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FREE SURFACE WAVES OVER A DEPRESSION

. J .W. CHOI

Steady waves at the free surface of an incompressible fluid passing over a depression
are considered. By studying a KdV equation with negative forcing term, new types
of solutions are discovered numerically and a new cut-off value of the Froude number,
above which unsymmetric solitary-wave-like wave solutions exist, is also found.

1. INTRODUCTION

The purpose of this paper is to study steady surface waves on a two dimensional
incompressible and invisid fluid flow passing over a small depression on a flat bottom. We
assume that the depth H* and the speed c of the fluid flow far upstream are constants
and an upstream Froude number F is denned by F = c/{gH)ll2, Steady solutions of one
layer fluid for a positive obstruction have been studied numerically by Wu and Wu [9],
Forbes and Schwartz [3], Vanden-Broeck [8], Forbes [2], and others and asymptotically
by Cole [1], Shen et al [7], S.P Shen and M.C Shen [6], Gong and Shen [4] and others.
It was found in these papers that there exist a cut-off value of Froude number , F\ > 1,

above which two supercritical stationary solitary-wave-like waves appear and there is a
critical value of Froude number, F-i < 1 at which a hydraulic fall solution connecting an
upstream subcritical flow to a downstream supercritical flow appears. However, up to
now, solutions for a forced Korteweg-de Vries equation with a negative forcing have not
been completely studied [5]. In this paper F is assumed to be near the critical value
1, that is F — 1 +e\ and the same forced Korteweg-de Vires equation derived in [6] is
used as our model equation, but we assume that the obstruction is negative and finite,
and generates a negative forcing in the forced Korteweg-de Vires equation. Two cut-
off values Ai,A2 of the Froude number, where 0 < Ai < A2, are found. Two positive
symmetric solitary-wave-like solutions appear for A > Ai and four positive symmetric
or unsymmetric solitary-wave-like solutions appear for A > A2. At the discrete values
of positive A's, another type of solitary-wave-like solution, which is zero ahead of the
depression and a part of a solitary wave behind the depression, is also discovered. We
also find positive symmetric solutions for discrete values of A < 0 and a negative solitary-
wave-like solution for A > 0.
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Figure 1: Fluid Domain

2. FORMULATION AND NUMERICAL RESULTS

The problem considered here concerns steady two dimensional interfacial waves of a

fluid with constant density passing over a depression with compact support (Figure 1).

The governing equations and boundary conditions are as follows:

(1) u*. + v;. = o,

(2) «•«;. + v*u;.=p*x./P*t

(3) u'v'x. + v*uv;.=p*r/p* - g,

at the free surface y* = rf(x*),

(4) u'ri **• -v* = 0, p* = 0,

at the rigid lower boundary y* = h*(x"),

(5) v' - u'h'x. = 0,

where (u*, v*) are velocities, p* is the constant density of the fluid, g is the gravitational

acceleration constant, and h*(x*) = —H*+b'(x*), where H* is the constant depth of the

fluid at equilibrium state, and b*(x*) stands for the obstruction with finite support on

the rigid bottom.

We define the following nondimensional variables:

e = {H*/L)l'\ r, = e-y/tf*. x = ̂ V / i T , y = y'/H*,p = p*/gH*p*,

-1/2(V,e-1v*), h(x) = h*(x)/H*, b(x) = b(x){H*E2)-1 ,
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where L is the horizontal length scale.

In the term of the above nondimensional variables and by assumimg that u, v,p and

77 possess an asymptotic expansion of the form

with Uo = 1, Vo = 0, po = — y + 1, and the upstream Froude number F — C/(gH*)1^2

= 1 + eA, a system of differential equations and boundary conditions for successive ap-
proximations are obtained according to the order of e. Then, by solving the resulting
equation with the assumption 77(-oo) = ?7iI(—00) = 0, we can derive the following forced
Korteweg-de Vires equation (7),

(6) - - 7 7 1 X H - 3 7 7 X 7 7 H + 2A7?la; = bx.

Integrating(6) from -00 t o i yields

(7) VixX = -^r1
2 + 6Xrll-3b{x).

When b(x) = 0 and A > 0, equation (7) can be solved directly and two solutions which
vanish as x tends to ±00 are given as follows:

(8) r?! = 2Asech2((6A)1/2(x - 6)/2),

(9) 77! = -2Acosech2((6A)1/2(x - j)/2),

where 5 and 7 are phase shifts. Equation (8) is the well-known solitary wave solution.
Equation (9) is unbounded and has a singularity at 7. In what follows we shall call (9)
an unbounded solitary wave solution.

Next we shall find a periodic solution of (7) without forcing. Assume 6(2;) = 0 and
77x and T7ix are given at some pointa; — x0. Let 771(0:0) = oe and 77iI(xo) = ft. Multiplying
Vix to (7) with b(x) = 0 and integrating the resulting equation from XQ to x > XQ, we
have

(10) ( m x ) 2 - - 3 r 7 ? + 6A772 + d = 7(770,

where d = 01 + 3a3 - 6Aa2. Let Ci, c2 and c3 be three roots of /(%). If all ci, c2 and c3

are real and assume ci < c2 < c3 then (10) has the following periodic solution,

(11) 7?! = c2 + (c3 - c2)Sn2 (y$M{x - 6), k),

where k2 = (c3 - C2)/(c3 — C\), M2 = (c3 — Ci)/4,5 is a phase shift and Sn is the Jacobian
Elliptic Function. As c2 f c3, (11) tends to a constant solution 771 = c2 and as c\ t c2,

(11) tends to the following non-periodic solution,

(12) 771 = c2 + (cs - c2)sech2((3(c3 - c2))1 / 2(z - 6)12).
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Here 6 is also a phase shift. In particular, if c2 = 0 so that d = 0 in (10), then (12)

becomes (8). If two c^'s, i = 1,2, 3 are not real, the solution of (10) diverges.

In the following we shall assume b(x) has a compact support [-1,1] and consider two

cases, A > 0 and A < 0.

C A S E 1. Supercritical Case A > 0.

Since rji(—oo) = 0 is assumed, only two types of solutions, % = 0 and either

bounded or unbounded solitary wave solutions, can appear for £ < — 1. We assume

b(x) = —(1 — a;2)1/2 for \x\ ^ 1 and b(x) = 0 for \x\ ^ 1 for the numerical solutions for

(7) to follow. We consider the case of rji = 0 for x ^ — 1 and the case of solitary waves

and unbonded waves for x < — 1 separately.

1. Solitary waves for x < — 1.

We first construct positive solitary-wave-like solution numerically. Let

(13)

for x

(14)

—1, and

= 2Asech2((6A)1/2(x-(52)/2),

for x ^ 1, where <Si and <52 are phase shifts. To find a solution in \x\ < 1, we use a shooting

method and the phase shifts Si and S2 are determined by (13) and (14) for x < — 1 and

x ^ 1 respectively.

Negative solitary-wave-like solutions are numerically constructed by a similar method

for the case of positive solitary-wave-like solution. We use a shooting method for (15)

Figure 2: The relation between A and 771 (-1),
Ai=0.55192, A2=3.16415. 1. Positive symmetric
solitary-wave-like solution. 2. Postive unsym-
metric solitary-wave-like solution. 3. Negative
solitary-wave-like solution.

Figure 3: Typical solitary-wave-like solutions,
A=4. 1. and 2. Unsymmetric positive solitary-
wave-like solution. 3. and 4. Symmetric positive
solitary-wave-like solution. 5. Symmetric negative
solitary-wave-like solution.
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and (16) as follows:

(15)

(16)

T?! = -2Acosech2((6A)1/2(x - 7 l ) / 2 ) , for x ^ - 1 ,

77! = -2Acosech2((6A)1/2(z - 72)/2), for x > - 1 ,

where ji, i = 1,2 are also phase shifts.

The numerical results are given in Figures 2 and 3. The relation between A and
r}\{—1) for solitary-wave-like solutions is given in Figure 2. Two critical points P\{X\,i}\)

and P2(A2, rfc) a r e given in Figure 2. For A > Ai, two positive symmetric solitary-wave-like
solutions appear and, for A > A2, two positive unsymmetric solitary-wave-like solutions
appear. We note that the rj\x(P$) corresponding to a positive symmetric solitary-wave-
like solution is positive and the A > Ai, TJ\X{P^) corresponding to a positive unsymmetric
solitary-wave-like solution is negative. Hence, two positive symmetric solitary-wave-like
solutions and two positive unsymmetric solitary-wave-like solutions appear at A = A3. A
negative symmetric solitary-wave-like solution appears for any positive value of A. We
also note that negative symmetric solitary-wave-like solution and the cut-off point for the
appearance of positive unsymmetric solitary-wave-like solutions do not occur if b(x) is of
the positive semicircular form [7]. Figure 3 shows two positive symmetric solitary-wave-
like solutions, two unsymmetirc solitary-wave-like solutions, and one negative symmetric
solitary-wave-like solution when A — 4. since we have derived the possible solutions of
(7) in [l,co) for any value of 771(1) and r; lx(l), we can solve (7) by Runge-Kutta Method
using (13) for (—00, —1]. We present a typical periodic wave solution of this case in
Figure 4.

(2) 771 = 0 for x ^ - 1 .

We assume 771 = 0 for x < - 1 and solve (7) numerically. The numerical results
are given in Figures 5 to 7. Figure 5 shows a typical periodic wave and Figures 5 and
7 show the two unsymmetric solitary-wave-like solutions for critical values of A's. The
solutions 771 in Figure 6 and Figure 7 are 0 for x ^ — 1 and determined by (8) for x > 1.

Figure 4: Typical periodic wave solution, A=4, Figure 5: Typical periodic wave solution, T)\ =0 for
r/,(-l) = l. z s $ - l , A=17.
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Figure 6: Unsymmetric solitary-wave-like solution,
r)i=0 for x ^ - 1 , A=16.961718125

Figure 7: Unsymmetric solitary-wave-like solu-
tion, T?I=0 for x sC - 1 , A=17.2243026835

For 0 < A < 16.9617 and A > 17.2243,only unbounded solutions appear and periodic
solutions appear for 16.9617 < A < 17.2243. We note that the two unsymmetric solitary-
wave-like solutions are the limiting cases of the periodic solutions.
CASE 2. Subcritical Case A < 0.

In this caes, only rji = 0 can appear for x < - 1 since we assumed 771 (—00) — 0. We
solve (7) by Runge-Kutta Method again. The numerical results of this case are given
in Figure 8 to 11. In Figure 8, we present a hydraulic fall solution which is a limiting
solution of periodic solutions. This solution appears at A = -0.79169272 = Xs and the
solution diverges for A > X3. We show a typical periodic solution in Figure 9. As A
decreases, symmetric one hump solution appears as another type a limiting solution of
periodic solutions and is shown in Figure 10. Multi-hump solutions take place for discrete
value of A's. We present a symmetric two humps solution in Figure 11.

Figure 8: Hydrauric fall solution, 771 =0 for x
A = -0.79169267.

— 1, Figure 9: Typical periodic wave solution, 7/1 =0 for
x s S - 1 , A = - l .
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Figure 10: Symmetric wave solution with one Figure 11: Symmetric wave solution with one
hump, 7}!(-l)=0 for x ^ - 1 , A = -2.14430583. humps, t j^- l^O for x sj - 1 , A = -6.1258501.
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