COMPACT ACTIONS ON C*-ALGEBRAS

by CHARLES A. AKEMANN† and STEVE WRIGHT

(Received 23 April, 1979)

1. Introduction. In Section 33 of [2], Bonsall and Duncan define an element t of a Banach algebra \mathcal{A} to act compactly on \mathcal{A} if the map $a \to tat$ is a compact operator on \mathcal{A} . In this paper, the arguments and technique of [1] are used to study this question for C*-algebras (see also [10]). We determine the elements b of a C*-algebra \mathcal{A} for which the maps $a \to ba$, $a \to ab$, $a \to ab + ba$, $a \to bab$ are compact (respectively weakly compact), determine the C*-algebras which are compact in the sense of Definition 9, of [2, p. 177] and give a characterization of the *-automorphisms of \mathcal{A} which are weakly compact perturbations of the identity.

We introduce the notation which will be used in the sequel. If H is a Hilbert space, B(H) and K(H) denote respectively the W*-algebra of all bounded operators on H and the C*-algebra of all compact operators on H. A C*-algebra $\mathscr A$ is said to act atomically on a Hilbert space H if there exists an orthogonal family $\{P_{\alpha}\}$ of projections in B(H), each commuting with $\mathscr A$, such that $\bigoplus_{\alpha} P_{\alpha}$ is the identity operator on H, $\mathscr AP_{\alpha}$, acts irreducibly on $P_{\alpha}(H)$, and $\mathscr AP_{\alpha}$ is not unitarily equivalent to $\mathscr AP_{\beta}$ for $\alpha \neq \beta$.

If $\{\mathscr{A}_{\lambda} : \lambda \in \Lambda\}$ is a family of C*-algebras, the C*-direct sum $\bigoplus_{\lambda} \mathscr{A}_{\lambda}$ of the \mathscr{A}_{λ} 's is the C*-algebra of all functions $f(\lambda) \in \mathscr{A}_{\lambda}$, $\lambda \in \Lambda$, with

$$||f|| = \sup{||f(\lambda)|| : \lambda \in \Lambda} < \infty,$$

equipped with pointwise operations. The restricted C^* -direct sum $\bigoplus_{\lambda} \mathscr{A}_{\lambda}$ is the C^* -subalgebra of $\bigoplus_{\lambda} \mathscr{A}_{\lambda}$ consisting of all functions f with $\{\lambda : ||f(\lambda)|| \ge \varepsilon\}$ finite for all $\varepsilon > 0$.

A projection p of a C^* -algebra $\mathscr A$ is said to be finite-dimensional if $p\mathscr Ap$ is finite-dimensional. A C^* -algebra is said to be of elementary type if it is isomorphic to K(H) for some Hilbert space H.

By an ideal of a C*-algebra, we will always mean a uniformly closed, two-sided ideal.

- **2. The results.** We begin with several propositions that determine the operators which act compactly (respectively weak compactly) on B(H). Throughout, H always denotes a (complex) Hilbert space.
- 2.1. PROPOSITION. Let $\Phi: B(H) \to B(H)$ be a bounded linear map which is continuous in the ultraweak operator topology, and maps K(H) into K(H). Then $\varphi = (\varphi|_{K(H)})^{**}$, and φ is weakly compact if and only if $\varphi(B(H)) \subseteq K(H)$.

† This author was partially supported by NSF grant MCS78-01870

Glasgow Math. J. 21 (1980) 143-149.

Proof. Note first that $(\varphi|_{K(H)})^{**}: B(H) \to B(H)$ is ultraweakly continuous and agrees with the ultraweakly continuous map φ on the ultraweakly dense set $K(H) \subseteq B(H)$, whence $\varphi = (\varphi|_{K(H)})^{**}$.

Now assume φ is weakly compact. Then $(\varphi|_{K(H)})^{**} = \varphi$ is weakly compact, whence $\varphi|_{K(H)}$ is weakly compact (Theorem 8, [4, p. 485] whence $\varphi(B(H)) \subseteq$ norm-closure of $\varphi(K(H)) \subseteq K(H)$ (Theorem 2, [4, p. 482].

Conversely, assume that $\varphi(B(H)) \subseteq K(H)$. Let $K(H)_1$ and $B(H)_1$ denote the closed unit balls of K(H) and B(H), respectively. It follows by ultraweak compactness of $B(H)_1$ and ultraweak continuity of φ that the weak closure of $\varphi(K(H)_1)$ is $\varphi(B(H)_1)$, and this set is $\sigma(K(H)^{**}, K(H)^*)$ -compact. Thus, since $\varphi(B(H)_1) \subseteq K(H)$, and the $\sigma(K(H)^{**}, K(H)^*)$ -topology when restricted to K(H) is the weak topology on K(H), we conclude that the weak closure of $\varphi(K(H)_1)$ is weakly compact.

Q.E.D.

2.2 Proposition. Let b be a nonzero element of B(H) such that any one of the maps

$$a \rightarrow ab$$
, $a \rightarrow ba$, $a \rightarrow ab + ba$, $(a \in B(H))$

is compact (respectively weakly compact). Then dim $H < \infty$ (respectively $b \in K(H)$).

Proof. The "compact" statement is immediate from [11], the "weakly compact" statement is immediate from Proposition 2.1.

2.3. Proposition. If $b, c \in B(H)$ are both nonzero, then the map $a \rightarrow bac$ is weakly compact if and only if either b or c is in K(H), and it is compact if and only if both b and c are in K(H).

Proof. Assume $b, c \notin K(H)$. Then by Corollary 5.10 of [3], the ranges of b and c contain closed, infinite-dimensional subspaces. Hence there exists an $a \in B(H)$ which maps a closed, infinite-dimensional subspace of the range of c onto a subspace M of H for which b(M) contains a closed, infinite-dimensional subspace. Thus the range of bac contains a closed, infinite-dimensional subspace, and so by [3], Corollary 5.10, $bac \notin K(H)$. Thus by Proposition 2.1 $a \rightarrow bac$ is not weakly compact.

Suppose $b \in K(H)$. Then $bac \in K(H)$ for $a \in B(H)$, so that by Proposition 2.1 $a \rightarrow bac$ is weakly compact.

The statement about compact $a \rightarrow bac$ is a special case of Theorem 3, p. 174 and Corollary 5, p. 175 of [2]. The proof is complete.

2.4. Lemma. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of Banach spaces with compact (respectively weakly compact) maps $\varphi_n: X_n \to X_n$ of uniformly bounded norm. Then $\bigoplus_n \varphi_n: \bigoplus_n X_n \to \bigoplus_n X_n$ is compact (respectively weakly compact) if and only if $\lim_n \|\varphi_n\| = 0$. $(\bigoplus_n X_n]$ denotes the l_{∞} -direct sum of $\{X_n\}$.)

Proof. We need only verify the weakly compact case, the compact case being an immediate corollary. Suppose with no loss of generality that $\sup_{n} \|\varphi_{n}\| = 1$. Assume the lemma is false. Since the compression of a weakly compact map to a subspace by a

continuous projection onto that subspace is weakly compact, we may thus find an $x = (x_n) \in \bigoplus_n X_n$ of norm 1 and a $\delta > 0$ such that $\|\varphi_n(x_n)\| > \delta$ for all n. Let $M = \bigoplus_n X_n$. Since $\varphi(x) \notin M$, there is an $f \in X^*$ such that $f(\varphi(x)) = 1$ and f vanishes on M.

Define a sequence $\{y_k = (y_n^{(k)})\} \subseteq \bigoplus X_n$ by

$$y_n^{(k)} = \begin{cases} 0, (n < k), \\ x_n, (n \ge k). \end{cases}$$

Let S denote the l_1 -direct sum of $\{X_n^*\}$. With S actong on $X = \bigoplus X_n$ in the natural way, we have $S \subseteq X^*$, and since $\{\|\varphi_n\|\}$ is uniformly bounded, $\varphi(y_k) \to 0$ in the $\sigma(X, S)$ -topology. Since the $\sigma(X, S)$ -topology is Hausdorff and weaker than the weak topology on X, we conclude by weak compactness of φ that $\varphi(y_k) \to 0$ weakly, after perhaps passing to a subsequence and reindexing. But $\varphi(y_k) - \varphi(x) \in M$, for all k, and so by the choice of f, $f(\varphi(y_k)) = f(\varphi(x)) = 1$ for all k, a contradiction. QED

The next result determines the elements of a C*-algebra which act compactly (respectively weak compactly).

2.5. THEOREM. Let b be a nonzero element of a C*-algebra A. Any one of the maps

$$a \rightarrow ab, \quad a \rightarrow ba, \quad a \rightarrow ab + ba, \quad (a \in \mathcal{A})$$
 (1)

is compact if and only if there exists an orthogonal sequence $\{p_n\}$ of minimal, finite-dimensional, central projections of $\mathcal A$ with $b \in \widehat{\oplus} \mathcal A p_n$.

Any one of the maps (1) is weakly compact if and only if there exists a sequence $\{I_n\}$ of orthogonal ideals of $\mathcal A$ such that each I_n is of elementary type and $b \in \hat{\oplus} I_n$.

Proof. We may pass to the reduced atomic representation of $\mathscr{A}([6, p. 35])$ and may hence assume with no loss of generality that \mathscr{A} acts atomically on a Hilbert space $H = \bigoplus_{\alpha} H_{\alpha}$. Let \mathscr{A}^- denote the closure of \mathscr{A} in the weak operator topology. We have $\mathscr{A}^- = \bigoplus_{\alpha} B(H_{\alpha})$ by Corollary 4 of [5]. Let q_{α} = the projection of H onto H_{α} .

Assume, for instance, that $a \to ab + ba$ is weakly compact. Arguing as in the proof of Theorem 3.3 of [1], we deduce that $a \to ab + ba$ is weakly compact on \mathscr{A}^- and $\{xb + bx : x \in \mathscr{A}^-\} \subseteq \mathscr{A}$. If $b = \bigoplus_{\alpha} b_{\alpha} \in \bigoplus_{\alpha} B(H_{\alpha})$, it follows by the proof of Lemma 3.2 of [1] and the fact that the norm of $a \to ab + ba$ is 2 ||b|| that all but a countable number of the b_{α} 's, say $b_{\alpha_n} = b_n$, are zero, and $\lim_n ||b_n|| = 0$ by Lemma 2.4. By Proposition 2.2, $b_n \in K(H_{\alpha_n}) = K_n$, and so $\mathscr{A} \cap K_n$ is a nonzero ideal of $\mathscr{A}q_{\alpha_n} \supseteq K_n$, hence a nonzero ideal of K_n . Thus $K_n \subseteq \mathscr{A}$. We conclude that $b = \bigoplus_n b_n \in \bigoplus_n K_n$, and the desired result follows.

If $b=\bigoplus_n b_n\in \bigoplus_n I_n$ with I_n an ideal of elementary type, by Corollary 4, [4, p. 483], it suffices to show that $a\to ab_n+b_na$, $a\in \mathcal{A}$, is weakly compact for each n. Suppressing the n's, we may assume with no loss of generality that $b\in I$ is nonnegative. By Proposition 2.3, $a\to ab^{1/2}$ and $a\to b^{1/2}a$ are both weakly compact on I, and so $a\to ab+ba=(ab^{1/2})b^{1/2}+b^{1/2}(b^{1/2}a)$ is weakly compact on \mathcal{A} since $b^{1/2}a$ and $ab^{1/2}$ are in I for all $a\in \mathcal{A}$. Similar arguments prove the other statements, and so the proof is complete.

In [2] (Definition 9, p. 177), Bonsall and Duncan call a Banach algebra \mathcal{A} compact if for each $b \in \mathcal{A}$, the map $a \to bab$ is compact. They show that the Banach algebra of compact operators on a Banach space is compact (Theorem 3(i), [2, p. 177]). Proposition 2.3 and the proof of Theorem 2.5 show that an element b of a C^* -algebra \mathcal{A} induces a compact map $a \to bab$ if and only if $a \to bab$ is weakly compact, which happens if and only if b is of the form given in the second part of Theorem 2.5. Hence we immediately deduce the following corollary, which determines the C^* -algebras compact in the above sense and which improves on some results of [10] (see also [7]).

- 2.6. COROLLARY. Let A be a C*-algebra. The following are equivalent.
- (1) A is compact in the sense of Bonsall and Duncan.
- (2) The map $a \rightarrow bab$, $a \in \mathcal{A}$ is weakly compact for each $b \in \mathcal{A}$.
- (3) A is isomorphic to the restricted direct sum of a family of C*-algebras of elementary type.

Moreover, at least one of the maps $a \rightarrow ab$, $a \rightarrow ba$, $a \rightarrow ab + ba$, $(a \in \mathcal{A})$ is compact for each $b \in \mathcal{A}$ if and only if \mathcal{A} is isomorphic to the restricted direct sum of a family of finite-dimensional full matrix algebras.

The next results characterize the *-automorphisms of a C*-algebra which are weakly compact perturbations of the identity, but before we state and prove them, the following proposition is needed.

2.7. Proposition. If $u(\neq 1)$ is a unitary operator in B(H), then $a \rightarrow uau^* - a$ is compact (respectively weakly compact) if and only if dim $H < \infty$ (respectively $(u + \lambda 1) \in K(H)$ for some complex number λ).

Proof. The map $a \to uau^*-a$ is compact (respectively weakly compact) if and only if the map $a \to ua - au$ is the same, since $b \to bu$ is an isometry of B(H) onto itself. The map $a \to ua - au$ is compact (respectively weakly compact) if and only if dim $H < \infty$ (respectively $(u + \lambda 1) \in K(H)$ for some complex number λ) by Lemma 2.1 and Theorem 3.1 of [1].

If \mathscr{A} is a C*-algebra, Aut(\mathscr{A}) will denote the group of *-automorphisms of \mathscr{A} , $\pi = \bigoplus_{\gamma} \pi_{\gamma} : \mathscr{A} \to B(H_{\pi})$ the reduced atomic representation of \mathscr{A} . Let $\mathscr{A}_{\pi} = \pi(\mathscr{A})$, $\mathscr{A}_{\pi}^{-} =$ the closure of \mathscr{A}_{π} in the weak operator topology in $B(H_{\pi})$. We have $H_{\pi} = \bigoplus_{\gamma} H_{\gamma}$ where H_{γ} is the representation space of π_{γ} , and $\mathscr{A}_{n}^{-} = \bigoplus_{\gamma} B(H_{\gamma})$. Let $p_{\gamma} =$ the projection of H_{π} onto H_{γ} , $K_{\gamma} = K(H_{\gamma})$. If $\alpha \in \text{Aut}(\mathscr{A})$, α_{π} denotes the *-automorphism of \mathscr{A}_{π} induced by α .

The following two theorems together determine the structure of *-automorphisms of \mathcal{A} which are weakly compact perturbations of the identity automorphism (denoted id in the sequel) on \mathcal{A} .

- 2.8. THEOREM. Let \mathcal{A} be a C*-algebra, $\alpha \in \text{Aut}(\mathcal{A})$. The following are equivalent.
- (1) α id is weakly compact.
- (2) There is a finite-dimensional central projection p of \mathcal{A} , an automorphism α_1 of $p\mathcal{A}$, and an automorphism α_2 of $(1-p)\mathcal{A}$ such that α_2 -id is weakly compact, α_2 fixes each central element of $(1-p)\mathcal{A}$ and $\alpha=\alpha_1 \oplus \alpha_2$.

Proof. (1) \Rightarrow (2). Let \mathscr{A}^{**} denote the enveloping von Neumann algebra of \mathscr{A} . If $\sigma = \bigoplus \{\pi_f : f \text{ a state on } \mathscr{A}\}$ denotes the universal representation of \mathscr{A} , then by Theorem 1.17.2 of [9], \mathscr{A}^{**} can be naturally identified with the closure $\sigma(\mathscr{A})^-$ of $\sigma(\mathscr{A})$ in the weak operator topology.

Let $\alpha \in \operatorname{Aut}(\mathscr{A})$. Since α^{**} is a *-automorphism of \mathscr{A}^{**} onto \mathscr{A}^{**} , it maps minimal projections onto minimal projections, and, identifying \mathscr{A}_{π}^{-} in a natural way with the subalgebra of \mathscr{A}^{**} generated by the minimal projections ([9, p. 53]), it therefore follows that $\alpha^{**}(\mathscr{A}_{\pi}^{-}) \subseteq \mathscr{A}_{\pi}^{-}$. Now assume $\alpha - id$ is weakly compact.

Since α^{**} maps minimal central projections onto minimal central projections, it follows that α^{**} permutes the p_{γ} 's in $\mathscr{A}_{\pi}^- = \bigoplus_{\alpha} B(H_{\gamma})$. Suppose that for $\gamma \neq \lambda$, $\alpha^{**}(p_{\gamma}) = p_{\lambda}$.

Consider the map $\varphi: p_{\gamma} \mathcal{A}_{\pi}^{-} \to p_{\gamma} \mathcal{A}_{\pi}^{-}$ defined by $\varphi: a \to p_{\gamma}(\alpha^{**}(a) - a)$. Since $\alpha^{**}(a) \in p_{\lambda} \mathcal{A}_{\pi}^{-}$, $p_{\gamma}(\mathcal{A}^{**}(a)) = 0$, whence $\varphi = -id$ on $p_{\gamma} \mathcal{A}_{\pi}^{-}$. Since φ is the composition of a bounded map and the weakly compact map $a \to \alpha^{**}(a) - a$, we conclude by Theorem 5, (4, p. 484], that φ is weakly compact, whence $p_{\gamma} \mathcal{A}_{\pi}^{-}$ is reflexive, hence finite-dimensional (Proposition 2 of [8]). Thus α^{**} can only permute finite-dimensional p_{γ} 's, and it follows by the weak compactness of $\alpha^{**} - id$ and Lemma 2.4 that α^{**} permutes only a finite number of them.

We want to show next that each p_{γ} permuted by α^{**} is in fact in \mathscr{A} . Let p be such a projection, and let $a \in \mathscr{A}$. Then since $p\alpha^{**}(p) = 0$ and p is central,

$$2ap + (\alpha^{**}(ap) - ap) = \alpha^{**}(ap) + ap = (\alpha^{**}(ap) - ap)(\alpha^{**}(p) - p).$$
 (1)

But by Theorem 2, [4, p. 482] $(\alpha^{**} - id)(\mathcal{A}^{**}) \subseteq \mathcal{A}$. Thus by (1), $ap \in \mathcal{A}$, and so $p\mathcal{A} = \mathcal{A}p \subseteq \mathcal{A}$. Now define $\varphi: a \to p(\alpha^{**}(a) - a)$ as before. Then

$$-p = \varphi(p) \in \varphi(\mathcal{A}^{**}) \subseteq p(\alpha^{**} - id)(\mathcal{A}^{**}) \subseteq p\mathcal{A} \subseteq \mathcal{A}.$$

Setting P equal to the sum of all the p_{γ} 's permuted by α^{**} , we conclude that P is a finite-dimensional central projection in \mathcal{A} .

Writing $\mathscr{A}^{**} = \mathscr{A}^{**}P \oplus \mathscr{A}^{**}(1-P)$, we have $\alpha^{**} = \alpha^{**}|_{\mathscr{A}^{**}P} \oplus \alpha^{**}|_{a^{**}(1-P)}$ (notice that $\alpha^{**}(P) = P$). Since the center of $\mathscr{A}^-_{\pi}(1-P)$ is purely atomic and $\alpha^{**}|_{\mathscr{A}^-_{\pi}(1-P)}$ fixes each atom, it follows that $\alpha^{**}|_{\mathscr{A}^-_{\pi}(1-P)}$ fixes each central element of $\mathscr{A}^-_{\pi}(1-P)$. Since $\alpha^{**}|_{\mathscr{A}} = \alpha$, setting $\alpha_1 = \alpha^{**}|_{\mathscr{A}P}$, $\alpha_2 = \alpha^{**}|_{\mathscr{A}(1-P)}$ gives the desired decomposition of α .

- $(2) \Rightarrow (1)$. This is clear, and so the proof is complete.
- 2.9. THEOREM. Let \mathcal{A} be a C*-algebra, $\alpha \in \text{Aut}(\mathcal{A})$. The following are equivalent.
- (1) α id is weakly compact and α fixes each central element of \mathcal{A} .

- (2) α_{π} extends to an inner automorphism $\tilde{\alpha}_{\pi}$ of \mathcal{A}_{π}^{-} of the following form: there exists a countable set of indices $\{\gamma_n\}$, unitaries $u_n \in B(H_{\gamma_n})$, and complex numbers $\{z_n\}$ such that (if p_{γ} is the identity in $B(H_{\gamma})$
 - (i) $u_n z_n p_n \in K_{\gamma_n} \subseteq \mathcal{A}_{\pi}$ (where $p_n = p_{\gamma_n}$), (ii) $\lim \|u_n z_n p_n\| = 0$,

 - (iii) $\tilde{\alpha}_{\pi}(a) = uau^*$, $(a \in \mathcal{A}_{\pi}^-)$, where $u = (\bigoplus_{\gamma \neq \gamma_n} p_{\gamma}) \oplus (\bigoplus_n u_n)$.

Proof. (1) \Rightarrow (2). We assert first that $\alpha^{**} \in Aut(\mathcal{A}^{**})$ fixes each central element of \mathcal{A}^{**} . By the spectral theorem and $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -continuity of α^{**} , it suffices to show that $\alpha^{**}(z) = z$ for each central projection $z \in \mathcal{A}^{**}$. To see this, note first that by Theorem 2, [4, p. 482], and the weak compactness of $\alpha^{**}-id$, $\alpha^{**}(z)-z$ is a central element of \mathcal{A} . Since $\alpha^{**}|_{\alpha} = \alpha$ and α fixes each central element of \mathcal{A} , $\alpha^{**}(\alpha^{**}(z) - z) = \alpha^{**}(z) - z$, i.e.,

$$(\alpha^{**})^2(z) + z = 2\alpha^{**}(z). \tag{*}$$

Since $(\alpha^{**})^2(z)$, $\alpha^{**}(z)$, and z are projections in an abelian W*-algebra (the center of A**), they can be viewed as characteristic functions of measurable sets (Proposition 1.18.1 of [9]), whence by (*), $\alpha^{**}(z) = z$.

Since α^{**} fixes each central element, we can apply the reasoning of the proof of Theorem 2.8 to extend α_{π} to an automorphism $\tilde{\alpha}_{\pi}$ of \mathcal{A}_{π}^{-} such that $\tilde{\alpha}_{\pi} - id$ is weakly compact and $\tilde{\alpha}_{\pi}$ fixes each central element of \mathscr{A}_{π}^- . It follows that if $\tilde{\alpha}_{\pi,\gamma} = \tilde{\alpha}_{\pi}|_{B(H_{\gamma})}$, then

 $\tilde{\alpha}_{\pi,\gamma} \in \operatorname{Aut}(B(H_{\gamma})), \ \tilde{\alpha}_{\pi,\gamma} - id\big|_{B(H_{\gamma})} \ \text{is weakly compact, and} \ \tilde{\alpha}_{\pi} = \bigoplus \ \tilde{\alpha}_{\pi,\gamma}. \ \text{By the proof of a proof of a$ Lemma 3.2 of [1], all but a countable number of the $\tilde{\alpha}_{\pi,\gamma} - id|_{B(H_{\gamma})}$'s are nonzero, and if $\{\gamma_n\}$ is the set of the corresponding indices, $\lim \|\tilde{\alpha}_{\pi,\gamma_n} - id\|_{B(H_{\gamma_n})} = 0$ by Lemma 2.4. It

follows by Proposition 2.7 and the preceding that there exist indices $\{\gamma_n\}$, unitaries $u_n \in B(H_{\nu_n})$, and complex numbers $\{z_n\}$ satisfying (i), (ii), and (iii).

 $(2) \Rightarrow (1)$. This follows easily from Proposition 2.7 and Lemma 2.4, and so the proof is complete.

REFERENCES

- 1. C. A. Akemann and S. Wright, Compact and weakly compact derivations of C*-algebras, Pacific J. Math., to appear.
- 2. F. F. Bonsall and J. Duncan, Complete normed algebras, Ergebnesse der Mathematik und ihrer Grenzgebiete, Bd. 80, (Springer-Verlag, 1973).
 - 3. R. G. Douglas, Banach algebra techniques in operator theory, (Academic Press, 1972).
 - 4. N. Dunford and J. T. Schwartz, Linear operators, Part I, (Interscience, 1958).
- 5. J. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math., 10 (1960), 547-556.
- 6. R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys., 4 (1967), 32-63.
- 7. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ., Ser. A, 18 (1954), 15-36.

- 8. S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math., 14 (1964), 659-664.
- 9. S. Sakai, C*-algebras and W*-algebras, Ergebnesse der Mathematik und ihrer Grenzgebiete, Bd. 60, (Springer-Verlag, 1971).
- 10. B. J. Tomiuk, Duality and the existence of weakly completely continuous elements in a B*-algebra, Glasgow Math. J., 13 (1972), 56-60.
- 11. K. Vala, On compact sets of compact operators, Ann. Acad. Sci. Fenn., Ser. Al, 407 (1967).

University of California Santa Barbara California 93106 OAKLAND UNIVERSITY ROCHESTER MICHIGAN 48063