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ON THE INTEGERS REPRESENTED BY x* - y4

ANDRZEJ DABROWSKI

Let p be a prime number ^ 5, and n a positive integer > 1. This note is concerned
with the diophantine equation x4 — y4 = nzp. We prove that, under certain conditions
on n, this equation has no non-trivial solution in Z if p ^ C(n), where C(n) is an
effective constant.

1. INTRODUCTION

By the work of Hellegouarch, Frey, Serre, Ribet, Wiles, Taylor and many others,
we can reduce the study of a class of ternary diophantine equations (generalised Fermat
equations) to modern techniques coming from Galois representations and modular forms.
In all known cases, the proofs follow a variant of the method of Frey curves and Ribet's
level-lowering theorem.

Let n be a positive integer > 1, and p an odd prime, gcd(n,p) = 1. Let wj(n) be the
exact power of / dividing n, and let a — V2(n). Consider the equation

(1) x*-y* = Tuf, gcd(x,y) = l.

Let N = 24r'(n), where r'(n) denotes the product of odd prime divisors of n. Let g

denote the dimension of the C-vector space of newforms of weight 2 with respect to the
congruence subgroup T0(N). Let n(N) be the index of T0(N) in SL(2, Z). Put

Darmon [1] showed that, for a prime number p > 11, the equation x4 — yi = zp has
no non-trivial solution if p = I(mod4) or z is even. We combine the methods of Darmon
[1] and Kraus [4] to prove the following general result.
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THEOREM 1.

(i) Let a ^ 1, and let p be a prime ^ 5. Then the equation

(2) z 4 -2 / 4 = 2<V, gcd(z,y) = l

has no non-trivial solution in integers.

(ii) Let a ^ 1 and iet p be a prime > max (F(iV), 3). Assume that p \ n and
«j(n) < p for any prime I. Assume that there is no elliptic curve over Q of
conductor N, with all its 2-division points defined over Q. Then (1) has
no non-trivial solution in integers.

(iii) Let a = 0 and Jet p be a prime > max(F(JV),F(2./V),3). Assume that
p\n and vi(n) < p for any prime I. Assume that there is no elliptic curve
over Q of conductor N, with all its 2-division points defined over Q. Then
(1) has no non-trivial solution in integers.

Let E be an elliptic curve over Q, of conductor 2kq, q an odd prime. If E has all
its 2-division points defined over Q, then q is a Fermat or a Mersenne prime ([3], or [4,
Lemma 6]). Using the arguments in ([4, p. 1162)), we obtain

COROLLARY 1 . Let q be an odd prime, not of the type 2m ± 1, satisfying
p > (y/8q + 8+l)2*~2. Let a > 0, /3 > 0 be integers. Then the equation x4 - y 4 = 2aq0zp

has no non-trivial solution in integers.

2. PROOF OF THEOREM l

Let a4 — 64 = nc? be a solution to equation (1). Let

(3) E : y2 = x3 + 4a6x2 - (a2 - 62)2i

denote the corresponding Prey curve (compare [lj). We have

c4 = 24 [24a262 + 3(a2 - 62)2], c, = - 2 7 [ 2 W + 32(a2 - b2)2],

and A = 26n2(a2 - b2)2^". Let Ag and NE denote the minimal discriminant and con-
ductor of E, respectively.

LEMMA 1.

(i) If a = 0 and c is odd, then AE = 26n2(a2 - ft2)2^" and NE = 2V(nc).

(ii) If a ^ 1 or c is even, then AE = 2~6n2(a2 - i?)2c2p and NE = 24r'(nc).

PROOF: (i) In this case a model (3) is global minimal. The curve has multiplicative
reduction at any odd prime r dividing Ag, since tvfo) = 0. On the other hand,
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v2(c4) = 4, v2(ce) - 7 and v2(AE) = 6, hence using [8], Table IV, we obtain v2(N) = 5.
(ii) In this case, the model

(4) y2 = x3 + abx2 - 2" V - b2)2x.

is global minimal. Here we have v2(d) — 4, v2{c§) = 6 and V2(AE) ^ 12, hence using
again [8, Table IV], we obtain v2(N) = 4 . D

Let

p : Gal(Q/Q) -> Aut(£[p]) ^ GL2(FP)

be the Galois representation associated to the p-division points of E.

LEMMA 2 . Assume p ^ 5. Then p is absolutely irreducible.

PROOF: E has all its 2-division points defined over Q, hence the result follows from
[6, Theorem 3] (If p is reducible, then we are in case (iii) with p ^ 3.); see also [7,
Theorem 1.3]. D

Let N(p) denote the Artin conductor of p, as defined in [10].

LEMMA 3 . Letp be an odd prime, gcd(n,p) = 1. We have N(p) — 2hr'(n), where
k = 5 if a = 0 or c is odd, and k = 4 if a ^ l o r e is even.

P R O O F : E has additive reduction at 2, hence v2(N(p)) = V2(NB) (see [5]). Now use
Lemma 1, and the properties of N(p) ([10, p. 191]). D

Elliptic curves E defined by (3) are semistable at 3 and 5, hence modular due to the
work of Wiles [11] and Diamond [2]. Applying the "lowering the level" result of Ribet [9]
we conclude that p arises from a cuspidal newform of weight 2 and level 2*r'(n).

COMPLETION OF THE PROOF OF THEOREM 1. (i) The space of cuspidal newforms of
weight 2 with respect to Fo(16) is empty, hence the assertion follows. Proofs of (ii) and
(iii) follow the same line as the proof of [4, Theorem 1]. We omit the details. D
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