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Abstract. A procedure is outlined for estimating the influence of large-scale convective eddies on the wave 
patterns of five-minute oscillations of high degree. The method is applied to adiabatic oscillations, with 
frequency w and wave number k, of a plane-parallel polytropic layer upon which is imposed a low-amplitude 
convective flow. The distortion to the k- co relation has two constituents: one depends on the horizontal 
component of the convective velocity and has a sign which depends on the sign of to/k; the other depends 
on temperature fluctuations and is independent of the sign of w/k. The magnitude of the distortion is just 
at the limit of present observational sensitivity. Thus there is reasonable hope that it will be possible to reveal 
some aspects of the large-scale flow in the solar convection zone. 

1. Introduction 

The structure of the waves that produce the five-minute oscillations of the Sun depend 
principally on the mean vertical stratification of temperature. That stratification deter
mines a fairly well defined sequence of relations between the frequency and the horizontal 
wave number of the oscillations. This has been exhibited for the real Sun in power 
spectra of Doppler measurements (e.g., Deubner et al, 1979), and compared with theory 
to determine the adiabat in the isentropic part of the convection zone (e.g., Berthomieu 
et al, 1980; Lubow et al, 1980). However, these relations are not perfectly maintained: 
frequency is not precisely determined because the modes do not persist indefinitely, and 
the wave patterns are distorted by rotation and the inhomogeneities associated with 
convection. It is the purpose of this paper to report a preliminary theoretical assessment 
of the magnitude of the distortions, with a view to the eventual measurement of the 
velocity and temperature fluctuations in the convection zone. In an accompanying paper 
(Hill etal, 1983) observational evidence for such distortions is presented. 

We restrict our attention to modes of high degree. In that case the oscillations are 
trapped in a shallow wave guide just beneath the photosphere: the base of the trapping 
region is at a depth of about nllR, where n and / are the order and degree of the mode 
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and R is the radius of the Sun. Because the wave guide is shallow we may neglect the 
curvature of the Sun and consider the dynamics of a plane atmosphere under a constant 
gravitational acceleration g. Moreover, we may associate with the mode a constant 
horizontal wave number km IR~1. 

The solar envelope is considered to be in a state of convection. Convective fluctuations 
in the thermodynamic properties of the envelope are regarded as being small compared 
with the corresponding horizontally averaged values, so that linearization about the 
mean state is valid. Furthermore, we consider the influence on the waves of only the 
largest scales of convective motion — the giant cells, perhaps - so that the temporal and 
horizontal spatial variations of the convective flow can be ignored compared with those 
of the waves. Essentially we are retaining just the leading terms in a JWKB expansion 
in time and horizontal Cartesian co-ordinates. Thus, we compute locally the pertur
bation to the dispersion relation between the frequency a> and the horizontal wave 
number k. 

We impose no restriction on the vertical scale of variation. Convection has a tendency 
to form thin horizontal boundary layers, and we wish to allow for the possibility that 
these may be no thicker than the vertical scale of the waves. Thus we have in mind, for 
example, the problem of determining whether there are shear layers in the giant cells, 
such as have been found theoretically by Latour etal. (1983) with the single-mode 
representation of convection. 

2. Perturbations to the Dispersion Relation 

We first ignore the large-scale convective motion. The stratification of the envelope can 
then be specified by any two thermodynamic state variables, which are functions of just 
the vertical co-ordinate z. Here we choose the adiabatic sound speed c(z) and the 
adiabatic exponent y(z) = (dlnp/d\n p)s, where p and p are pressure and density and 
the derivative is taken at constant specific entropy .y. Any linear normal mode of 
oscillation can be represented as a superposition of waves with the same horizontal 
wave number k. We assume the wave motion to be adiabatic. A wave variable %, say, 
associated with such a wave can then be written in the separated form 

Z(x, 0 = Re [X(z)e'kx + iU}'] (2.1) 

with respect to suitably orientated Cartesian co-ordinates x = (x,y, z) and time t; the 
frequency cois real (which, without loss of generality, we take to be positive) and depends 
on | A: | and the structure of the unperturbed atmosphere. It may be written 

f(n,\k\;c2,y)dz. (2.2) 

Note that ca is independent of the horizontal direction of propagation of the wave. 
The effect of the rotation of the Sun is simply to translate the wave pattern horizontally. 

We assume that this has been accounted for, and concentrate on the convective eddies. 
These influence the wave via a combination of advection and a modification to the 
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function / resulting from variations in c2 and y. We ignore the influence of the vertical 
component of the convective velocity, for in the high wave number limit considered here 
we expect it to be much smaller than the other contributions to the distortion of the wave 
pattern. 

It is evident that only the x component of the velocity of advection of the wave pattern 
represented by (2.1) has any significance. Let this velocity be U. Then the frequency co 
is simply augmented by kU. Clearly, if the horizontal component of the convective 
velocity is independent of z throughout the region within which the wave is trapped, 
U is simply the x component of that velocity. If the convective velocity varies with z, 
then once again U depends only on its x component U(z); it is simply an average of U 
weighted with the kinetic energy density of the wave (cf. Gough, 1978): 

U= B(z)U(z)dz, (2.3) 

where 

B i z ^ ^ " - , (2.4) 

pu • u dz 

and is independent of the sign of k; u(z) is the velocity amplitude of the wave and p is 
the density of the unperturbed envelope. The integrals are presumed to be taken over 
the entire extent of the envelope. Since horizontal density variations induced by the 
convection are presumed to be small, p may be replaced by the horizontally averaged 
density p, which is a function of z alone. 

The changes to the dispersion relation arising from the slow horizontal variation in 
the thermodynamic state of the gas can be obtained simply by expanding c2 and y about 
their horizontally averaged values. Setting 

c2(x, t) = c\z) + bc2(x, t), 

y(x, t) = y(z) + by(x, t), 

one obtains formally for the linearized change bco2 in co2: 

bco2 ,2 V ?>c2 ^ , f . V Sy c2—7 = dz+ \yf -± dz, (2.6) 
be c J by y 

where bf/bc2 and bf/by are the variational derivatives of / with respect to c2 and y. 
The results can be combined to yield an expression for the total local variation Aco 

in the frequency co of the component of the wave pattern whose local horizontal wave 
number is k. This may be written in the form 

be2 f by 
f = d l n z + G^ d lnz . (2.7) 

c2 J y 

Aco 

CO 

k 

CO ^ 

zBU dlnz + 
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An explicit expression for the kernel F, in the case when y is constant, is derived in the 
Appendix. 

Notice that since f is independent of the sign of k, so are F and G. Thus the second 
and third terms on the right-hand side of Equation (2.7) are independent of the wave 
direction, whereas the first term has opposite signs for waves propagating in the positive 
and negative x directions. Hence, if local dispersion relations can be measured for waves 
propagating in opposite directions, the contributions to their variations induced by 
large-scale convection can be partially separated by computing sums and differences of 
those variations. 

3. A Simple Illustration 

We illustrate the result by considering an envelope of infinite depth whose horizontally 
averaged structure is that of a polytrope of index m. In addition we take y to be constant. 

In a polytropic model the square of the sound speed increases linearly with depth: 

m + 1 

where z is measured downwards from the top of the envelope. Adiabatic p modes of 
order n have a dispersion relation given by 

m + 1 I 

(e.g. Gough, 1978). They are trapped in a region that extends roughly to the depth z, 
at which co2 = k2c2, namely where c2 is such that pure plane acoustic waves of frequency 
co and horizontal wave number k, if they could exist, would travel horizontally. They 
are also evanescent near the surface, very roughly at depths less than zc at which a is 
equal to Lamb's acoustical cutoff frequency yg/2c for an isothermal atmosphere. The 
depths zc and z, are essentially the turning points of a JWKB analysis, though they do 
not correspond precisely unless the variables are chosen judiciously. 

It is evident from Equations (3.1) and (3.2) that zt is insensitive to the structure of 
the envelope, and approaches nk~' as n increases. On the other hand, zc is roughly 
inversely proportional to the gradient of the sound speed, and also to n. 

The velocity amplitude of the /mode is proportional to e"'*'2, and the frequency is 

(g W/2. 
Kernels B and F are illustrated in Figures 1 and 2 for the / mode and the first five 

p modes. In this simple example, the kernels G are zero. As one might expect, the depths 
of the main contributions to the kernels increase with n, since z, increases with n. The 
velocity kernels are, of course, positive everywhere. For p modes the kernels F are 
positive throughout most of the region, as one would expect because increasing c2 tends 
to decrease the acoustical propagation time across the wave guide, thus increasing the 

(« + \m)2 -
m + 1 m + 1 1/2 

(3.2) 
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resonant frequency. That is not so in the evanescent region at the top of the layer, 
however, because there an increase in c2 results in a decrease in the acoustical cutoff 
frequency. This increases the extent of the region within which the waves can propagate, 
and so increases the sound travel time across the trapping region. No such reversal in 
the sign of F occurs at the bottom of the trapping region, since zt is intensitive to c2. 
The kernel F is identically zero for the / modes, because the frequencies of/ modes in 
a plane parallel atmosphere are independent of stratification. 

To model a possible giant cell, velocity and temperature fluctuations were obtained 
from a steady two-dimensional convective flow of a fluid with y = §. The flow was 
computed by N. Hurlburt using the numerical programme described by Graham (1975). 
The Rayleigh number was 106 and the Prandtl number was unity, and the mean 
polytropic index characterizing the horizontally averaged density stratification was 
about 1.2. The convecting region extended over about 3.6 density scale heights. 
Amplitudes of the vertical component of velocity and the temperature fluctuation, W 
and bT, were estimated by taking at each value of z half the difference between the values 
of velocity and temperature at the two sides of the cell, where the velocity was constrained 
to be vertical. The horizontal velocity amplitude U was taken to be the horizontal 
component of velocity on the vertical line midway between the sides. These functions 
were used to represent the giant-cell flow in the bottom 3.6 scale heights of the convection 
zone. The relative temperature fluctuation bT/Twas used without modification and the 
velocity was scaled by a constant factor, chosen to make the maximum value of the rms 
vertical component equal to 5 0 m s " 1 ; this is roughly consistent with mixing-length 
estimates at the height at which the maximum occurs. Beneath the convection zone, 
which is assumed to be 200 Mm deep, convective fluctuations were presumed to vanish; 
above the region modelled by Hurlbert's solution the temperature fluctuation and the 
vertical velocity were set to zero, and the horizontal velocity was assumed to be constant 
and continuous with the flow beneath. The resultjs illustrated in Figure 3. 

The contributions from U and bT/T = bc2/c2 to the frequency deviation were 
computed from the appropriate terms in Equation (2.7), using the kernels depicted in 

7 \ p
 P 

/ \ A 3 p' 

- I 2 - 0 . 8 -O.i 0 0.4 0.8 1.2 1.6 

l o g , 0 ( I k l z ) 

Fig. 1. Kernels w~ 'kzB for a polytrope of index m = 1.2 with y = J, measured in units of (k/g)x/2. 
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Fig. 2. Kernels F for a polytrope of index m = 1.2 with y = f. 
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3. Horizontal and vertical components (U, W) of velocity and relative temperature fluctuation bT/T 
associated with the assumed large-scale convective flow. 
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4. Relative frequency perturbations for k > 0 produced by the horizontal component of velocity 

illustrated in Figure 3. The perturbations for -k have the same magnitude, but opposite sign. 
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Figures 1 and 2. The results are shown in Figures 4 and 5. Notice that the contribution 
from the temperature fluctuation is such that it should be detectable by modern 
observations, for the half-widths of the bands in the power spectrum of Deubner et al. 
(1979) are only of order one per cent. The velocity contribution is also large enough to 
be interesting, especially since the modal computations of Latour et al. (1983) suggest 
that we may have underestimated the speed of the horizontal flow. 

0.03 

6 " 0.02 

0.01 

0 
0 02 0.4 0.6 0.8 1.0 1.2 1.4 

|k| (Mm- 1 ) 

Fig. 5. Relative frequency perturbations produced by the temperature fluctuation illustrated in Figure 3. 
The perturbation is independent of the sign oik. 

The forms of the frequency changes are also noteworthy. The modes are confined to 
a layer whose depth is about nk~\ and only in that layer do they experience the mean 
structure of the envelope. Thus at high k the velocity contribution to Aco/co is simply 
that of advection by the surface value of U. But as k decreases a more extensive average 
of U is taken. Since U decreases monotonically with depth, Aw decreases with 
diminishing k, and at the lowest values of k (not shown in Figure 4) the frequency 
perturbations change sign. The relative temperature fluctuation, on the other hand, has 
a maximum at a depth of about 25 Mm, and its contribution to Aw is greatest when k 
is such that the main weight of the kernel occurs also at this depth. 

We have not attempted to estimate from these results how an actual power spectrum 
would be affected. It is evident that if the horizontal scale of giant cells is comparable 
with the region of the solar disk over which the observations are made, the convective 
fluctuations would both broaden and distort the bands of power. The distortions would 
vary with time as the cells are caused to drift across the field of view by the rotation 
of the Sun. Moreover, the different contributions to the distortion will be out of phase, 
the temperature contribution being a maximum roughly when the velocity contribution 
is zero. There is evidence for such behaviour in the observations of Hill et al. (1982), 
though the data are not sufficiently free from noise for us to be sure that they have been 
interpreted correctly. 
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4. Conclusion 

Large-scale subphotospheric convective motion in the Sun is likely to be of a magnitude 
just sufficient to be detected by present observations of five-minute oscillations of high 
degree. The form of the distortion to the k - co power spectra depends on the structure 
of the flow in the convective eddy. With longer more and precise observations it should 
be possible to measure some aspects of that flow. 
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Appendix: F: the c2 Kernel 

We restrict attention to constant y, and start from Lamb's (1932) form of the equation 
describing adiabatic waves in a plane parallel atmosphere: 

dz 

CO gk2 

CO 

dz 

dine 2 

dz 
• (7 -1 ) - X=0, (Al) 

where X(z) is the (real) amplitude of % = divu, as in Equation (2.1), and z is measured 
downwards. We shall assume that c2 = 0 at z = 0, and choose solutions X that are 
regular at z = 0 and that tend to zero as z -> oo. 

The equation may be cast into self-adjoint form by multiplying it by the factor c2\j/, 
where 

z 

\p = exp yg c-2(s)ds (A2) 

and Z is any positive constant. Multiplying by X and integrating then yields 

<24X2i/>dz = 0 , (A3) a> X2ijjdz-co2 c2(X'2 + k2X2)i]jdz-

0 
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where 

Q4 = gk2 'dc2 

dz 
( y - % (A4) 

and a prime denotes differentiation with respect to the argument. The equation provides 
a variational principle for the problem: the stationary values of co2(X) denned by 
Equation (A3) amongst all functions X that satisfy the boundary conditions are the 
eigenvalues of Equation (Al), and occur when X is an eigenfunction. 

It is now a simple matter to compute from Equation (A3) the linearized change bca2 

in u>2 that occurs when c2 is changed to c2 + be2. In view of the stationary property of 
(A3), variations in X that arise from perturbing the equilibrium state do not affect a>2 

to leading order, and therefore need not be calculated. The linearized perturbation to 
Equation (A3) is thus 

yg [(co4 - Q4)X2 - o)2c2(X'2 + k2X2)]<j/dz c-4(s)bc2(s) ds 

-co2 (X'2 + k2X2)4ibc2 dz + gk2 (X2il/)'bc2 dz - Ibao2 = 0 , (A5) 

0 0 

where 

/ = [c2(X'2 + k2X2)- 2eo2X2]ipdz. (A6) 

After interchanging the order of integration in the double integral, and taking the limit 
Z-> oo, Equation (A5) may be rewritten 

CO 
F — d In z, 

c2 
(A7) 

where 

F = 2z(a i i ygc [(co4 - Q4)X2 - (o2c2(X'2 + k2X2)]ij/ds 

[co2c2(X'2 + k2X2) - gk2(ygX + 2c2X')X]^ (A8) 

In the case of the polytrope of index m, c2 is given by Equation (3.1), i/ns proportional 
to z m + 1 , Q4 = g2k2(m + 1 - my)/(m + 1), co2 is given by Equation (3.2) and 
X = e~^zLl™ + 2)(2\k\z), where L is a Laguerre polynominal. 
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