algebra A
such that gl.dim A < oo:

(1) Does there exist always a strongly adequate Z-grading A = ©^z/l,,, where Z
is an aperiodic commutative monoid?

(2) If A actually admits such a grading, is A gradable in a semisimple way?

A positive answer to Question 1 would imply the truth of the Cartan determinant
conjecture. In turn, a positive answer to Question 2 would imply that our last theorem
means really no advance in the conjecture with respect to Wilson's result ([14]). Our
main goal in this section is to see that both questions have negative answers.

In the sequel A is isomorphic to KA/(p), where A is a finite quiver and p is an
adequate set of relations for A in KA. It will be assumed that no subrelation of an
r e p is in the ideal (p) (i.e. if r = A,p, + • • • + A,p, € p, then no proper subset {iu ..., i,}
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of {1 , . . . , t} exists such that ?.ilpil H 1- Af pf e (p)). Note that every path in A may
be also viewed as an element of the free monoid on the set A, of arrows. We introduce
now a key concept.

Definition. In the above situation, we shall call a monoid associated with the
representation (A, p) and denote it by E(A, p) to the monoid given by:

(a) Generators: the arrows of A.
(b) Relations: for each r = 2,p, H h X,p, e p, with t > 2 and A, X, e /C", we

put p, = Pj for all i, j = 1, . . . , t.

We have now an immediate result.

Proposition 2.1. Every split basic finite-dimensional algebra A given by the quiver
with relations (A, p) admits a strongly adequate grading by X = S(A, p) or £, i7s
abelianization, in which the degree of a nonzero path p of length >1 is exactly the class p
ofp in S or £.

Proof. By assigning degree p to every path p of length >1 and degree 1 to every
path of length 0, we get a Z-grading on the path algebra KA. If r = Xtpt + \- A,p, e p
then, by definition of £, the degrees of p , p, are all the same. Hence the ideal (p)
of KA is generated by homogeneous elements and is thereby a graded ideal of KA.
Now A ^ KA/(p) inherits an adequate E-grading satisfying the requirements. If now
vet, and p: £ -*• £ is the canonical projection, we put Av = T.{Aa/a e £ and p(a) = v}
and get a strongly adequate £-grading for A as desired. •

Example 2.2. (i) If A is the local algebra K(X, Y)/(p), where p = {XY - 2YlX,
X1 + 3Y4, y5, all monomials of degree 6}, assuming char K ^ 2, 3 then Z(A, p) is given
by two generators x, y and relations xy = y*x, x2 = y4, not caring about the zero
relation Ys. The algebra A has a basis {1, x, y, x2, xy, y, y2, y\ yx, j^x} and the degree of
each element of that basis is the same element, but viewed as an element of E.

(ii) Every monomial algebra, by definition, admits a representation by quiver and
zero-relations. The associated monoid is then the free monoid on the set A, of arrows.
That grading is precisely the one given by Burgess in [5].

(iii) We should observe that E(A, p) depends completely on the set p of generators
of the ideal (p> of KA. For instance, the adequate ideal / of K{X, Y) generated modulo
(X, Yf by [XY, YX] is also generated modulo (X, Yf by {XY,XY- YX) While the
first choice of p gives that E(A, p) equals the free commutative monoid on two
variables, the second one gives the monoid with two generators x, y subject to the
relation xy = xy.

Before tackling the two aforementioned questions, we first see how the grading just
introduced could serve as an arithmetic test of the global dimension. That follows the
trail of a converse of the graded version of the Cartan determinant conjecture, where

https://doi.org/10.1017/S0013091500019878 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019878


546 MANUEL SAORIN

some results are already known (see, e.g., Corollary 2.13 in [8] and Proposition 1.4 in
[5]). For the terminology that appears in the next proposition, we refer to [1], except
that we change the order when writing the paths (e.g., the path a/? means for us POOL,
when we view them as maps between projective indecomposable modules). Also,
instead of r'm for the m-chains of origin i, we use A'm for the wi-chains with terminal i
(e.g. A'2 is the set of obstructions ending at i).

Definition. We shall say that £ = £(A, p) is a finite word monoid in the case that,
for every a e £, there are only finitely many words in the free monoid over A,
representing a.

Proposition 2.3. Let A = KA/(p} be an algebra and £ = £(A, p) be the associated
monoid. Fix a suitable ordering of the set of paths in A and suppose £ is a finite word
monoid and the following condition holds:

(%) If p e Am and q e An are two chains which define the same element in E, then
m = n (mod 2Z).

If the generalized Cartan matrix CA e Mnxn(Z£) has a right inverse, then gl.dimA < oo.

Proof. We only need to observe that the construction of a projective resolution of
a simple S, given in [1] can be taken to be graded, i.e., one can inductively give a
E-grading to each Km in Theorem 2.7(3) of [1] and make all the involved maps into
E-graded maps. More precisely, under such a grading Km = ®Pi[af>'m'l'"), where
v(i, m, I, a) denotes the number of elements of A^ with origin 1 that yield the element
a e E. The fact that E is a finite word monoid allows us to construct the incidence ring
Z[[E]] of E. This is the set of all functions / : E -> Z, that we write / = J^a^ / (o> , in
which multiplication is defined by convolution: ( / • g)(o) = £{/(T)#(V)/T, v e £ and
TV = a}. An adaptation of the proof of Theorem 1.7 for the Anick and Green resolution
following the pattern of [5] yields a right inverse D — (du) for CA in Mnxn(Z[[E]]), where
^u = 5I,xez(5ir=o(—l)mt;0.m> l.^OV (observe that this is an element of Z[[E]] because
of our finite word assumption on E). Since, by hypothesis, CA is actually right
invertible in ZE, we have that X!m=o(-1)"'i;(J. "». /, ff) = 0 for all but finitely many a e E.
Our condition (%) implies that the latter is only possible if, for all but finitely
many a e E, v(i, m, I, a) = 0 for all m > 0. Again our finite word assumption on E
guarantees that there is a large enough n such that v(i, m, I, a) = 0, for all a 6 E
and all m > n. So the Anick and Green resolution of each S, is finite and,
consequently, gl.dimA < oo. •

Remark 2.4. Unfortunately the conditions that we need to impose on the
presentation of the algebra to guarantee (%) are very restrictive. It is clearly verified
when p consists of zero relations, in which case Proposition 2.3 is just Proposition 1.4
in [5]. We shall indicate a nonmonomial situation where (%) holds. If p, q e A2 are two
obstructions such that p = plu, q — uq1 and pluq2eAit we shall say that p and q
overlap adequately. In such a case, the length of u will be called the length of the
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overlapping. Suppose that p consists of homogeneous relations of length I and,
moreover, all obstructions p e A2 have length /. If the length of adequate overlappings
is a constant, say t, then one inductively gets that every q e Am has length
l + (m - 2)(/ - t). Then, since the generating relations of E(A, p) are given by paths of
equal length, (%) holds (even with m = ri). For instance, the proposition can be

applied to the algebra given by 2 ~ 1 = 3, with p = {ad, p\5, Py, yx - 5/}}, for, when
we consider the antilexicographical order, we have A2 = {<x<5, p\5, Py, ya} and the length
of adequate overlappings is constantly 1. Notice that the lexicographical order gives
A2 = {ad, fid, Py, dp, aya,

We come now to answer our two intriguing questions. In both cases the crucial point
is the following result of Auslander:

Lemma 2.5. ([2, Theorem 10.3]) If B is a finite-dimensional algebra of Loewy length
I = £(B) and G is the B-module B © B/Jl~x © .. . © B/J2 © B/J, then A = Endg{G) is a
{finite-dimensional) algebra of finite global dimension.

We are now ready for an answer to our first question. In the sequel B will always
be a local algebra B and A = EndB(G) as above. For the purpose of distinction, we
shall denote by F and A the quivers of B and A, while the adequate sets of relations
will be denoted by n and p, respectively.

Proposition 2.6. There are finite-dimensional algebras of finite global dimension
admitting no strongly adequate grading by a commutative aperiodic monoid.

Proof. Suppose that every f.d. algebra A with finite global dimension admits such
a grading, whence, in particular, every algebra A = EndB(G), for B and G as in the
above lemma. We know that B is recoverable from A in the form B — eAe, for an
idempotent e, which we can assume to be homogeneous of degree 1. Now Ba — eAce,
for every <r e £, yields a strongly adequate Z-grading on B. So the existence of our
desired grading for algebras with finite global dimension implies that existence for
every f.d. algebra. To finish the proof we only need to show an example of an f.d.
(local) algebra that admits no such grading. Take for B the "ungradable" local
algebra of [4], i.e. B = K(X, Y)/{X\ XY, YX2, X2 - Y\ YX - y3). By a result
analogous to Theorem 2.1 in [10], B admits a strongly adequate grading by the
commutative monoid £ if there is a weight function d: F, = [X, Y] -> E and a change
of variable f:K(X, Y) -> K(X, Y) such that the ideal /' of K(X, Y) generated by
{f(X)\ f(X)f(Y), f(Y)f(X)2, f(X)2 -RY)\ f(Y)f(X)^-/(7)3}U (all paths in F of
length 4} is an adequate d-homogeneous ideal for B in K(X, Y). But then, if \i is a
d-homogeneous set of generators of /', d extends to a morphism of monoids
7t:Z(F, fi) -> Z, that induces another one n:Z(F, fi) -»• Z, such that the support of
A — ©«£/!„ is contained in Imn and Kern — 1. The aperiodicity of X implies that of
£(F, n'). By using now Corollary 5 in [12], it is now a routine though cumbersome task
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to check that, for every adequate ideal /' as above and every set of generators \i of
/', E(F, fx) is never aperiodic. Hence £ cannot be aperiodic. •

In order to answer our second question we shall first develop a method of
constructing a presentation by quiver and relations of the algebra A — EndB(G), when
B is a diagram algebra in the sense of [7]. We do it just for the case that B is local; that
is enough for our purposes, but the reader will have no difficulty in generalizing the
construction for arbitrary B. Let us start with a presentation B = K.r/(n), where \i
consists of paths and differences of paths. We abuse notation and use the same letter
for the paths and for the elements of B that they represent. First of all, for every path
p in r and positive integers 1 < k,m< l(B) such that J(B)kp c J(B)m, we denote by
Pkm (ekm m case e = I is the vertex) the element of A induced by the map
B/J(B)k ->. B/J(B)m that takes 1 + J{B)k onto p + J(B)m. It is well-known (see [3, p. 220])
that B has a multiplicative basis 23 consisting of paths in F. For each pair (k, m) as
above, <§km = [pUP e ®. J(Sfp ^ 0 in B and J(B)kp c J(B)m] is a /C-generating set of
HomB(B/J(B)k, B/J(B)m). Clearly, the vertices of the quiver A of A can be taken to be
the idempotents ekk, where k e [I, ...,£ = 1{B)}. Secondly, for each 1 < k, m < 1{B),
e^Ae^ £* HomB(B/J(B)k, B/J(B)m) and we consider the subset A(k, m) of <&km consisting
of those pkm's which cannot be expressed as nontrivial products of qs,'s, for other paths
q e 23 and positive integers s, t (here a product of the qst's is called trivial if some qst

equals err, for some r). Unrigorously, the elements of the different A(/c, m)'s will be
called irreducible endomorphisms of G. It is not difficult to see, using the multiplicity of
23, that A(/c, m) is a basis of ekkJ{A)emm modulo ekkJ(A)2emm and so it can be taken as
the set of arrows between ekk and emm in A. It is clear now that a product of irreducible
endomorphisms (p')M2 • • • (p

r\k,^
 ls z e r o ' ^ P " '" P' € J(B)k'+i. This is the source of all

the zero relations to be considered for A. Finally, if p e 23, pkm ^ 0 in A and
(p\k2 • • • (P\kr+i =Pkm = (<l\m2---(q')m,m,+l are two different factorizations of it as
a product of irreducible endomorphisms of G, then (p')t l t2 •• -(pr)krkr+l — (ql)mimi •••
(<l')m,m,+l is a nonzero relation for A in KA. It is not hard to see that we only need to
consider those nonzero relations in order to get an adequate set p of relations for A in
KA. One can finally implement the procedure by dropping the redundant relations.
We have proved:

Lemma 2.7. The above procedure yields a presentation (A, p) of A = EndB(G) by
quiver and relations.

We are now ready for an answer to our second question:

Proposition 2.8. There are algebras of finite global dimension that are not gradable
in a semisimple way, but admit a strongly adequate grading by a commutative aperiodic
monoid.

Proof. Let B = KV/(fi) an arbitrary local diagram algebra and let (A, p) the
presentation by quiver and relations given above. Our next goal is to show the
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existence of a surjective homomorphism of monoids/ : £(A, p) -*• E(F, p.), which in turn
induces one (also surjective) / : £(A, p) -> £(F, //). Indeed, we define / (p^J = p, if pfcm

is an irreducible element of ^ ^ and p is a path in F of length > 1, and / (p^J = 1 if
p = e (ekm is irreducible in 9^ only in case k = m + 1) (here, of course, we are
identifying the paths of F with the elements of E(F, p.) that they represent). If
(P%k2 • • • (P\kr+X -(<l\mi--<<lX,m,+l

 i s a nonzero relation for A in KA as described
above (hence fe, = m, and fcr+1 = mJ+,) then p1 • • pr - ql • • q* e J(B)m, where
m = kr+l — wJ+1. But, due to the multiplicative condition of 95 and the fact that pl •••pr

and qx •••q' are both elements of 93, we have that p1 • • • pr - q1 • • • qs e J(fl)"1 iff
either both pl -p' and ql • • • qs belong to J(B)m or pl •••p" - ql • •-q' = 0 in B.
The fact that (p')M 2 • • (pr)Mr+1 = pfem = (ql)m,m2 • • • («%,.*.,, for some pkm ? 0, ex-
cludes the first possibility. Hence ( p ' ) t . • • (pr)Mr+1 = W)mm " ' t f U . i" Z(A, p)
implies/[(p')t l4 l • • • (pr)Mr+1] - p1 • • • pr = q1 • • • q° =f[(q%mi • • • (?)„,„,J in T(T, fi). S o /
is a well-defined map. It is clear that / preserves multiplication and the 1. Since
f(xkm) = a> f ° r every arrow a e F,, F, c / m / and s o / is surjective. We should notice
now that E = K e r / is the submonoid of E(A, p) generated by {ekm/k > w}, which is a
free monoid with basis {ek+i k/k = \,...,i(B)— 1}. From that, and the fact that the
defining relations of Z(A, p) give rise, via / , to relations in Z(F, p) each term of which
is of length at least 2, follows easily that the induced morphism of commutative
monoids / : £(A, p) -> £(F, fi) is surjective and has as kernel the abelianization E of E,
which is a free commutative monoid. From that we immediately get that E(A, p) is
aperiodic if £(F, fi) is.

In case B is not gradable in a semisimple way A cannot be either (cf. [4]). So, in
order to end the proof, we only need to give an example of local diagram algebra
B — Kr/in), which is not gradable in a semisimple way and such that £(F, n) is
aperiodic. That is the content of next lemma. •

Lemma 2.9. Let B = K{X, Y)/(X2, Y\ YX - XY1). Then B is not gradable in a
semisimple way, but £(F, fi) is aperiodic.

Proof. By definition, £(F, p.) is the commutative monoid with generators x,y
subject to the relations xy = xy2. From that it follows that xry' = x"y" in £(F, n)
implies r = u. If now (x'/f = (xr/)" then either r — 0 and m / n , or m = n. But the
first possibility is clearly discarded unless s = 0. Therefore £(F, p.) is aperiodic. By
leaving the details as exercises for the reader, we shall sketch the proof of the fact that
B is not gradable in a semisimple way. If B were gradable in such a way, according
to Theorem 2.1 in [13], there would exist a weight function d: F, = {X, Y) -*• Z taking
positive values and a change of variable/: K(X, Y) -*• K(X, Y) such that the ideal /' of
K{X, Y) generated by /(/) + (X, Y? is d-homogeneous and B ss K{X, Y)/I'. We then
consider the two possibilities: (a) d(X) = d(Y); (b) d(X)^d{Y). In the first case B
would be gradable by the radical and one can use Proposition 2.5 in [13] to get a
contradiction. In the second case, by working directly with the change of variable/, we
see that either f(X) = aX, f(Y) = dY or f{X) = bY, f{Y) = cX (mod(Ar, Y)2), where
a,b,c,deK*. That leads to the existence of elements x', y e J(B)\J(B)2 such that
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x' = ax, y = dy (mod J{B)2) and y'x' = 0, in the first situation, while x' = by, y = ex
and x'y = 0, in the second situation. In both cases one gets yx — 0, which is a
contradiction (x, y are the classes of X, Y in B = K(X, Y)/(X2, Y\ YX -XY1)). •

Example 2.10. (1) Let us consider the local diagram algebra B = K(X,Y)/
(X2, y3, YX - XY2) of the above lemma, that has Loewy length 4 and a multiplicative
basis 33 = {l,x, y, xy, y2,yx}. The procedure described before Lemma 2.5 shows that
the quiver A of A = EndB(G) has 4 vertices {1, 2, 3,4} corresponding to the idempotents

ekk: G > B/J(B)k *• G, k=l,...,4, and as arrows: a, = yl2 (viewed as
endomorphism of G, it is the one induced by the map B/J(B) -*• B/J(B)2 that takes
\+J(B) onto y + J(B)2), tx2 = e2l, <x3 = x13) <x4 = y2i, a5 = e32) a6 = x24> a7 = yu and
a8 = c43, where the subindices in the second members of the equalities also denote the
origin and extremity of the arrows. Hence the quiver of A is:

If our calculations are correct, the procedure also yields the following adequate set
of relations for A:

p = , a3a5a2, a3a5a6, a|a4a7, a6a8a5a2, a7a8a5a2, a2a3 — a6a8,

a4a5 - a2a,, a7a8 - a5a4, a,a6 - a3a5a4a7}.

(2) If now B = K{X, Y)/(X3, XY, YX2, X2 - Y\ YX - Y3) is the ungradable local
algebra given in [4], then our procedure yields for A = EndB{G) the same quiver as the
above example, where the arrows represent: a, = yn, a2 = e2i, a3 = x13, a4 = y23,
as = e32, a6 = x24, a7 = y34 and a8 = en. As an adequate set of relations for A one gets:

P = {<*1<*2> a3a7» a4a5a2» a 3 a S a 4 . <*6a8a5a2> *7a8a5a2> « 4 a 5 ~ a 2 a l . a 2 a 3 ~ a6a8> a 7 a 8 ~ a 5 a 8 .
a,a6 — a3a5a6, a,a6 — a,a4a7}. The monoid 2 = D(A, p) is generated by the a,'s subject to
the relations a4a5 — a2a,, a2a3 — a6a8,a7a8 - a5a4, a,a6 — a3asa6, a ^ — a,a4a7. By the
proof of Proposition 2.5, its abelianization is not aperiodic. This can be explicitly seen.
Indeed, a5a6a7

iagl is an idempotent element of £(A, p).
(3) In the above two examples we have seen that the arrows in A are of two

particular types: (i) ek+lk, for k = 1 , . . . , l(B) — 1; (ii) ^km, where ft is an arrow in the
quiver r of B and J(B)kp c J(B)m but J(B)*j3 £ J(B)m+> in B. It is not difficult to see
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that, for every local diagram algebra B, the elements of A = EndB(G) of types (i) or
(ii) yield arrows of A, but, in general, they are not the only ones. For instance, if B is
the commutative algebra K[X,Y]/(X:i-Y*,X2Y,XY3), then (x2)l4 is an irreducible
B-endomorphism of G, so that it yields an arrow in A.
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