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EXISTENCE OF SOLUTIONS OF EXTREMAL PROBLEMS
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An essentially bounded function on the unit circle gives a continuous linear functional on the Hardy space Hl.
In this paper we study when there exists at least one function which attains its norm. We apply the results to
an interpolation problem, Hankel operators and a characterization of exposed points of the closed unit ball
ofH1.

1980 Mathematics subject classification: Primary 30 D 55, 47 B 35; Secondary 46 J 15.

1. Introduction

Let Hp be the usual Hardy spaces on the unit circle T for p^. 1. If 06L0 0, we denote
by T0 the functional defined on H1 by

W ) = 1 f(eie)<t>(eie)d0/2n.

Let S^, be the set of functions in H1 which satisfy T^(/) = | | T j and | | / | | i ^ l . We define
p(0) to be the set of all complex numbers s for which S^_s is nonempty. If <j>eC, then
7^_s is weak-* continuous on H1 for any s e £ and hence S^_, is nonempty, that is,
p(<f>) = £ where C denotes the space of continuous functions on the unit circle and £ is
the set of all complex numbers. S^ can be empty for some (j> e L°° and hence p(<f>) # <p.
Many mathematicians have studied the structure of S^ when S^ is nonempty (see [1],
[2, Chapter 8], [3, Chapter IV], [4], [9] and [10]). Rogosinski and Shapiro, and
Caughran gave the examples of (j> with 0 4 p(<t>) (see [2, Chapter 8]). However p(<f>) has
not been studied systematically. In this paper we describe p(<p) in general and apply our
results to concrete <t>.

In Section 2, we show that p(tf>) = £ if ||0 + Hoo|M||^-|-Hoo-|-C||. In Section 3, we
prove that p(<i>)z>iP\E(<l>) where £(<£) = {/(O):| |0-/ | |o o = ||(£ + #o o | |} . In Section 4, using
a well known theorem of Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5. 3])
it is shown that p(<p) a £\£(<£)° if p ( # ) # £ . In Section 5, £(<£) is described, in fact, it is a
closed disc. For special </>, an explicit description is given. In Sections 6 and 7 we
consider p(<j>) in case <f> is a quotient of two inner functions. In Section 8 we give
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100 T. NAKAZI

applications to a minimal interpolation problems, Hankel operators and a characteriza-
tion of exposed points of ball (H1), the closed unit ball of H1.

We denote the maximal ideal space of L°° by X and the Gelfand transform of the
function <f> in L™ by $. Then L00 is isometrically isomorphic to the algebra C{X) of all
continuous functions on X, that is, L°° s I " = C(X). Hence (L00)* s M(X), where M(X)
is the set of all complex regular Borel measures on X. For each $ e C(X), if we assign
the number \iK<})(e>e)d0l2n to it then there exists a probability measure m on X such
that $*.n(f>d0/2n = $x$dm for all </>. Let M' be the set of all complex singular measures
with respect to m, then M(X) = Ll(m)®Ms. L1 is canonically embedded into the bidual
(L00)* and Ll^L\m). If we set

= 0 forall

then ^s(ztf<x>)1n(L0O)* = (La7ztf0O)*=(H1)**. By the F. and M. Riesz theorem for
H°° (cf. [5, p. 186], JV = jfnLi(m)®jer\Ms. H1 is canonically embedded into the
bidual (H1)** and H^J^n L\m).

If 0eL°°, we denote b y \ ^ the functional defined on &P by

The norm of ^ is | | ^ | | = sup {|^,(v)|: v e ^ } and let 5% denote the set of all v e y for
which ^(v) = | |^ | | , where Sf is a unit ball of JK Set ^ ^ - S ^ n L ^ m ) and P^
then ^ J S S ^ . Since ^^(L^/zH0 0)*, ^ , is not empty and | | r j = || || ||

Lemma 1. If 4> e Lx, then

max {|^(v)|: v e V n M°} = ||^ + / / " + C\\

Proof. If v e y n Ms then the v annihilates C by the F. and M. Riesz theorem for
H00 (cf. [5, p. 186]) and so sup|^(v) | = ||0 + H" + C||. If vneSnM2 and |^,(vn)|-»
sup|^(v)| as n-K», there exists v^eS? such that ^ ( V o J ^ s u p l ^ v ) ! and vnj—•v̂ , in
the weak-* topology of ^ where {vaj} is a subsequence of {vn}. Since vnj annihilates C,
Va, annihilates C, too, and so v ^ e i ^ n AfJ.

Proposition 1. Let ^eL™. 77zen

(1) ^ , is nonempty;
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SOLUTIONS OF EXTREMAL PROBLEMS IN H1 101

(2) ^ =
(3) S$ =

Proof. (1) was proved already. (2) It is clear that ^ 2 {ySf%+(1 - y)9"J. If v e 5^, we
can write v = kdm + vs for keJf nL^wi) and v'eJFnM* and then logjifcleL^m). For
tf = tf c\L\ni)®3ec\M* and JtT nL^mj^H1. We can show that #v = |v| a.e. |v| for the
extremal kernel ty of <j). Hence $/c = |fc| a.e. m and $v* = |v*| a.e. |v*|. Since keJV <-\L\m)
and / e i ' n A f , fc/Hfellx belongs to ^ and v7||vs|| belongs to Sf\ and ||fc||i + |M| = ||v|| =
1. Thus v e { ^ + ( 1 - 7 ) ^ : 0 ^ 7 ^ 1 } .

(3) By (1), <f% is empty if and only if ^ = Sf%. This and Lemma 1 imply (3).

It is interesting to find the condition on 4> which implies that 5^ = y*^. For S^ = Sf\ if
and only if y j is empty, by Proposition 1. The following is the first result about p(4>).

Proposition 2. Let (t>eLm. Then the following (1) and (2) are valid:

(1) / / ||0 + zHco||£||<£ + flco + C|| then p(<f>)sO.
(2) / / ||0 + Hoo||^||0 + Hco + C|| then

Proof. (1) is clear by (3) of Proposition 1 because ^ S ^ . (2) For any
| | | | | | | | || and hence (1) implies that sep(4>).

Proposition 2 is well known and it implies that if </>eH°° + C then p(<j>) = (p (see [1]).

3.

Recall that p(<p) and £(0) were defined in the Introduction.

Lemma 2. If<j>£ L00, then for any feHx and any

Proof. Saij)+f = Sa<t>+f(0), and when a / 0 , sep(a<£+/(0)) if and only if (s-/(0))/
aep{<t>). This implies the lemma.

Theorem 3. Let $eL°°. Then the following (l)-(3) are valid.

(1)
(2)
(3) //£(<£) is a sing/e poim s then p(̂ >) = ̂ \{s} or p(<f>) = (£.

Proof. (1) If |s|^|J<M0/27i| + ||4> + tft1| then
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and hence by (1) of Proposition 2 Oep(<j> —s). Thus

and hence

p(</> - J <M0/2TT) 3 {5 6 £: |s| > ||0 + tf 11}

because \(<}>—\4>ddl2n)dQI2n = 0. Now Lemma 2 implies (1).
(2) If se£\£(<£) then there exists geH00 such that | | 0 - s + zH°°|| = ||</>-s + zg||oo and

By (1) of Proposition 2, sep(^) and hence p(<£) => <E\E((j)). (3) is clear by (2).

(2) of Theorem 3 is essential in this paper. The following theorem, which is its
corollary, is a little surprising. For if p(</>)#£ then for any sep(4>), S0_s consists of one
element.

Theorem 4. If <j>eL'° and S0 contains at least two functions then p(</>) = £.

Proof. Since 0ep(<£), by (3) of Theorem 3, it is sufficient to show that E(<p) is a
single point 0. Suppose /eH°° and ||0 + /||OO = ||0 + HOD||. We will show that if
ll^ + zH^I^II^H^ then / = 0 a.e.. By hypothesis and Theorem 9 in [1], S^szh for some
heH1. Therefore | |Tj = | |7;J and hence ||0 + z/fo°|| = ||0 + J/oo||. Since S^szh, Sz4> is
nonempty and hence there exists a unique geH™ such that

and hence g=0 a.e.. Now ||z</) + z/||oo = ||z0 + z//oo|| and hence / = 0 a.e.. If
^H l̂loo t n e n by Theorem 8.1 in [2] there exists i/'eL00 such that

l^ + ztf^HMU and 4> =

for some nonzero fceH00. By Lemma 2, E(i]/) = E(<f>) and hence from what was shown
above E((f>) = {0} follows.

The following lemma due to P. Koosis (cf. [3, Chapter IV, Lemma 5.4]) will be used
several times in this paper.

Lemma 3. / / ^ e L " with \(f>\ = l a.e. and there is fceH00, fc^O, such that U^-fcl^g 1,
then there exists an outer function geH1, \\g\\i = 1, such that <t>=g/\g\ a.e..
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Corollary 1. Let <i>eLw. Then the following (l)-(4) are valid.

(1) IfQ + H™ is an extreme point of the ball (La>/Hco) then p(tf>) = £\{0} or p{4>) = $.

(2) If $ is an inner function then p(<f>) = 1£.

(3) If(f> = 2xF-l andO<dO(F)<2n then p(tf>) = £\{0}.

(4) If(j> = \f\/ffor some nonzero feH1 with f'^H1 then p(</>) = £.

Proof. (1) By Exercise 17 in [3, Chapter IV], if <£ + H°° is an extreme point then
||0 + / | U > 1 for all /etf0 0 with / # 0 . Hence £(<£) = {0}. (3) of Theorem 3 implies (1).
(2) If $ is a finite Blaschke product then by (2) of Theorem 2 p(<j>) = C. If <f> is not so
then S^ contains at least two functions (see Lemma 2 in [10]) and hence by Theorem 4
p{<j>) = <p. (3) follows immediately from Example in [7, p. 198]. (4) By Lemma 3 if there
exists a nonzero geH^ such that ||<£+g||oo^l then there exists a nonzero heH1 and
<f> = h/\h\. Therefore hf is nonnegative and hence constant because H1 / 2 does not contain
nonconstant nonnegative functions (cf. [3, Chapter II, Exercise 13]). This contradicts the
fact that Z"14H1 and hence £(<£) = {0}. (3) of Theorem 3 implies p((f>) = <£ because S^ is
nonempty.

In Section 3 we showed that if £(<£) is a single point and p(<j>) # <fc then p(<f>) =
We can ask whether or not this is true for arbitrary £($). However we can show that if
p (0 )#C then p(<t>)<=<E\E(4>)° where £(<£)° denotes the interior of £(0).

For any nonzero heH1, define QheHco by

For any $ e L°°, put

The following Lemma 4 is Exercise 18 in [3, Chapter IV] which is essentially due to
Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5.3]).

Lemma 4. Let # = /i/|/i| for some nonzero heH1. h is an exposed point of the ball (H1)
if and only if

and

Lemma 5. If(j> = h/\h\ and h is an exposed point of the ball (H1) then

https://doi.org/10.1017/S0013091500005034 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005034


104 T. NAKAZI

The proof is clear.

Theorem 5. Let QeL^.lf p(<f>) # £ then p{<f>) <=z <P\E(<f>)°.

Proof. We can assume that £(0) has a nonempty interior. Moreover we may assume
Il^ + H 0 0 ^ ! . If seE{<t>)°np(<f>) then by [1, p. 479] there exist feH1 with ||_/-||a = l and
keHco such that

If k is a nonzero function or s#0 then by Lemma 3, f'1 belongs to H1. If k=0 a.e. and
s = 0 then (j> = \f\/f. If f~l$Hl, this contradicts the hypothesis by (4) of Corollary 1 and
hence f~l belongs to H1. Then /"VH/"1!! is an exposed point of ball (H1) (see [9,
Proposition 5]) and hence by Lemma 5

because | = 1. But

and hence £(|/ | / /) contains 0 as an interior because seE((j>)0. This contradiction implies
that E(<p)°np((l>) = 0.

5. Description of E(cp)

In the previous sections, we showed that

Therefore it will be useful to describe £($). These are corollaries of a powerful result of
Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5.3]).

Let i/ieL"1 and 0£H°°. If E{<f>) is not a single point there exists a unique outer
function FeH1 with F/\F\e<t>la + H'x', H F ^ l and

= 1Re f T̂ T d9/2n = sup JRe f ($• - k] dO/2n:
\F\ I \a )

where a = | (see [3, Chapter IV, Theorem 5.3]).
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Proposition 6. Let 0eL°° with (f>^Ha> and a = ||<£ + //°°||. //£(</>) is not a single point
then for the F defined above

where

In particular E(<t>) is a closed disc.

Proof. Since \\<j>/a + H'°\\ = l, £(tf>/a) = K ^ O ) . By Theorem 5.3 in [3, Chapter IV],

Hence

This implies the proposition.
We will concentrate on unimodular functions, that is, 0eL°° and |0| = l a.e.. Then we

can describe E(<j>) more exactly than Proposition 6.

Lemma 6. Let # = / / | / | for some nonzero feH1. Then

Proof. By Lemma 5.5 in [3, Chapter IV],

I H U - 1 a n d

For the reverse inclusion, if \\<t> — fcH^^l, set oc = arg$fc and \l/ = es~ia; then ij/keH1 and

<t>=g/\g\ and g ^

(see [3, Chapter IV, Lemma 5.4]). This implies geS$ and by the proof of Theorem 5.3
in [3, Chapter IV],
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for some we//00.

Proposition 7. Let </>eL°° awd |</>| = 1 a.e..

(1) If <f> is not of the form <j> = f/\f\ for some nonzero feH1, then £(</>) = {0}.

(2) If(t> = f/\f\ for some nonzero feH1 with \\f\\i = 1, then

| = 1 then

and hence £(</>) is not a single point.

Proof. (1) From Lemma 3, £(<£) = {0} obviously follows. (2) Evaluate K^ in Lemma
6 at z = 0; then it contains E(<f>) and if ||(/> + //°°|| = l then it coincides with E(<j>). This
implies (2).

6. p{4>) for special symbols <p

Let q be an inner function and k be in //°°. In this section for a special ^eL 0 0 such
that <l> = qk we will study p(<f>).

Propositions. Let q be an inner function and fee//00. If <j) = qk, ||7^|| = a > 0 and
Oep(<f>) then there exists an inner function q0 such that qk — aqq0 is in zW*. Then aqq0 is
an extremal kernel, that is, \\<xqqo + z//°°|| = a. In particular, p(qk) = ap(qk).

Proof. I f / eS^ then / e S 0 / a and ||T^/a|| = 1. Hence there exists a function ge//°° such
that qk/a + zg=\f\/f. Let qo = k/a + zqg; then q0 is an inner function and txqqo = qk + zag.
This implies the proposition.

For each function / in H1, sing / denotes the set of the unit circle on which /
cannot be analytically extended. Let q and q0 be inner functions. q0 is called the
maximum multiplier of a nonzero function h in H2QqzH2 if q0heH2QqzH2 and
qJietfQqzH2 for some inner function q1 implies that qoq1eH°°. Since qh~ is in H2, q0

can be obtained as the inner part of qE.

Theorem 9. Let q and q0 be inner functions, and suppose ((> = qqo-
(1) 0ep(<j>) and (f> is an extremal kernel if and only if there exists a nonzero function f

in H2QzqH2 such that qof is in H2.
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(2) / / q0 is not the maximum multiplier of a nonzero function f in H2QzqHz but

(3) J /0ep(#) and 4> is an extremal function then sing q=> sing qo.
(4) If (sing q) n {T\sing q0} is nonempty then p(0) = £\{O} or p(0) = £.
(5) Let (sing q) n (sing q0) be empty. If q0 is a finite Blaschke product then p(tf>) = £

and if q0 is not so then p(<f>) = <P\{0}.

Proof. (1) If feH2QqzH2 and f = qoh for some heH2 then qq0h~eH2. Hence
qqo\h\2eHl and this implies that 0ep(</>) and </• is an extremal kernel. Conversely if
Oep(<j>) and <p is an extremal kernel then there exists an outer function h such that
zqqoh = zH. Hence qoh is orthogonal to zqH2. f = qoh is a desired function.

(2) If q0feH2 but q0 is not the maximum multiplier then there exists an inner
function qt such that q^ofeH2. By (1) qqQqx is the extremal kernel and S9qoqi is
nonempty. Hence S^ has at least two functions. For S<j)^q1Sqqoqi because S^ contains
always an outer function. By Theorem 4 p(<t>) = £.

(3) By (1) there exists a nonzero function feH2QqzH2 and f = qoh for some heH2.
It is known that sing / c s i n g q. By Lemma 4 in [7] sing gocsing q.

(4) If there exists a nonzero function keH'" such that \\<p — fcH^^l, by Lemma 3 there
exists a nonzero function feH1 such that qqo = \f\/f Hence (3) implies that sing
qo=>sing q, and this contradiction implies that fc=0 a.e. and so E(<f>) = {0}. By (3) of
Theorem 3, p(<t>) = £\{0} or p(<£) = £.

(5) If q is a finite Blaschke product then by (2) of Theorem 2 p(<t>) = <£. Suppose q is
not a finite Blaschke product. If q0 is a finite Blaschke product then S9szqoh for some
heH1 by Theorem 9 in [1] and hence S^ contains at least two functions. Thus by
Theorem 4 p(4>) = <fc. If <j0 is not a finite Blaschke product then by the hypothesis
E((f>) = {0} and 0£p(<£). £(0) = {O} by the same reason as in (4), and 0£ p(<f>) follows
from (3) because <f> is an extremal kernel by the proof of (4). Thus by (3) of Theorem 3,

By (3)-(5) of Theorem 9 we are interested in the case sing q = sing q0.

Corollary 2. Put q = Y[j=i Qj where qi is a non-constant inner function for each j . If

where |a , |< 1 for each j and m^n, then Oep((j>) and <j> is an extremal kernel. If m<n then

Proof.

f[(qj-aj)eH2ezqH2
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because

m n m

9 FI (<?j- - «;) = El ^ F K
7=1 j = m+l 7=1

^ l\(qj-aj)
7 = 1 7=1

belongs to H2 and hence by (1) of Theorem 9, 0ep(<£) and <p is an extremal kernel. Put

m m

7 = 1

then, by what was shown just now, Oep(0o) and (f>0 is an extremal kernel. If m<n then
^=(nn7=m+i 97)0o and hence S<, contains {y(«m + 1-a)(l-agm + 1)/} where y is a
positive constant, feS^ and a is any complex number with |a |^ l . By Theorem 4

Corollary 3. Let q and qt /JC nonconstant inner functions with qqj^eH00. Suppose
{zj}"=l is a sequence in the unit disc such that qi(zj) = a for some complex number a with
|a| < 1. Here n may be infinite or finite. If

, _ A \zj\ z-zj

7=1 ZJ 1-ZjZ

then 0ep(</>) and <f> is an extremal kernel. If q is not a scalar multiple of qv then p(<p) = <p.

Proof. There exists an inner function q2 such that

f f t f i f
l - a? i 7=1 ZJ 1~ZJ

By Corollary 2 there exists a function / in H1 such that

- " -I/I
l-aqi f

and so

-frlfzl _£=«*-J
jVi Zj- l-zjz q2f
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Thus Oep(<t>) and 4> is an extremal kernel. As in the proof of Corollary 2 we show
) = <P if q is not a scalar multiple of qy.

Corollary 4. Let q be an inner function, 0o(z) = £ j = o a / z - / ana< <t> = <Po(4)-
(1) Ifn = l then p{<f>) = ([:.
(2) If n=\, a o #0 and o^/O then S^0={(l-dz)2/||(l-az)2||i} /or a nonzero a with
| g l . Howcuer S0 docs not coincide with {(l-ag)2/||(l-ag)2||i} «/ <?(0)#0 or

(3) For any n

(4) For any n, i

Proof. (1) follows from (2) of Corollary 1. (2) It is known that, if <xo#O and
then al = —aa and

(<xo + 0Llq)aq^
l—aq

but if

4(0) # 0, ao« + a t - a ̂ - ^ zH
l—aq

Hence

(3) follows from (1) of Theorem 3. (4) By (2) of Theorem 2, S^o is nonempty. Since there
is feezf/00 such that <f>0 = za+ik, by Proposition 8 there exists a finite Blaschke product b
of degree at least n+ 1 such that ^0 = azn+1i> is the extremal kernel of (j>0. Put <p = il>0(q)
and 4> = <po{

<l)'> t n e n "A is the extremal kernel of </> because q(0) = 0. By Corollary 2,

7. Interpolation Blaschke product

Let {zn} be a sequence of distinct points in the open unit disc. Put
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Let b be a Blaschke product with zeros {zn}. We call b an interpolation Blaschke
product when infpn > 0, that is, {zn} is a uniformly separated sequence.

Proposition 10. Let b be a Blaschke product with zeros {zn} which is the union of a
finite number of uniformly separated sequences and let fee//00. Suppose (j> = Ek and
Pn1^)-*® as n-+°o. Then

Proof. By Lemma 3 in [11], BkeHx + C and hence by (2) of Theorem 2, p(<f>) =

Theorem 11. Let b be an interpolation Blaschke product with zeros {z(} and b0 a
Blaschke product with zeros {a}}. Put cj> = 5b0. Then Oep((f>) and cp is an extremal kernel
if and only if an infinite matrix {1/1 — zt0j}jj=1 has a nontrivial kernel in £2.

Proof. Since {z,} is a uniformly separated sequence, {1/1—ZJZ}^! is an uncon-
ditional basis in H2QbzH2 (see [6]). If an infinite matrix {1/1—z,a,}"J=1 has a
nontrivial kernel, then for some {c^eS2

Put /(z)=Y?= i cf( 1/1 -z-z); then feH2QbzH2 because {1/1-z.z},^! is an uncon-
ditional basis in H2QbzH2. Now /(a,)=0 for ; = 1,2,... Hence E0feH2. By (1) of
Theorem 9, 0ep((p) and <p is an extremal kernel. Conversely if 0ep(<£) and </> is an
extremal kernel then by (1) of Theorem 9, there exists feH2QbzH2 such that E0feH2.
Since {l/l—ziz}^L1 is an unconditional basis in H2QbzH2,

OO J

/ = Z c ' l — ~ a n d {c,}e<!f2. Then
i = l *•— ziz

E c,.-^=0 .7 = 1,2,....

This proves the theorem.

8. Applications

Let {zn} be a Blaschke sequence and let a bounded sequence {wB} be given. If we can
find an / in H00 such that f{zn) = wn we may assume that ||/||oo is minimal. Such an /
need not be unique, but K. 0yma gave a sufficient condition for uniqueness. Let {zB} be
a uniformly separated sequence in the unit disc and assume wn->0. Then there exist a
unique / in Z/00 of minimal norm such that f(zn) = wn for all n [12, Theorem 2]. The
author [11] gave a sufficient condition for uniqueness in the case of the union of a finite
number of uniformly separated sequence {zn}, that contains the result of K. 0yma. The
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following theorem gives a solution on this problem in the case of a Blaschke sequence

Theorem 12. Let {zn: n=0,1,2,...} be a Blaschke sequence with z o =0 and
{s,wl,w2,...} a bounded sequence. Let b be a Blaschke product with zeros {z1,z1,...}.
Suppose there exists a function f in H™ such that /(0) = 0 and f(Zj) = Wj for ;=1 ,2 , . . . / /
p(b~f)s — sb(0)~l then there exists a unique g in //°° of minimal norm such that g(0) = s
and g{zj) = Wj for j= 1,2,.... This function is a complex constant times an inner function
and has analytic continuation across T\{zn}.

Proof. If p(Bf)3 — sfc(O)"1 then Ssf+sb(o)-< is nonempty and hence there exists a
unique function fcetf00 such that ||&/ + sfc(0)"1+zH1IO|| = ||&/+sft(0)-1+zfe||ao. This
implies that there is a unique function k such that | | / + sfc(0)~1b + zfcH°°|| = | | /+
sHOr'b + zbkW^. Let g=f + sb(O)-1b + zbk; then g(0) = s and g(zj) = f(zj) for7 = 1,2,...,
and it is of minimal norm.

In the theorem above, if p(5f) = <£ then {s,wlw2,...} for any s has always a unique
minimal interpolating function. Proposition 10 shows that if b is a Blaschke product
whose zeros is the union of a finite number of uniformly separated sequence {zn} and if
P . - 7 ( z . H 0 then p(£/) = £

Let P be the orthogonal projection from L2 onto H2 and <p a fixed function in L°°.
The Hankel operator with symbol <p is the operator H^ from H2 to (H2)L is defined by
H<t,f=(l — P){(pf), feH2. Now we will study when H0 has an accessible norm, that is,
| | i/J|2 is an eigenvalue of H^H^. Put y((f>) = {se(£: HQ-S1 has an accessible norm}.

Theorem 13. For any (peL™,

y(<p) = p{z<p).

Proof. For any fezH1, zfeH1 and jf(<p-sz)de/2n=jzf(z<p-s)d9/2n. Since
I K | | | | | |

Several characterizations of exposed points of the ball (H1) are known (cf. [10,
Theorem 3], [4, Theorem 8]). Now we will give two more characterizations of such
functions. Recall that Klt> = {keH'x':\\<p-k\\aa^l} for (peL™ (see Section 5).

Proposition 14. Let <p = f/\f\ for some nonzero feH1 with 11/1^ = 1. Then f is an
exposed point of the ball (H1) if and only if the interior of K^O) does not contain 0.

Proof. Lemma 5 implies the part of "only if. Conversely, if / is not an exposed
point then by Lemma 6

By Theorem 5.2 in [3, Chapter IV], {g(0):geS$} contains a disc centred at the origin
and the interior of K^O) contains 0.
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Theorem 15. Let <t> = fl\f\ for some nonzero feH1 with | | / | | i = l. Suppose || ||
= 1 and p(<£)#£. / is an exposed point of the ball (Hl) if and only if the boundary of
p{<f>) contains 0.

Proof. Since ||<£ + H°°|| = 1, by (2) of Proposition 7

Hence E(<p) is not a single point, and by Theorems 3 and 5,

because p(<p) # £. The result of the theorem now follows.
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