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Abstract

Most major discoveries in astronomy are unplanned, and result from surveying the Universe in a new way, rather than by
testing a hypothesis or conducting an investigation with planned outcomes. For example, of the ten greatest discoveries
made by the Hubble Space Telescope, only one was listed in its key science goals. So a telescope that merely achieves its
stated science goals is not achieving its potential scientific productivity.

Several next-generation astronomical survey telescopes are currently being designed and constructed that will signifi-
cantly expand the volume of observational parameter space, and should in principle discover unexpected new phenomena
and new types of object. However, the complexity of the telescopes and the large data volumes mean that these discoveries
are unlikely to be found by chance. Therefore, it is necessary to plan explicitly for unexpected discoveries in the design
and construction. Two types of discovery are recognised: unexpected objects and unexpected phenomena.

This paper argues that next-generation astronomical surveys require an explicit process for detecting the unexpected,
and proposes an implementation of this process. This implementation addresses both types of discovery, and relies heavily
on machine-learning techniques, and also on theory-based simulations that encapsulate our current understanding of the
Universe.
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1 INTRODUCTION

Popper (1959) described the scientific method as a process in
which theory is used to make a prediction which is then tested
by experiment. That model, and its principle of ‘falsifiabil-
ity’ remains the gold standard of the scientific method, and
probably drives the majority of scientific progress. Notable
recent successes include the discovery of the Higgs boson
(ATLAS 2012) and the detection of gravitational waves (Ab-
bott et al. 2016). Conversely, models such as string theory
are sometimes criticised (e.g. Woit 2011) for being unfalsi-
fiable, and thus failing to adhere to this Popperian scientific
method.

However, the Popperian scientific method is not the only
one, and a number of other modes of scientific discovery
have been proposed, notably by Kuhn (1962). For example,
science may also proceed through a process of ‘exploration’
(e.g. Harwit 1981), in which experiments or observations are
carried out in the absence of a compelling theory, in order to
guide the development of theory.

Astronomy has largely developed through a process of
exploration. For example, the Hertzsprung–Russell diagram
(Hertzsprung 1908) was an observationally driven idea of

representing data, that led to the development of models of
stellar evolution and ultimately nuclear fusion. In another ex-
ample, the expanding Universe was discovered when Hubble
plotted redshifts of galaxies against their brightness (Hub-
ble 1929). More recently, the Hubble Deep Fields (Williams
et al. 1996, 2000) were primarily motivated by a desire to ex-
plore the early Universe, rather than testing specific models
or hypotheses.

1.1. The history of astronomical discovery

Astronomical discovery has often occurred as a result of tech-
nical innovation, resulting in the Universe being observed in
a way that was not previously possible. Examples include the
development of larger telescopes, or the opening up of a new
window of the electromagnetic spectrum. More generally,
we may define an n-dimensional parameter space whose n
orthogonal axes correspond to observable quantities (e.g. fre-
quency, sensitivity, polarisation, colour, spatial scale, tempo-
ral scale). Some parts of this parameter space have been well-
observed and have already yielded their discoveries, whereas
some parts of this space have not yet been observed. New
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Figure 1. A plot of recent major astronomical discoveries, taken from Ekers
(2009), of which seven were ‘known–unknowns’ (i.e. discoveries made by
testing a prediction) and ten were ‘unknown–unknowns’ (i.e. a serendipitous
result found by chance while performing an experiment with different goals).
The data in this plot are taken from Wilkinson et al. (2004).

discoveries may lie in those unsampled parts of the param-
eter space, presumably available to new instruments able to
sample that region of the parameter space. Most ‘accidental’
or ‘serendipitous’ discoveries result from observing a new
part of this parameter space (Harwit 2003).

We may therefore broadly divide astronomical discover-
ies into (a) those which were made according to the Poppe-
rian model, in which a model or hypothesis is being tested
(the known–unknowns), and (b) those which have resulted
from observing the Universe in a new part of the parame-
ter space, resulting in unexpected discoveries (the unknown–
unknowns). Of course, an experiment may often be planned
to test a hypothesis, but in doing so stumbles across an unex-
pected discovery. A classic example of this is the discovery
of pulsars (Hewish et al. 1968) discussed in Section 2.2. Al-
ternatively, data taken for an unrelated purpose may be mined
for unexpected discoveries, such as the outlier detection al-
gorithm described by Baron & Poznanski (2016) that finds
‘weird’ galaxies by searching for unusual spectra from the
Sloan Digital Sky Survey.

Several studies (Harwit 1981; Wilkinson et al. 2004;
Wilkinson 2007; Fabian 2010; Kellermann 2009; Ekers 2009;
Wilkinson 2015) have shown that at least half the major dis-
coveries in astronomy are unexpected, and are typically made
by surveying the Universe in a new way, rather than by test-
ing a hypothesis or conducting an investigation with planned
outcomes. For example, Figure 1 shows the result of an ex-
amination (Ekers 2009) of 17 major astronomical discoveries
in the last 60 yrs. Ekers concluded that only seven resulted
from systematic observations designed to test a hypothesis or
probe the nature of a type of object. The remaining ten were
unexpected discoveries resulting either from new technology,
or from observing the sky in an innovative way, exploring un-
charted parameter space. In particular, experience has shown
that unexpected discoveries often result when the sky is ob-
served to a significantly greater sensitivity, or a significantly
new volume of observational parameter space is explored.

1.2. This paper

In Section 2 of this paper, I discuss the opportunities and
challenges to making unexpected discoveries in the high data
volumes and high complexity of next-generation astronom-
ical surveys, and argue that surveys need to plan explicitly
for these discoveries if they are to be successful. Section 3
proposes a process for discovering unexpected objects in as-
tronomical surveys, and Section 4 proposes a process for
discovering unexpected phenomena in astronomical surveys.
Section 5 describes some preliminary attempts to implement
and test some of these approaches and suggests some future
directions.

To focus the discussion, this paper uses the ‘Evolutionary
Map of the Universe’ survey (EMU: Norris et al. 2011) as
an exemplar of next-generation surveys, but the broad con-
clusions and process will be relevant to all next-generation
astronomical surveys.

2 THE PROCESS OF ASTRONOMICAL
DISCOVERY

Astronomy is currently enjoying a boom in new surveys,
with several next-generation astronomical survey telescopes
planned, which will undoubtedly open up large new swathes
of observational parameter space, potentially resulting in a
large number of unexpected discoveries.

There are two quite different types of unexpected
discovery:

• Type 1: Discoveries of new types of object (e.g. pulsars,
quasars), identified as anomalies or unexpected objects
in images or catalogues;

• Type 2: Discoveries of new phenomena (e.g. HR dia-
gram, the expanding Universe, dark energy), identified
as anomalies in the distributions of properties of objects.
These are identified when the results of experiment are
compared to theory (or perhaps to other observations) in
some suitable parameter space.

2.1. Case study 1: The Hubble space telescope

The science goals that drove the funding, construction, and
launch of the Hubble Space Telescope (HST) are listed in the
HST funding proposal (Lallo 2012). A further four projects
were planned in advance by individual scientists but not listed
as key projects in the HST proposal. Conveniently, the Na-
tional Geographic magazine selected the ten major discov-
eries of the HST (Handwerk 2005), resulting in an admit-
tedly subjective ‘top ten’ list of HST discoveries (shown in
Table 1). So we may compare the actual achievements of the
HST against its planned achievements. Of these ten greatest
discoveries by HST, only one was listed in its key science
goals. In particular, the unplanned discoveries include two of
the three most cited discoveries, and the only HST discovery
(Dark Energy) to win a Nobel prize.
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Table 1. Major discoveries made by the Hubble Space Telescope ( HST ). Of the HST ’s ‘top ten’ discoveries (as ranked by National
Geographic magazine), only one was a key project used in the HST funding proposal (Lallo 2012). A further four projects were planned
in advance by individual scientists but not listed as key projects in the HST proposal. Half the ‘top ten’ HST discoveries were unplanned,
including two of the three most cited discoveries, and including the only HST discovery (Dark Energy) to win a Nobel prize. This Table
was previously published by Norris et al. (2015).

Key Nat Geo Highly Nobel
Project Project? Planned? top ten? cited? Prize?

Use cepheids to improve value of H0
√ √ √ √

UV spectroscopy of ig medium
√ √

Medium-deep survey
√ √

Image quasar host galaxies
√ √

Measure SMBH masses
√ √

Exoplanet atmospheres
√ √

Planetary Nebulae
√ √

Discover Dark Energy
√ √ √

Comet Shoemaker-Levy
√

Deep fields (HDF, HDFS, GOODS, FF, etc)
√ √

Proplyds in Orion
√

GRB Hosts
√

This example suggests that science goals are poor predic-
tors of the discoveries to be made with a new telescope, and
if a major new telescope merely achieves its stated science
goals, it is probably performing well below its potential sci-
entific productivity. Wilkinson et al. (2004) express this idea
succinctly as What a radio telescope was built for is almost
never what it is known for.

2.2. Case study 2: The discovery of pulsars

The Nobel-prize-winning discovery of pulsars by Jocelyn
Bell occurred when a talented and persistent PhD student
observed the radio sky for the first time with high time reso-
lution, to study interstellar scintillation. By observing at high
time resolution, she expanded the observational parameter
space. She also knew her instrument intimately, enabling her
to recognise that ‘bits of scruff’ on the chart recorder could not
be due to terrestrial interference, but represented a new type
of astronomical object. As a result, she discovered pulsars.
She describes the process in detail in Bell-Burnell (2009).

The following critical elements were essential for this
discovery:

• She explored a new area of observational parameter
space.

• She knew the instrument well enough to distinguish in-
terference from signal.

• She examined all the data by eye.
• She was observant enough to recognise something un-

expected.
• She was open minded, and prepared for discovery.
• She was within a supportive environment (i.e. one that

was accustomed to making new discoveries).
• She was persistent.

The value of the last three items should not be underesti-
mated. When a PhD student obtains an observational result

that differs from previous results or from conventional wis-
dom, there is a strong temptation to ascribe the difference to
an error in the data.

2.3. Case Study 3: The evolutionary map of the
Universe

Figure 2 shows the main radio surveys, both existing and
planned, at frequencies close to 1.4 GHz. The largest existing
radio survey, shown in the top right, is the wide but shallow
NRAO VLA Sky Survey (NVSS: Condon et al. 1998). The
most sensitive existing radio survey is the deep but narrow
JVLA-SWIRE (Lockman hole) observation in the lower left
(Condon et al. 2012). Existing surveys are bounded by a di-
agonal line that roughly marks the limit of available time on
current-generation radio telescopes.

Many discoveries have been triggered by those surveys
shown in Figure 1, ranging from the rare but paradigm-
shifting discoveries (e.g. the radio-far-infrared correlation:
van der Kruit 1971) to the numerous minor but still signifi-
cant discoveries (e.g. the Infrared-Faint Radio Sources: Nor-
ris et al. 2006), which are now known to be very-high-redshift
radio galaxies (Garn & Alexander 2008; Herzog et al. 2014;
Collier et al. 2014). In the absence of any evidence to the
contrary, Occam’s razor would suggest that this diagram is
uniformly populated with significant discoveries. Therefore,
the unexplored region of observational parameter space to
the left of the line presumably contains as many potential
new discoveries per unit parameter-space as the region to
the right. Radio surveys of that region should therefore yield
many important discoveries, provided they are equipped to
do so.

Within that unexplored region of parameter space are sev-
eral planned next-generation radio surveys, the largest of
which, in terms of numbers of sources detected, is EMU (Evo-
lutionary Map of the Universe; Norris et al. 2011) which will
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Figure 2. Comparison of existing and planned deep 20-cm radio continuum
surveys, adapted from a diagram in Norris et al. (2013) originally drawn
by Isabella Prandoni. The horizontal axis shows the 5-σ sensitivity, and
the vertical axis shows the sky coverage. The right-hand diagonal dashed
line shows the approximate envelope of existing surveys, which is largely
determined by the availability of telescope time. Surveys not at 20 cm are
represented at the equivalent 20 cm flux density, assuming a spectral index of
−0.8. The squares in the top-left represent the new radio surveys discussed in
this paper. The Square Kilometre Array (Dewdney et al. 2009) will hopefully
conduct even larger surveys in the next decade, extending well to the left of
EMU, but such plans are not yet concrete.

use the Australian SKA Pathfinder (Johnston et al. 2008), to
survey 75% of the sky to a sensitivity of 10 μJy/beam rms.
Only a total of about 10 deg2 of the sky has been surveyed at
1.4 GHz to this sensitivity, in fields such as the Hubble, AT-
LAS, and COSMOS fields. EMU is the largest radio contin-
uum survey so far, and will detect about 70 million galaxies,
compared to the 2.5 million detected over the entire history
of radio-astronomy. Not only will EMU have greater sensi-
tivity than previous large-area surveys, but it will also have
better resolution, better sensitivity to extended emission, and
will measure spectral index and, courtesy of the POSSUM
project (Gaensler et al. 2010), polarisation for the strongest
sources.

EMU will therefore significantly expand the volume of ob-
servational parameter space, so in principle should discover
unexpected new phenomena and new types of object.

However, the complexity of ASKAP and the large data
volumes mean that it may be non-trivial to identify them. For
example, in the list above of critical elements which led to the
discovery of pulsars, EMU can satisfy all those elements ex-
cept (a) knowing the instrument well enough to distinguish
interference or artefacts from signal, (b) being able to ex-
amine all the data by eye, and (c) being able to recognise
something unexpected.

For (a), it is likely that no human will be sufficiently famil-
iar with ASKAP to distinguish subtle astrophysical effects
from subtle instrumental artefacts. Any process to detect un-
expected astrophysical effects is likely to detect unexpected
artefacts. Rather than expecting to identify these a priori, it is
likely that we will have to learn to identify them in the data,
and then trace their source a posteriori. This process is likely
to be an important component of the process of discovering
the unexpected.

For (b), the petabyte data volumes from ASKAP mean that
it will be impossible for an astronomer to sift through the data,
looking for something unusual. Instead, the only way of ex-
tracting science from large volumes of data is to interrogate
the data with a well-posed question, such as ‘plot the spe-
cific cosmic star formation rate of star-forming galaxies as a
function of redshift’. So there is a danger that projects like
EMU will produce good science in response to such well-
posed questions (the ‘known–unknowns’), and thus achieve
their science goals, but will miss the 90% of discoveries that
are unexpected (the ‘unknown–unknowns’).

The final element (c), of being able to recognise some-
thing unexpected, is perhaps the hardest element. While the
human brain has been exquisitely tuned by millions of years
of evolution to notice anything unexpected and potentially
dangerous, if we can’t sift through the data by eye, then we
must rely on tools to detect the unexpected, and such tools
do not currently exist.

On the other hand, if we don’t make the unexpected dis-
coveries, then we will probably miss out on the most im-
portant science results from these telescopes. We have there-
fore started a project within EMU (named Widefield ouTlier
Finder, or WTF) to develop techniques for mining large vol-
umes of astronomical data for the unexpected, using machine-
learning techniques and algorithms.

2.4. The value of science goals

New telescopes or surveys are usually justified by their sci-
ence goals. For example, the EMU project (Norris et al. 2011)
is justified by 16 key science projects with goals such as
measuring the star formation rate density over cosmic time,
studying AGN evolution and the role of AGN feedback, and
making independent measurements of fundamental cosmo-
logical parameters. However, as demonstrated above in the
case of the HST, the major discoveries made with a new tele-
scope or survey are not usually represented by such science
goals.

However, science goals are still important for two reasons.
First, they represent use cases. If a telescope is built that is
able to address challenging science goals, then it is likely to
be a high-performing telescope. Second, much of astronomy
advances not by spectacular major discoveries, but by the
incremental science that is usually encapsulated in science
goals. Such incremental advance is also very important, and,
unlike serendipitous discoveries, represents a predictable out-
come from a new telescope.
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Figure 3. The flowchart for discovering unexpected objects in EMU.

For example, EMU will hopefully advance the knowledge
of galaxy evolution by measuring the evolution of the cosmic
star-formation rate, the evolution of active galactic nuclei,
and the feedback processes that link them, and this will no
doubt result in many worthwhile and highly cited papers.
However, these may be dwarfed in impact by the unexpected
discoveries.

3 TYPE 1 DISCOVERIES: UNEXPECTED
OBJECTS

EMU is expected to detect about 70 million objects, compared
to the current total of ∼ 2.5 million known radio sources.
Since the 70 million objects will probably include new un-
expected classes of radio source, it is important for EMU
to plan to identify new classes or phenomena, rather than
hoping to stumble across them. EMU will do so through its
WTF project, which has the explicit goal of discovering the
unexpected.

This section describes how the WTF project will make
Type 1 discoveries (unexpected objects), An overview is
shown in Figure 3 and the following subsections address each
of the steps in that flowchart. Although this is designed for
EMU, the broad approach is applicable to any survey.

3.1. Design and construction

As discussed in Section 2.4, the construction of any new
telescope must necessarily be designed to optimise its per-
formance for specific science goals. However, it is important
not to design and build it so it can only achieve those
goals, because that would limit its ability to discover the
unexpected. Instead, it is important to maximise flexibility.
The design of the telescope therefore needs to maximise the
ultimate scientific productivity, in addition to achieving the
specific science goals.

Similarly, it is sometimes necessary to process the data
to reduce the volume of data to that which is necessary to
achieve the science goals, discarding the excess. For exam-
ple, ASKAP will generate about 70 PB of calibrated corre-
lated time-series data each year, which is then processed into
images occupying only about 4 PB per year. It is not econom-
ically possible to store all the time-series spectral-line data,
and so that data is discarded.

Discarding excess data is sensible if all the information is
present in the images. However, processing the time-series
data to produce the images is a lossy process, and the dis-
carded information may well be the key to an unexpected
discovery. So reducing the data volume by keeping only pro-
cessed data should be avoided as much as possible.

Even when time-series data must be discarded, it can still
be searched in real time for time-varying phenomena such as
fast radio bursts (Lorimer et al. 2007). In the case of EMU, this
search is undertaken by partner projects CRAFT (Macquart
et al. 2010) and VAST (Murphy et al. 2013).

3.2. Observations

Discoveries are thinly distributed through the observational
parameter space. We cannot predict where they lie, and it is
difficult to quantify the volume of parameter space being ex-
plored, but the probability of making an unexpected discovery
is presumably proportional to the volume of new parameter
space being explored. The observations should therefore be
optimised, not only for the specific science goals, but also to
maximise the volume of new observational parameter space
being explored, which means maximising the sensitivity to
poorly explored parameters such as circular polarisation, time
variability, diffuse emission, etc.

3.3. Data processing and compact source extraction

The first stage of ASKAP data processing, performed by
the ASKAPSOFT suite of software, is to calibrate the
time-series data, Fourier transform it into image data,
and then deconvolve it. The resulting images are then placed
in the observations database (called CASDA) for storage
and retrieval by users.

It is important that this process makes as few assumptions
as possible about the nature of the objects being detected. For
example, we know that the vast majority of objects detected
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by EMU will be less than one arcmin in extent, and so it is
tempting to discard the shortest baselines corresponding to
spatial scales larger than this. However, to do so will be to
guarantee that EMU will not detect any objects larger than this
scale, thereby limiting the volume of observation parameter
space being explored.

The ASKAPSOFT real-time processing pipeline includes
source extraction software to identify and measure the pa-
rameters of compact sources in the radio images. The algo-
rithm for doing so is still being refined and tested against
other source finders (Hopkins et al. 2015), but is optimised
for sources that are unresolved or less than a few beamwidths
in extent. The software will measure the extent of each com-
ponent (an ‘island’) and fit gaussians to the peaks within the
island. The measured parameters from this process are stored
in a table in CASDA for storage and retrieval by users.

Diffuse sources will not normally be discovered by this
process, but will be extracted in offline processing (see
Section 3.5).

3.4. Data validation

The first stage of EMU data validation takes place in near-
real-time to flag data which are affected by radio-frequency
interference or hardware malfunctions. A second stage of
validation is conducted on each set of observations by the
EMU science survey team, checking for image artefacts, cal-
ibration errors, etc. It is important to ensure that this process
does not also reject data containing unexpected discoveries.
For example, a strong radio burst might be misinterpreted as
interference. However, an astrophysical radio burst will take
place in the far field of ASKAP, while interference gener-
ally takes place in the near field. Interference can therefore
be distinguished from radio bursts by testing whether the pa-
rameters on different baselines are consistent with an astro-
physical source. It is therefore important that data validation
techniques use such sophisticated tests rather than simple
amplitude threshold tests.

3.5. Diffuse source extraction

The source extraction algorithm in ASKAPSOFT is not ex-
pected to detect diffuse emission, such as cluster haloes and
supernova remnants, which are notoriously difficult to detect
automatically. A number of algorithms (e.g. Dabbech et al.
2015; Butler-Yeoman et al. 2016; Riggi et al. 2016) are un-
der development for automatically detecting diffuse sources
in radio-astronomical images.

3.6. Classification of sources as simple or complex

About 90% of EMU sources will consist of a single radio
component with no nearby radio component with which it
might be associated. I term these ‘simple’ sources. Physically,
these are likely to be star-forming galaxies, low-luminosity
AGN, or young radio-loud galaxies typically classified as

Gigahertz-peaked spectrum (GPS) or compact steep spec-
trum (CSS). The first stage of classification and identifica-
tion is to identify such sources from their radio morphology
alone. This separation into simple and complex sources will
be achieved in EMU using a machine-learning algorithm,
currently under development (Park, Norris & Crawford, in
preparation). It is likely that the final algorithm will use one
of Logistic Regression, a Support Vector Machine, or a Neu-
ral Network binary classification.

The resulting simple sources will then be matched to op-
tical/infrared catalogues using a likelihood ratio (LR) tech-
nique (Sutherland & Saunders 1992; Weston, in preparation).

The remaining sources, which we term ‘complex’, must
be classified and cross-identified in a more sophisticated
process.

3.7. Source classification and cross-identification of
complex sources

Classifying the morphology of radio sources, and cross-
identifying them with their counterparts at optical/infrared
wavelengths, might be regarded as being two separate pro-
cesses. However, two nearby unresolved radio components
might either be the two lobes of an FRII radio source, or the
radio emission from two unassociated star-forming galaxies.
Only by cross-identifying with multiwavelength data, par-
ticularly optical/infrared data, can these two cases be distin-
guished, since the pair of star-forming galaxies will have an
infrared host galaxy coincident with each of the radio com-
ponents, whereas the host of the FRII is likely to lie between
them.

Whilst this process is easy for the expert human, the 7
million complex sources expected to be detected by EMU
pose a significant challenge. Several techniques are being
evaluated, using the ∼5 000 sources in the ATLAS data set
(Norris et al. 2006; Middelberg et al. 2008; Hales et al. 2014;
Franzen et al. 2015) as a testbed, as follows:

• All sources are cross-identified and classified by eye, to
provide a training and validation set.

• The sources are being cross-matched by citizen scientists
in the Radio Galaxy Zoo project (Banfield et al. 2016).

• A Bayesian approach is being developed (Fan et al.
2015).

• A variety of machine-learning approaches are being ex-
plored, both supervised and unsupervised.

3.8. The survey catalogue

After cross-matching and classification, all sources detected
in the survey are placed in the survey catalogue, which for
EMU is called the EMU Value-Added Catalogue (EVACAT ).
To each source are added other available data such as redshifts
and other multiwavelength data. Many of the redshifts are
not spectroscopic, but are photometric redshifts or ‘statistical
redshifts’ (Norris et al. 2011) which are best expressed as a
probability distribution function rather than as a single value.
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3.9. Mining images for unexpected objects

The source extraction algorithm in ASKAPSOFT is not ex-
pected to detect unconventional sources. An example of an
unconventional source might be a ring of emission several
arcmin in diameter but with an amplitude of only half the
rms noise level in any one pixel. Such a structure would
be invisible in the image to the human eye, or to a conven-
tional source extraction code, but would be easily detectable
at a high level of significance using a suitable matched filter,
such as a Hough transform (Hollitt & Johnston-Hollitt 2012).
Many other examples of potential diffuse and unconventional
sources may be imagined.

To detect such sources, the WTF pipeline will retrieve
images from CASDA and apply a number of different al-
gorithms in parallel. Detecting sources with unconventional
morphology is much harder and is the subject of continuing
research, and several algorithms such as self-organised maps
(Geach 2012) are currently being explored.

3.10. Mining the catalogue for unexpected objects

The catalogue will be searched for properties of objects in
an n-dimensional plot with axes such as flux density, spec-
tral index, and IR-to-radio ratio. Known types of object (e.g.
stars, galaxies, quasars) will appear as clusters in this param-
eter space. Algorithms are being explored that will search the
parameter space for clusters of objects that do not correspond
to known types of objects. Although targeted specifically at
EMU, such approaches are expected to have broad applica-
bility to astronomical survey data.

4 TYPE 2 DISCOVERIES: UNEXPECTED
PHENOMENA

Some unexpected discoveries are made when the properties
of a sample of objects differ from those predicted by theory
in some unexpected way. For example, dark energy was dis-
covered (Riess et al. 1998; Perlmutter et al. 1999) when the
relationship between the brightness and redshift of type 1A
supernovae failed to follow the distribution predicted by the-
ory. Here, I describe an approach in which the data is tested
against theory. Although it resembles the standard Popperian
technique, it differs in that what is being tested is the sum of
our understanding of the Universe, rather than any particular
theory.

A common way of testing theories is to derive some physi-
cally meaningful quantity, such as a luminosity function, and
then compare that with the theoretical luminosity function
predicted by theory. Such an approach has the advantage of
yielding results which are easily compatible with other obser-
vations and other theories. It has the disadvantage that obser-
vational data has to be corrected for incompleteness, and this
is often difficult to do accurately. For example, to calculate
the radio luminosity function of radio sources, and compare
it with other derived radio luminosity functions, Mao et al.

(2012) needed to correct the data not only for a variable ra-
dio sensitivity across the field, but for the incompleteness of
the optical spectroscopy survey that produced the necessary
redshifts. It is very difficult to account for all the selection
effects accurately.

These various sources of incompleteness, which I label the
‘window function’, are generally well-understood and well-
determined. For example, Mao et al. (2012) were able to
use a map of the sensitivity across the radio image, and a
plot of the sensitivity of the redshift survey as a function of
magnitude. Thus, for a hypothetical source of a given optical
magnitude and position, it is trivial to calculate the probability
of it appearing in the catalogues with a measured redshift. The
converse process is much harder—correcting the catalogue
for these effects requires a number of approximations. It is
likely that the differences between different measurements of
this radio luminosity function (e.g. Mao et al. 2012; Mauch
& Sadler 2007; Padovani et al. 2011) is primarily caused by
these approximations.

An alternative to correcting the data to compare it with
physically realistic models, is to use the theory to simulate the
observations, and then apply the window function to result in
simulated data that can be compared with the original data. Of
course, a particular simulated galaxy will not coincide with
a particular real galaxy, and so it is necessary to compare the
statistical properties of the simulate data to those of the real
data. But this comparison can be done in a parameter space
which is close to that of the real data (e.g. source counts as
a function of flux density in the survey volume), rather than
transforming it to a physically meaningful parameter space
(e.g. source counts as a function of luminosity in an idealised
volume). This may be regarded as a Bayesian process, in that
the theory is being used to predict the data, rather than the
theory being inferred from the data.

In the case of searching for the unexpected, the simula-
tions are being used to encapsulate our current understand-
ing of astrophysics so that they can be compared with the
data, to see if the data is consistent with our current under-
standing. Any significant difference between the two either
represents an error in the data or simulation, or an unexpected
discovery.

This process is shown in Figure 4, and includes the fol-
lowing steps. The starting point is a simulation, such as the
Millennium Simulation (Springel et al. 2005) which encapsu-
lates our knowledge about cosmology and galaxy formation.
From this is generated a simulated sky, using our knowl-
edge of the observed properties of galaxies. Tools such as the
Theoretical Astrophysical Observatory (TAO: Bernyk et al.
2016) are designed to do this. However, TAO does not yet
generate a radio sky, and so a simulated radio sky must be
generated from the TAO sky using a semi-empirical model
of radio sources. The model sky is then converted to a sim-
ulated observed sky using observational constraints such as
sensitivity and resolution. The window function is then ap-
plied including factors such as area of sky observed, and any
varying sensitivity across the observations.
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Figure 4. The flowchart for discovering unexpected phenomena in the EMU
WTF project.

A characteristic distribution is a representation of the ob-
servational or simulated data which represents the data in
some particular parameter space. Well-known examples in-
clude source count plots and angular power spectra, but in
principle almost any observational quantity can be plotted
against any other, and there is no need for these plots to be
confined to two dimensions. To systematically search for un-
expected deviations of theory from data, all combinations of
observational quantities need to be searched by algorithms
which will report significant anomalies to the user.

A simple example of this process, taken from Rees et al.
(in preparation) is shown in Figure 5. Here, the characteristic
distribution is the angular power spectrum for radio sources
in the SPT (South Pole Telescope) field, using the radio ob-
servations described by O’Brien et al. (2016). The simulated
data were based on the Millennium Simulation, from which
a simulated sky of galaxies was generated using the TAO
tool. From this, a radio sky was generated as described by
Rees et al. (in preparation) using semi-empirical assumptions
about the properties of radio sources based on the zFOURGE
survey (Rees et al. 2016). In this case, the observational data
were corrected for the window function, but the correction
could equally well be applied to the simulation data. In this
case, the data are found to be consistent with the simulation.

It is important to note that this process is not intended to
detect outliers, or ‘Type 1’ discoveries, in the data, which
are better handled using the process described in Section 3.
Instead, this process is intended to detect unexpected trends
or correlations in the data: the ‘Type 2’ discoveries.

Figure 5. The angular power spectrum for radio sources in the SPT field,
taken from Rees et al. (in preparation). Points with error bars are the measured
angular power spectrum of the data obtained by O’Brien et al. (2016), and
the blue line shows the distribution predicted by the semi-empirical model
described in the text. The dotted line shows the cosmological signal predicted
by �CDM, and the dashed line show the effect of radio source size and
double radio sources. The solid black line is the sum of these latter two
predictions.

5 PRELIMINARY ATTEMPTS, AND FUTURE
DIRECTIONS

To test the ideas driving this paper, a data challenge was con-
structed on the Amazon Web Services (AWS) cloud platform
(Crawford, Norris, & Polsterer 2016). Initially, we wanted
to see which algorithms and techniques are best at finding
unexpected results, and so we constructed a number of data
challenges in which data sets (both real and simulated, and
both images and tabular data) are constructed with simulated
unexpected discoveries (known as ‘eggs’) buried in them.
We then invited machine-learning groups to try out their al-
gorithms to see if they could find the simulate eggs.

This approach was less successful than expected, for the
following reasons:

• We had underestimated the difficulty of non-
astronomers engaging in this project. Specific dif-
ficulties included file formats, and the need to present
the problem in a way accessible to non-astronomers.

• Lack of personpower: such a project requires dedicated
resources.

• The most important factor was that discovering the un-
expected is harder than expected.

As a result of that experiment, it was clear that a more
systematic approach was needed, resulting in the process
described in this paper. By breaking the problem down into
building blocks, it also makes it a more tractable problem
for a team-based approach. Furthermore, many of the build-
ing blocks are important tools in their own right that are
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necessary to extract even the known–unknowns from EMU
(e.g. classification and cross-identification of radio sources).

Other avenues of research are also likely. For example, it
is likely that in the Search for Extra-terrestrial Intelligence
(SETI), any detected civilisation is likely to be so much more
advanced than ours (Norris 1999) than we might not recog-
nise an intelligent signal. A better strategy may be simply to
look for signals that are different from those that we expect
from known astrophysical processes. In that case, a search
for SETI reduces to searching for the unexpected, and can
use the process proposed here.

6 CONCLUSION

• Most major discoveries in astronomy are unexpected.
• In the past, unexpected discoveries were made serendip-

itously by users pursuing other goals or exploring the
parameter space. However, the complexity of next-
generation instruments, and the large volumes of data
generated, make it unlikely that they will make such
unexpected discoveries. Instead, telescopes must be de-
signed explicitly to maximise their ability to discover the
(potentially more important) unknown science goals.

• The use of science goals when planning a new telescope
are valuable as ‘use cases’ for helping design a good
project, and are also likely to provide much of the in-
cremental science that results from a successful project,
but they are unlikely to represent the most significant
science output from the telescope.

• With the exception of telescopes designed specifically
to answer a particular science question, telescopes that
merely achieve their stated science goals have probably
failed to capture the most important scientific discover-
ies available to them.

• Because of the complexity and large data volumes of
next-generation scientific projects, unexpected discov-
eries are less likely to happen by chance, but will re-
quire software designed to mine the data for unexpected
discoveries.

• Unexpected discoveries may be either Type 1 (unex-
pected objects) or Type 2 (unexpected phenomena), and
it is necessary to design processes to deal with both
types.

• A process has been proposed for finding each of these
types in radio survey data, and it is expected that this
process may be broadly applicable to other types of as-
tronomical survey.
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