Bull. Austral. Math. Soc. Vol. 76 (2007) [133-136]

ON THE INTEGERS REPRESENTED BY $x^4 - y^4$

Andrzej Dąbrowski

Let p be a prime number ≥ 5 , and n a positive integer > 1. This note is concerned with the diophantine equation $x^4 - y^4 = nz^p$. We prove that, under certain conditions on n, this equation has no non-trivial solution in \mathbf{Z} if $p \ge C(n)$, where C(n) is an effective constant.

1. INTRODUCTION

By the work of Hellegouarch, Frey, Serre, Ribet, Wiles, Taylor and many others, we can reduce the study of a class of ternary diophantine equations (generalised Fermat equations) to modern techniques coming from Galois representations and modular forms. In all known cases, the proofs follow a variant of the method of Frey curves and Ribet's level-lowering theorem.

Let n be a positive integer > 1, and p an odd prime, gcd(n, p) = 1. Let $v_l(n)$ be the exact power of l dividing n, and let $\alpha = v_2(n)$. Consider the equation

(1)
$$x^4 - y^4 = nz^p, \quad \gcd(x, y) = 1.$$

Let $N = 2^4 r'(n)$, where r'(n) denotes the product of odd prime divisors of n. Let $g_0^+(N)$ denote the dimension of the C-vector space of newforms of weight 2 with respect to the congruence subgroup $\Gamma_0(N)$. Let $\mu(N)$ be the index of $\Gamma_0(N)$ in $SL(2, \mathbb{Z})$. Put

$$F(N) := \left(\sqrt{\frac{\mu(N)}{6}} + 1\right)^{2g_0^+(N)}$$

Darmon [1] showed that, for a prime number $p \ge 11$, the equation $x^4 - y^4 = z^p$ has no non-trivial solution if $p \equiv 1 \pmod{4}$ or z is even. We combine the methods of Darmon [1] and Kraus [4] to prove the following general result.

Received 11th December, 2006

The article was written during my visit to the Max-Planck-Institut für Mathematik in Bonn in September-December 2006. I would like to thank the Institute for the hospitality and support.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

THEOREM 1.

(i) Let $\alpha \ge 1$, and let p be a prime ≥ 5 . Then the equation

(2)
$$x^4 - y^4 = 2^{\alpha} z^p, \quad \gcd(x, y) = 1$$

has no non-trivial solution in integers.

- (ii) Let $\alpha \ge 1$ and let p be a prime $> \max(F(N), 3)$. Assume that $p \nmid n$ and $v_l(n) < p$ for any prime l. Assume that there is no elliptic curve over Q of conductor N, with all its 2-division points defined over Q. Then (1) has no non-trivial solution in integers.
- (iii) Let $\alpha = 0$ and let p be a prime > max(F(N), F(2N), 3). Assume that $p \nmid n$ and $v_l(n) < p$ for any prime l. Assume that there is no elliptic curve over **Q** of conductor N, with all its 2-division points defined over **Q**. Then (1) has no non-trivial solution in integers.

Let E be an elliptic curve over \mathbf{Q} , of conductor $2^k q$, q an odd prime. If E has all its 2-division points defined over \mathbf{Q} , then q is a Fermat or a Mersenne prime ([3], or [4, Lemma 6]). Using the arguments in ([4, p. 1162]), we obtain

COROLLARY 1. Let q be an odd prime, not of the type $2^m \pm 1$, satisfying $p > (\sqrt{8q+8}+1)^{2q-2}$. Let $\alpha \ge 0$, $\beta > 0$ be integers. Then the equation $x^4 - y^4 = 2^{\alpha}q^{\beta}z^p$ has no non-trivial solution in integers.

2. PROOF OF THEOREM 1

Let $a^4 - b^4 = nc^p$ be a solution to equation (1). Let

(3)
$$E: y^2 = x^3 + 4abx^2 - (a^2 - b^2)^2 x$$

denote the corresponding Frey curve (compare [1]). We have

$$c_4 = 2^4 \left[2^4 a^2 b^2 + 3(a^2 - b^2)^2 \right], c_6 = -2^7 \left[2^5 a^2 b^2 + 3^2 (a^2 - b^2)^2 \right],$$

and $\Delta = 2^6 n^2 (a^2 - b^2)^2 c^{2p}$. Let Δ_E and N_E denote the minimal discriminant and conductor of E, respectively.

LEMMA 1.

(i) If
$$\alpha = 0$$
 and c is odd, then $\Delta_E = 2^6 n^2 (a^2 - b^2)^2 c^{2p}$ and $N_E = 2^5 r'(nc)$.

(ii) If $\alpha \ge 1$ or c is even, then $\Delta_E = 2^{-6}n^2(a^2 - b^2)^2c^{2p}$ and $N_E = 2^4r'(nc)$.

PROOF: (i) In this case a model (3) is global minimal. The curve has multiplicative reduction at any odd prime r dividing Δ_E , since $v_r(c_4) = 0$. On the other hand,

 $v_2(c_4) = 4$, $v_2(c_6) = 7$ and $v_2(\Delta_E) = 6$, hence using [8], Table IV, we obtain $v_2(N) = 5$. (ii) In this case, the model

(4)
$$y^2 = x^3 + abx^2 - 2^{-4}(a^2 - b^2)^2 x.$$

is global minimal. Here we have $v_2(c_4) = 4$, $v_2(c_6) = 6$ and $v_2(\Delta_E) \ge 12$, hence using again [8, Table IV], we obtain $v_2(N) = 4$.

Let

$$\rho: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(E[p]) \simeq GL_2(\mathbf{F}_p)$$

be the Galois representation associated to the p-division points of E.

LEMMA 2. Assume $p \ge 5$. Then ρ is absolutely irreducible.

PROOF: E has all its 2-division points defined over \mathbf{Q} , hence the result follows from [6, Theorem 3] (If ρ is reducible, then we are in case (iii) with $p \leq 3$.); see also [7, Theorem 1.3].

Let $N(\rho)$ denote the Artin conductor of ρ , as defined in [10].

LEMMA 3. Let p be an odd prime, gcd(n, p) = 1. We have $N(\rho) = 2^k r'(n)$, where k = 5 if $\alpha = 0$ or c is odd, and k = 4 if $\alpha \ge 1$ or c is even.

PROOF: E has additive reduction at 2, hence $v_2(N(\rho)) = v_2(N_E)$ (see [5]). Now use Lemma 1, and the properties of $N(\rho)$ ([10, p. 191]).

Elliptic curves E defined by (3) are semistable at 3 and 5, hence modular due to the work of Wiles [11] and Diamond [2]. Applying the "lowering the level" result of Ribet [9] we conclude that ρ arises from a cuspidal newform of weight 2 and level $2^k r'(n)$.

COMPLETION OF THE PROOF OF THEOREM 1. (i) The space of cuspidal newforms of weight 2 with respect to $\Gamma_0(16)$ is empty, hence the assertion follows. Proofs of (ii) and (iii) follow the same line as the proof of [4, Theorem 1]. We omit the details.

References

- [1] H. Darmon, 'The equation $x^4 y^4 = z^{p}$ ', C. R. Math. Rep. Acad. Sci. Canada 15 (1993), 286-290.
- [2] F. Diamond, 'On deformation rings and Hecke rings', Ann. of Math. 144 (1996), 137-166.
- [3] W. Ivorra, 'Courbes elliptiques sur \mathbf{Q} , ayant un point d'ordre 2 rationnel sur \mathbf{Q} , de conducteur $2^{N}p$ ', *Dissertationes Math.* 429 (2004), 55pp.
- [4] A. Kraus, 'Majorations effectives pour l'équation de Fermat généralisée', Canad. J. Math. 49 (1997), 1139-1161.
- [5] A. Kraus, 'Détermination du poids et du conducteur associé aux représentations des points de p-torsion d'une courbe elliptique', Dissertationes Math. 364 (1997), 39pp.
- [6] B. Mazur, 'Rational isogenies of prime degree', Invent. Math. 44 (1978), 129-162.
- [7] L. Merel, 'Arithmetic of elliptic curves and diophantine equations', J. Théor. Nombres Bordeaux 11 (1999), 173-200.

A. Dąbrowski

- [8] I. Papadopoulos, 'Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3', J. Number Theory 44 (1993), 119-152.
- K. Ribet, 'On modular representations of Gal(Q/Q) arising from modular forms', Invent. Math. 100 (1990), 431-476.
- J.-P. Serre, 'Sur les représentations modulaires de degré 2 de Gal(Q/Q)', Duke Math. J. 54 (1987), 179-230.
- [11] A. Wiles, 'Modular elliptic curves and Fermat's Last Theorem', Ann. of Math. 141 (1995), 443-551.

Institute of Mathematics University of Szczecin ul. Wielkpolska 15 70-451 Szczecin Poland e-mail: dabrowski@sus.univ.szczecin.pl