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Validating phase quantification procedures of powder X-ray diffraction (XRD) data for an implemen-
tation in an ISO/IEC 17025 accredited environment has been challenging due to a general lack of suit-
able certified reference materials. The preparation of highly pure and crystalline reference materials
and mixtures thereof may exceed the costs for a profitable and justifiable implementation. This
study presents a method for the validation of XRD phase quantifications based on semi-synthetic data-
sets that reduces the effort for a full method validation drastically. Datasets of nearly pure reference
substances are stripped of impurity signals and rescaled to 100% crystallinity, thus eliminating the
need for the preparation of ultra-pure and -crystalline materials. The processed datasets are then com-
bined numerically while preserving all sample- and instrument-characteristic features of the peak pro-
file, thereby creating multi-phase diffraction patterns of precisely known composition. The number of
compositions and repetitions is only limited by computational power and storage capacity. These data-
sets can be used as input files for the phase quantification procedure, in which statistical validation
parameters such as precision, accuracy, linearity, and limits of detection and quantification can be
determined from a statistically sound number of datasets and compositions. © RMS Foundation,
2020. Published by Cambridge University Press on behalf of International Centre for Diffraction
Data. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided
the original work is unaltered and is properly cited. The written permission of Cambridge University
Press must be obtained for commercial re-use or in order to create a derivative work.
[doi:10.1017/S0885715620000573]
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I. INTRODUCTION

Powder X-ray diffraction (XRD) is a wide-spread tech-
nique for the identification and quantification of crystalline
materials (Bish and Post, 1989). It is based on the principle
that a near monochromatic X-ray beam is scattered at the
atoms in the sample, and the secondary radiation generates
an interference pattern characteristic of the geometrical
arrangement of the atoms in the crystal structures occurring
in the sample (Dinnebier and Billinge, 2008). XRD is, there-
fore, particularly useful to identify and quantify crystalline
phases of similar or identical chemical composition, such as
polymorphs or hydrates of variable hydration states, where
the sensitivity of chemical analyses is limited. Thanks to the
relatively moderate complexity of the instruments (Cockcroft
and Fitch, 2008), the availability of faster and more robust
hard- and software for data processing, and not least because
of the lack of alternative equally economic methods, XRD has
been adopted by many industries for the routine analysis of
material compositions. Some of the early adopters of XRD
for routine application were the mining and exploration indus-
try (De Villiers, 1986), as well as the cement production
industry. Initially, the composition of ordinary Portland

cement clinkers was deemed too demanding for XRD analysis
because the large number of complex and often poorly crystal-
line phases resulted in too much peak overlap for reliable peak
deconvolution (Aldridge, 1982). However, the availability of
modern full-pattern based peak deconvolution algorithms
has drastically improved the reliability of the XRD analysis
of such phase mixtures (De la Torre and Aranda, 2003). In
recent years, online systems analyzing the composition of
Portland cement clinkers have been implemented on an indus-
trial scale (Scarlett et al., 2001), and the hydration reaction
was investigated in situ (Scrivener et al., 2004; Hesse et al.,
2009; Jansen et al., 2011a, 2011b). XRD is also commonly
used in the medical device industry to characterize the phase
composition of bone grafts or bone graft substitutes
(Bohner, 2010; Döbelin et al., 2010; Habraken et al., 2016).
The vast majority of synthetic bone graft substitutes are com-
posed of calcium phosphate ceramics, most of which are
highly biocompatible and osteoconductive and have a proven
record of safe and effective bone regeneration (LeGeros,
2008). However, the chemical system CaO–P2O5 comprises
a large number of crystallographic phases with different
physico-chemical properties, some of which are polymorphs,
others vary only slightly in the molar Ca:P ratio or hydration
state (Hudon and Jung, 2014). Despite identical or very similar
chemical composition, the biological behavior of these phases
may be very different. For example, the degradation and bone
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regeneration rate of α- and β-tricalcium phosphate (TCP;
Ca3(PO4)2) is substantially different despite identical chemical
composition (Yuan et al., 2001; Grandi et al., 2011).
Hydroxyapatite (Ca5(PO4)3OH), which is only slightly more
Ca-rich than TCP, is very slowly or non-resorbable
(Yamada et al., 1997). Other phases are highly soluble and
may strongly increase or reduce the pH at the implantation
site (Vereecke and Lemaître, 1990). Precise control and mon-
itoring of the crystalline phase composition by XRD is, there-
fore, not only a requirement for consistent product
composition but also for patient safety.

XRD patterns contain the diffraction signals of all crystal-
line phases occurring in the sample. The intensities of the indi-
vidual contributions correlate with the phase abundance, but
not necessarily in a linear manner (Madsen and Scarlett,
2008). Depending on the number of phases, their symmetry,
and their crystallinity, the phase patterns may overlap substan-
tially and render the reconstruction of peak shapes extremely
difficult. A major step forward was the advent of full-pattern
based methods such as Rietveld refinement (Rietveld, 1969),
which was published several decades ago but only gained
popularity in the past two decades when digital diffractome-
ters and fast computers became widely available (Von
Dreele, 2008). Nowadays, Rietveld refinement is considered
the gold standard for XRD data processing because its
approach for pattern decomposition takes into account the
entire measured range and is based on crystallographic prop-
erties of all phases involved. However, the powerful algo-
rithms place high demands on equipment calibration,
sample, and data quality, and require crystallographic knowl-
edge of the user. Numerous text books and articles such as the
guidelines published by McCusker et al. (1999) are available
to lower the barrier to entry.

In an increasingly regulated world where authorities and
international and domestic standards organizations put more
emphasis on laboratory accreditation and method validation
(Engelhard et al., 2003), the susceptibility of XRD and
Rietveld refinement to user experience and skills presents a
problem (Stutzman, 2005; Döbelin, 2015). In an attempt to
define a common standard for the documentation and publica-
tion of refinement results, Gualtieri et al. (2019) have pub-
lished a proposal as to which data should be included in an
analytical report so that the reader can assess the quality of
the results. The dependence of the results on the operator’s
experience can further be minimized by employing strictly
standardized procedures for data processing and pre-defined
refinement presets. The uncertainty of measurement combin-
ing systematic and random errors, as well as the detection
and quantification limits, then need to be determined in a
method validation, comparing the refinement results of refer-
ence mixtures with the nominal values over the entire range of
interest. However, while reference materials of >99.99%
chemical purity are readily available from all major chemical
suppliers, reference materials for XRD analysis require similar
purity not only in terms of chemical composition but also in
terms of phase composition and crystallinity. Only a handful
of certified reference materials (CRMs) are available commer-
cially, and in many cases, the need for the preparation of cus-
tom reference materials is a major obstacle to the
implementation of the validation.

In this study, we present a procedure for stripping XRD
datasets of reference substances with small amounts of

contaminations from their contamination signals, rescaling
the intensity of the main phase to an equivalent of 100% crys-
tallinity, and combining several of these processed datasets to
simulated phase mixtures of precisely known phase ratios. The
resulting datasets can be used as input files for the validation
of Rietveld refinements by simulating large numbers of com-
positions and repetitions with minimum effort.

II. MATERIALS AND METHODS

A. Data collection

The concept of semi-synthetic datasets for method valida-
tion is based on measured datasets of nearly pure reference
substances, which are stripped of impurity signals and
rescaled to compensate for amorphous or otherwise unde-
tected constituents. The resulting processed datasets mimic
those of hypothetical perfectly pure and crystalline reference
substances and preserve all instrument and sample character-
istic profile features such as satellite peaks, absorption
edges, isotropic and anisotropic size and strain related peak
broadening, and preferred orientation (Figure 1). For the first
example demonstrating the procedure we used zincite (ZnO,
99.999%, Alfa Aesar, Germany) and rutile (TiO2, 99.995%,
Alfa Aesar, Germany) samples, both were thermally annealed
at 950 °C for 15 h and quenched in air after cooling to 700 °C.
Additionally, a corundum standard reference material (NIST
SRM676a, Al2O3) was used as a certified primary standard
to assess the quality of our secondary custom reference mate-
rials. Prior to XRD data acquisition, the powders were milled
in isopropanol (99%, Thommen-Furler AG, Switzerland) for 4
(zincite) and 6 (rutile) min, respectively, using the McCrone
Micronizing Mill (Retsch, Germany). The particle size and
shape after milling is shown on scanning electron micrographs
in Figures 2(a) and 2(b).

For the second example simulating mixtures of three dif-
ferent calcium phosphate phases, we produced α-TCP
Ca3(PO4)2 by heating a mixture of CaCO3 (Merck,
Germany) and CaHPO4 (GFS, USA) to 1350 °C for 4 h, fol-
lowed by quenching in air. Ca-deficient hydroxyapatite
(CDHA; Ca9(HPO4)(PO4)OH) was obtained commercially
(ACP 1.5:1, Plasma Biotal Ltd, UK) and used without thermal
conditioning. β-TCP Ca3(PO4)2 was produced by heating the
CDHA material to 1000 °C for 15 h. α- and β-TCP were
milled for 5 min in isopropanol using the McCrone
Micronizing Mill prior to the preparation of the XRD refer-
ence samples. Scanning electron micrographs of the particles
after milling are shown in Figures 2(c)–2(e).

XRD data were collected on a Bruker D8 Advance dif-
fractometer (Bruker AXS, Germany), using Ni- and digitally
filtered CuKα radiation. An angular range from 8 to 120° 2θ
was scanned with a step size of 0.0122°. Since the counting
time of the standard method to be validated was 0.15 s/step,
the reference datasets were measured with a counting time
of 3 s/step, which improved the signal-to-noise ratio by factor
4.47 ( = ���

20
√

). The intensities were then scaled back by factor
20 to obtain peak intensities identical to the standard measure-
ment conditions. All intensity manipulations, pattern compo-
sitions, and Rietveld refinements were performed in Profex
version 4.1-beta (Doebelin and Kleeberg, 2015). The individ-
ual steps for dataset manipulations and pattern composition
are described in detail in the following sections.
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B. Data manipulation

1. Reference data acquisition
XRD datasets of the nearly pure reference materials must be

measured with the instrument settings to be validated but with
the following exceptions: (i) the signal-to-noise ratio must be
improved while maintaining the same peak intensity as the stan-
dard instrument settings and (ii) it is recommended to measure a
wide angular range, e.g., up to 120° 2θ. Improved signal-to-
noise ratio at constant peak intensity (HSN) can be obtained
either by using a longer counting time per step and rescaling
the intensities after the measurement or by averaging several
datasets measured with the standard counting time. Both
approaches result in the same improvement of signal-to-noise
ratio by factor

��
n

√
(Hassan and Anwar, 2010), but if a prolonged

counting time bears the risk of exceeding the detector’s linear
response range, merging multiple datasets measured with the
standard counting time is to be preferred. If a counting time n
times longer than standard conditions was used, each measured
intensity value Im is rescaled as follows after the measurement:

I = Im
n

(1)

If n repetitions were measured with standard counting
time, the average intensity is calculated as follows:

I =
∑n

i=1 Imi
n

(2)

The suppressed counting noise amplitude exposes con-
taminations below the detection limit of the standard measure-
ment conditions [Figure 1, scans (a) and (b)] and allows
adding realistic synthetic noise after composition of the multi-
phase patterns.

2. Rietveld refinement
In a next step, the HSN scans of all reference materials are

processed with Rietveld refinement. At this point, a hand-opti-
mized highly accurate refinement strategy should be employed,
independent of the standard refinement strategy to be validated.
The refinement must provide accurate fits of the background
and all contamination peaks (Figure 3), as well as highly precise
scale factors and mass absorption coefficients (MACs) of the
reference phases. If the main phase is not chemically pure, addi-
tional information from chemical analysis (e.g., XRF or ICP)
should be used to improve the structure model.

As a result of the Rietveld refinement, we also obtain the
following parameters of each reference phase:

S: Rietveld scale factor,
Z: number of formula units per unit cell,
M: mass of the formula unit,
V: unit cell volume,
μ*: MAC.

It can be easily demonstrated (see, e.g., Madsen and
Scarlett, 2008) that the absolute weight fraction of phase A

Figure 1. Processing steps of a nearly pure zincite reference sample. (a) Standard scan and (b) a high signal-to-noise (HSN) scan measured with 20 times longer
counting time, followed by rescaling the intensities by a factor 1/20. (c) Scan b after stripping of impurities and rescaling. (d) Scan c with added synthetic noise
pattern. Artifacts exposed in scan b: (1) rutile impurities, (2) zincite Kβ peaks, (3) corundum impurities, and (4) zincite absorption edges.
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in a powder sample is calculated as

WA = SA · (Z ·M · V)A · m∗
m

K
(3)

where K is an instrument dependent scaling factor which is
used to putWA on an absolute basis, and m∗

m is the specimen’s
MAC (O’Connor and Raven, 1988; Madsen and Scarlett,
2008). The parameter K is usually unknown, and hence so is
the absolute weight fraction WA. But, as K only depends on
the instrument setup, it can be calculated from Eq. (3) in
case of a single-phase reference sample containing phase R,
so that WR = 1 and m∗

m=m∗
R, as follows

K = SR · (Z ·M · V)R · m∗
R (4)

Determining K from a CRM and substituting it in Eq. (3)
to compute absolute phase quantities of multi-phase samples
is well-known as the external standard method (Jansen
et al., 2011a). K should not be confused with the Reference
Intensity Ratio (RIR), for which the designation K is also
occasionally used (Hubbard et al., 1976; Hubbard and
Snyder, 1988). RIR expresses the ratio of the peak intensity
of an analyte to the peak intensity of a reference phase

under given measurement conditions and is, therefore, phase
dependent. The K value from Eq. (4), on the other hand, is
independent of the phase and only instrument related. In
multi-phase samples measured under identical instrument con-
ditions and provided that no amorphous phases are present, K
can be computed according to Eqs. (5) and (6) and should
result in precisely the same value as obtained from the CRM
in Eq. (4).

K = m∗
m ·

∑n
i=1

[Si · (Z ·M · V)i] (5)

m∗
m=

∑n
i=1 (m

∗
i ·Wi)

n
(6)

m∗
m is the sample’s bulk MAC, m∗

i is the MAC of phase i, and
Wi is the phase quantity of phase i.

We performed the calculation of K for our reference sub-
stances zincite and rutile, and compared them with the value
obtained from the NIST SRM676a sample. As shown in
Table I, the zincite and rutile reference samples resulted in
K values lower than NIST SRM676a, indicating the presence
of undetected constituents in the two reference phases.

Figure 2. Scanning electron microscopy images of the materials used in examples 1 and 2 after milling for XRD sample preparation: (a) rutile, (b) zincite, (c)
α-TCP, (d) β-TCP, and (e) CDHA.
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3. Stripping of contamination signals and normalizing
for K

Now, the HSN datasets are processed to remove all con-
tamination signals and rescaled to the target K value deter-
mined from the NIST SRM sample. Since only the
diffraction signal of the reference phase Idiff must be rescaled,
but not the background intensity, the refined background Ibkgr
is subtracted from the measured intensities Iobs:

Idiff = Iobs − Ibkgr (7)

Then, the refined phase contributions of all contamina-
tions obtained from the Rietveld refinement (Figure 3) are

subtracted from the diffracted intensity (assuming that phase
1 is the reference phase, and phases 2 to n are contaminations):

Ipure = Idiff −
∑n
i=2

Ii (8)

Next, the K value of the pure reference phase is calculated
from the Rietveld refinement, with “pure” referring to the
phases zincite and rutile, respectively:

Kpure = Spure · (Z ·M · V)pure · m∗
pure (9)

If Kpure is lower than KSRM obtained from the CRM (NIST
SRM 676a), the diffracted intensities of the reference phase
are normalized:

Inorm = Ipure · KSRM

Kpure
(10)

The intensity of the diffraction signal Ipure is now
increased to the intensity that a true measurement of a single-
phase sample of the reference phase would yield (Inorm). Now
the background intensity is added, which was not affected by
the normalization:

Iref = Inorm + Ibkgr (11)

As a result, Iref represents a diffraction pattern of the ref-
erence phase based on measured intensities, that was (i)

Figure 3. Rietveld refinement fits individual patterns for all phases and for the background to the measured data (stacked representation). The background was
refined as a combination of a measured background and a polynomial function. The measured contribution shows tails of diffuse bumps at both sides of the
displayed range, which are generated by the polymer sample holder.

TABLE I. Instrumental scale factors K calculated for all reference samples
used in example 1.

Reference
sample

Refined
composition (rel.

wt%)
K (−)

as-measured

K (−) after impurity
stripping and
normalization

NIST
SRM676a

100% Al2O3 9.66 ± 0.04 –

Zincite 99.35% ZnO 9.14 ± 0.03 9.66 ± 0.03
0.32% TiO2

0.33% Al2O3

Rutile 100% TiO2 8.91 ± 0.05 9.66 ± 0.06

Errors represent estimated standard deviations calculated by the refinement
software. In case of zincite, the value “K as-measured” represents the sum
of KZnO +KTiO2 +KAl2O3.
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stripped of the diffraction signal of impurity phases and (ii)
rescaled to the intensity the pure reference phase would
yield on the same instrument configuration in absence of crys-
talline and amorphous impurities. When refined by Rietveld
refinement, its K value according to Eq. (4) is identical to
KSRM of the certified reference sample. An example of the
stripped and rescaled zincite HSN dataset is shown in
Figure 1, scan c. It is recommended not to strip any imperfec-
tions originating from the reference phase (Kα3, Kβ, W Lα
peaks, absorption edge), for example, by the methods
proposed by Ida et al. (2018), unless the stripping is also
applied to datasets of phase mixtures analyzed with the
validated method later on. The reference datasets should
contain all imperfections expected to occur in sample
datasets to allow for a realistic determination of validation
parameters.

4. Simulating multi-phase patterns
At this stage, all processed datasets of the reference sub-

stances are phase-pure, normalized to the KSRM value of a
fully crystalline sample, and nearly noise free due to the initial
HSN intensity manipulation. The following procedure
describes how these datasets can be combined to represent
mixtures of precisely known phase quantities.

The relationship between absolute phase quantity and the
intensity of a phase’s signal contribution is (with the exception
of polymorphs) not linear. It was, however, shown by Hill
(1991) that the intensity is directly proportional to the
Rietveld scale factor S. By rearranging Eq. (3), we can deter-
mine the scale factor of phase A (SA) in any sample of known
composition and K:

SA = WA · K
(Z ·M · V)A · m∗

m

(12)

In the special case of a phase-pure reference pattern of
phase A, the scale factor SAref becomes:

SAref =
1 · K

(Z ·M · V)A · m∗
A

(13)

In order to scale the intensity of reference pattern A (IAref )
to a weight fractionWA < 1 in a multi-phase sample, it must be
multiplied with the relative scale factor:

IA = IAref · SA
SAref

(14)

Substituting Eq. (12) for SA and Eq. (13) for SAref results
in:

IA = IAref ·WA · m∗
A

m∗
m

(15)

where m∗
m is calculated according to Eq. (6) for the target

phase composition. The final simulated diffraction pattern
is obtained by summing all rescaled intensities of phases A
to n:

Isum = IA + IB + · · · + In (16)

and by applying a synthetic noise pattern for the intensity
Isum:

Isim = Isum + p
�����
Isum

√( ) (17)

p(x) generates a random Poisson-distributed number for x
counts. The phase composition of the semi-synthetic diffrac-
tion pattern Isim is precisely known from theW values selected
for each phase in Eq. (15). Scan d in Figure 1 shows the effect
of adding synthetic noise to scan c using the function “std::
poisson_distribution<int>” of the GNU libstdc++ library.

C. Application

1. Example 1: zincite and rutile
As a first example to demonstrate the procedure described

above, a simple binary system of the highly symmetric phases
rutile (TiO2) and zincite (ZnO) was selected. The peaks of
both phases were well separated, which allowed tracking the
impurity stripping and dataset synthesis process visually.
HSN datasets of both reference phases covering a range of
8–120° 2θwere refined to determine their initial phase compo-
sition and K value (Table I). Traces of rutile (TiO2) and corun-
dum (Al2O3) impurities were found in the zincite sample, but
no crystalline impurities were observed in the rutile sample.
The zincite dataset was then stripped of its impurity signals,
and both datasets were then normalized to the reference
KSRM value determined with a certified Al2O3 reference mate-
rial (SRM 676a; Table I). Patterns of biphasic compositions
were then created by combining the processed reference pat-
terns and by applying synthetic counting noise as described
above. The compositions and examples of the patterns are pre-
sented in Figure 4. Each composition was simulated 10 times,
resulting in 210 datasets created from two reference datasets.
To determine the phase composition using Rietveld refine-
ment, the datasets were processed with Profex by the
BGMN Rietveld kernel version 4.2.23 (Doebelin and
Kleeberg, 2015) using three different refinement strategies.
The parameters refined in all three strategies are listed in
Table II. Strategy “no restrictions” provided the best possible
profile if both phase patterns were well defined, i.e., their
intensities were high enough that the peak shapes were not
obstructed by the noise pattern. Strategies “restricted zincite”
and “restricted rutile” used the same elaborate refinement for
one phase, but refined only basic profile parameters of the
second phase. All 210 datasets were refined with the three
strategies in a batch without user interaction. The resulting
phase quantities were analyzed statistically (Table III).
Figure 5 presents the difference between the refined zincite
quantity and the nominal (simulated) value in the range of
low rutile content (<10 wt%), major content of both phases
(10–90 wt%), and low zincite content (<10 wt%). Due to
the normalization to 100 wt%, rutile quantities Wrutile corre-
spond to 100 – Wzincite.

2. Example 2: calcium phosphate cement
The second example was based on a reaction commonly

used in ceramic bone cements. The metastable high-
temperature phase α-TCP undergoes a hydration reaction
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when mixed with water to form nano-crystalline CDHA.
α-TCP often contains contaminations of β-TCP, a polymorph
that is non-reactive in water and stable at room temperature.
Monitoring the cement reaction progress by XRD thus
involves the quantification of variable contents of highly crys-
talline α-TCP and nano-crystalline CDHA, and a constant
amount of β-TCP. The reference materials used in this exam-
ple were measured with a 20-fold longer counting time per
step than standard settings and then processed with Rietveld
refinement to quantify impurity phases and to determine the
initial K values (Table IV). Afterwards, impurity signals
were stripped, and the datasets were normalized to a common
K value. However, instead of using a KSRM value obtained

from the certified Al2O3 sample, the value determined for
the α-TCP sample was used as a reference. The resulting nor-
malized datasets prior to multi-phase pattern simulation are
shown in Figure 6. K values were lower than in the first exam-
ple due to instrumental fluctuations that occurred during a gap
of several weeks between the data collections of the two exam-
ples. Since the K value is directly related to the intensity of the
primary beam, a gradual decrease over time is an expected
symptom of an aging X-ray tube. Multi-phase patterns with
added counting noise were created 10-fold for each simulated
composition. The simulated β-TCP content was kept constant
at 10 wt%, whereas α-TCP and CDHA contents were varied
from 90 to 0 wt% α-TCP, and 0 to 90 wt% CDHA,

Figure 4. 21 diffraction patterns of different composition created from the stripped and normalized zincite and rutile reference patterns. The patterns represent Isim
[Eq. (17)], including the background signal and synthetic counting noise. Each composition was simulated and refined 10-fold, resulting in 210 multi-phase
datasets created from two reference datasets. The legend shows the simulated phase composition in wt%.

TABLE II. Structural parameters refined in the three refinement strategies of
example 1.

Structure
model “no restrictions” “restricted zincite” “restricted rutile”

Zincite (T) (MS) (ACS)
(3CS) (TDS)

– (T) (MS) (ACS)
(3CS) (TDS)

Rutile (T) (MS) (ACS)
(3CS) (TDS)

(T) (MS) (ACS)
(3CS) (TDS)

–

(T), Texture; (MS), Micro-strain; (ACS), Anisotropic crystallite sizes; (3CS),
Trimodal crystallite size distribution; (TDS), Common thermal displacement
parameters. The following parameters were refined in all strategies:
background polynomial coefficients, sample height displacement, and unit
cell dimensions, scale factors, and isotropic peak broadening of both
crystalline phases.

TABLE III. Validated parameters for zincite and rutile using three different
refinement strategies.

Parameter
“no

restrictions”
“restricted
zincite”

“restricted
rutile”

Linearity 0–5% zincite 0.9852 0.9990 0.9720
Linearity 10–90% zincite 1.0000 0.9998 0.9998
Linearity 95–100% zincite 0.3428 0.4512 0.9996
LOD zincite 1.55 wt% 0.39 wt% 2.29 wt%
LOD rutile 6.98 wt% 0.41 wt% 0.22 wt%
LOQ zincite 1.77 wt% 0.42 wt% 2.91 wt%
LOQ rutile 10.63 wt% 0.58 wt% 0.34 wt%

Values in their optimized compositional range are shown in bold typeset.
LOD = limit of detection = xblank + 3⋅SD
LOQ = limit of quantification = xblank + 5⋅SD
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respectively. This represented the complete cement reaction in
presence of a constant amount of β-TCP contamination. The
simulated datasets were refined using the strategy shown in
Table V . Refined phase quantities are shown in Table VI, a
statistical analysis is presented in Table VII, and an example
refinement is shown in Figure 7.

To assess the effect of the number of simulations on the
statistical analysis, the composition 45 wt% α-TCP + 45 wt
% CDHA + 10 wt% β-TCP of example 2 was again simulated
and refined 100 times. The cumulative moving average �Q1...n,
the standard deviation, and the standard error were calculated
for the first n datasets, where n was increased from 1 to 100
(Figure 8).

III. RESULTS AND DISCUSSION

Phase quantification by XRD analysis is particularly chal-
lenging to validate not only because the availability of CRMs
is extremely limited and in most cases not suited to replicate a
particular phase system of interest but also because the results
are highly susceptible to matrix effects. The detection limit of
phase A in mixture with phase B is different than in mixture
with phase C if the amount of peak overlap with phases B
and C is different. Therefore, a validation must be targeted
precisely at the composition of the samples to be measured,
and for compositions of more than two phases, taking into
account all possible phase combinations can easily lead to

enormous numbers of compositions. As a consequence, the
literature on XRD method validation is relatively scarce and
mostly focuses on simple binary phase systems. Siddiqui
et al. (2015) validated the quantification of warfarin sodium
products in two different matrices. The determination of accu-
racy, precision, linearity, limits of detection and quantifica-
tion, and robustness was carried out using three
concentrations measured six times, and three concentrations
measured once. The effect of the instrument setup and
Rietveld refinement strategy on the quantification of
Tibolone Form I and Form II was assessed by Silva et al.
(2016), who demonstrated that matching the refinement strat-
egy to the expected phase composition improved accuracy and
precision of the refinement. While both studies validated
phase quantification in manageable binary phase systems,
Eckardt et al. (2012) used a variety of different materials,
including certified standards for soil and Portland cement clin-
ker, to perform a comprehensive validation fulfilling the
requirements of ISO/IEC 17025. The study included a profi-
ciency test comparing the performance of 13 laboratories
determining the composition of three mixtures of ceramic,
metallic, and organic components. Interlaboratory studies
such as the proficiency study published by Eckardt et al.
(2012) for forensic materials, by Stutzman (2005) for hydrau-
lic cements, by Döbelin (2015) for bioceramics, those orga-
nized by the International Union of Crystallography
(Madsen et al., 2001; Scarlett et al., 2002), or competitions
such as the Reynolds cup organized by the Clay Minerals
Society are often used to compare the performance of labora-
tories. They cannot be considered as a viable alternative to a
full method validation, but they provide supporting informa-
tion and their participation is encouraged in ISO/IEC 17025.

The procedure for the numerical manipulation of refer-
ence datasets we present here facilitates the validation of
XRD phase quantifications in situations where phase-pure
and fully crystalline reference materials are not available,
and in systems with a large number of phases whose number
of possible combinations cannot be produced economically.
We demonstrated that small diffraction signals of impurities
can be subtracted from HSN diffraction patterns of nearly
pure reference materials (Figure 1), and the residual artifacts
are masked by counting noise. The artifacts depend on the
quality with which the Rietveld refinement fits the impurity

Figure 5. Differences between refined and nominal zincite quantities obtained from three different refinement strategies. The x-axis is split into three segments to
enhance the visibility of the data points close to 0 and 100 wt% zincite. The strategy optimized for the displayed compositional range is shown in red. Error bars
represent standard deviations (n = 10).

TABLE IV. Instrumental scale factors K calculated for all reference samples
used in example 2.

Reference
sample

Refined
composition
(rel. wt%)

K (–)
as-measured

K (–) after impurity
stripping and
normalization

α-TCP 99.5%
α-TCP0.5% HA

8.693 ± 0.056 8.700 ± 0.056

β-TCP 98.64%
β-TCP1.36%

β-CPP

8.339 ± 0.054 8.709 ± 0.056

CDHA 100% CDHA 8.255 ± 0.036 8.703 ± 0.037

Errors represent estimated standard deviations calculated by the refinement
software.
β-CPP: β-Ca pyrophosphate (Ca2P2O7).
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signals (Figure 3). Although the procedure is in theory capable
of removing any number and intensity of impurity signals,
artifacts from the subtraction of strong signals may exceed
the counting noise and thus leave artifacts in the final com-
posed multi-phase patterns. It is, therefore, recommended to
limit the use of this approach to reference materials of high ini-
tial purity. The peak profiles modeled by the Rietveld algo-
rithm are only used to subtract contamination signals. The
peak shape of the reference phase remains unaffected. This
is an important distinction from datasets simulated by the
Rietveld algorithm. Any peak computed by the algorithm’s
profile function can be fitted with the same algorithm with per-
fect accuracy. Using synthetic datasets simulated with the
Rietveld software as input files for the refinement thus results
in unrealistically high precision and accuracy, even in the
presence of counting noise. The process we propose for strip-
ping impurity signals and rescaling the reference peaks, on the
other hand, preserves the peak shape of the measured datasets,
including all technical imperfections such as the absorption

edge, satellite peaks, and potential distortions originating
from instrument misalignment [Figure 1, scan (c)]. In addition
to reducing the efforts for sample preparation to a manageable
level, combining reference datasets mathematically also
avoids problems potentially arising from blending powder
components. Intense homogenization may introduce changes
in microstructure and crystallinity or reactions among the
phases, which would result in a putative systematic error
when comparing refined with nominal phase quantities. The
nominal phase content of mathematically combined datasets,
on the other hand, is precisely known.

Optimum instrument settings for standard data acquisi-
tions may be limited by economic considerations. If measure-
ment time per sample is limited, the choice of counting time
per step and angular range should be matched to the purpose
of the analysis. For example, if the purpose is to demonstrate
phase purity, the limits of detection and quantification benefit
from a longer counting time over a limited angular range
resulting in an improved signal-to-noise ratio. On the other
hand, if the quantification of main phases and the determina-
tion of their crystallographic parameters (cell parameters, dis-
tinction of crystallite size and micro-strain, atomic site
parameter including site occupancy factors and thermal dis-
placement parameters) are the primary goal of the analysis,
the results may benefit from a wider angular range measured
with a shorter counting time. As discussed previously, the
HSN datasets of pure reference materials used as input files
for dataset synthesis must expose features below the noise
level of standard measurements. Their signal-to-noise ratio
must, therefore, be suppressed either by merging multiple
datasets or by rescaling a dataset measured with longer

Figure 6. The measured HSN reference patterns of α-TCP, β-TCP, and CDHA after stripping of impurities and normalization to a common K factor show several
regions of peak overlap among α-TCP and β-TCP, as well as among β-TCP and nano-crystalline CDHA.

TABLE V. Structural parameters refined in example 2.

Structure model Refinement strategy

α-TCP (T) (MS) (ICS)
β-TCP (T) (ICS)
CDHA (T), (ACS)

(T), Texture; (MS), Micro-strain; (ICS), Isotropic crystallite size; (ACS),
Anisotropic crystallite sizes. The following parameters were refined in all
strategies: background polynomial coefficients, sample height displacement,
and unit cell dimensions, scale factors.
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counting time. In addition, correct determination of the instru-
mental factor K requires accurate refinement of potential sub-
stitutions and thermal displacement parameters. The HSN
datasets should, therefore, not only focus on maximum
signal-to-noise ratio but also cover an extended angular
range allowing stable refinement of angular-dependent crys-
tallographic parameters.

In our first example, we processed two reference datasets
of rutile and zincite to eliminate impurity signals and to nor-
malize the intensities of the main phases to a given instrumen-
tal KSRM value. As shown in Table I, the K values prior to
normalization of both samples were slightly below the value
obtained from the certified Al2O3 reference. If all constituents
of the samples were crystalline and refined correctly, identical
K values for all three reference samples would have been
expected. Lower K values indicate the presence of (i) amor-
phous constituents, (ii) undetected crystalline phases, or (iii)
undetected chemical substitutions resulting in a wrong esti-
mate of the molecular mass of the unit cell content. We
excluded chemical substitutions by using raw materials of
very high purity, and the detection limits were too low for
undetected crystalline phases to cause a reduction of K in
the observed extent. The most likely explanation for lower K
values is, therefore, the presence of amorphous phases or
domains. This example also demonstrates that physical

mixtures of the two apparently phase-pure materials NIST
SRM 676a and rutile would not represent the assumed ratio
of crystalline corundum and rutile because undetected amor-
phous constituents would be introduced with the rutile mate-
rial. Such physical mixtures would, therefore, be unsuitable
for a method validation due to the unknown true nominal
ratio of the crystalline phases. After stripping the impurity sig-
nals from the zincite dataset and normalizing the zincite and
rutile intensities to the reference KSRM value, refinement of
the processed datasets resulted in identical K values (Table I).

From the normalized zincite and rutile reference patterns,
we created 21 different compositions in 10-fold replication
(Figure 4), resulting in 210 datasets in total. Since the refer-
ence patterns were rescaled and numerically merged but
their measured peak shape and background evolution were
preserved, we refer to the multi-phase patterns as “semi-
synthetic” datasets. Refining them with three different refine-
ment strategies exposed the strengths and weaknesses of each
strategy in terms of accuracy and precision of the refined phase
quantities. The “no restrictions” strategy refined a large num-
ber of profile parameters for both phases. It yielded by far the
most accurate results at a 50:50 wt% phase ratio (Figure 5),
albeit with a greater standard deviation than the more
restricted strategies. At lower and higher zincite content, it
tended to over-estimate the less abundant phase, and when
the rutile content reached 1 wt% or less, the refinement
became unstable. The strategies restricting refinement of one
of the two phases to basic profile parameters clearly showed
that the quantification was more stable (higher accuracy and
precision) when the restricted phase approached 0 wt%.

A more demanding composition of three phases, includ-
ing one with overlapping peaks and severe crystallite
size-related peak broadening, was chosen as a second exam-
ple. The 17 mixtures of α-TCP, CDHA, and β-TCP were sim-
ulated 10-fold and refined with a strategy of moderate
complexity (Table IV). Figure 7 shows an example refinement
of composition 45 wt% α-TCP + 45 wt% CDHA + 10 wt%
β-TCP that demonstrates the complexity of the overlapping

TABLE VI. Refinement results of example 2 containing α-TCP, CDHA, and β-TCP.

Composition

α-TCP CDHA β-TCP

�D+SDNominal Refined Nominal Refined Nominal Refined

1 90.00 88.68 ± 0.27 0.00 0.29 ± 0.31 10.00 11.03 ± 0.13 1.70 ± 0.43
2 89.80 88.25 ± 0.27 0.20 0.60 ± 0.26 10.00 11.15 ± 0.16 1.97 ± 0.41
3 89.50 87.85 ± 0.32 0.50 1.07 ± 0.36 10.00 11.09 ± 0.20 2.06 ± 0.52
4 89.00 87.17 ± 0.35 1.00 1.85 ± 0.37 10.00 10.98 ± 0.09 2.24 ± 0.52
5 88.00 86.30 ± 0.27 2.00 2.56 ± 0.27 10.00 11.14 ± 0.27 2.12 ± 0.47
6 85.00 83.18 ± 0.16 5.00 5.75 ± 0.16 10.00 11.08 ± 0.21 2.25 ± 0.31
7 80.00 78.00 ± 0.23 10.00 10.84 ± 0.19 10.00 11.15 ± 0.07 2.46 ± 0.31
8 70.00 68.06 ± 0.22 20.00 20.96 ± 0.22 10.00 10.97 ± 0.10 2.37 ± 0.33
9 45.00 43.22 ± 0.27 45.00 45.98 ± 0.15 10.00 10.80 ± 0.17 2.18 ± 0.35
10 20.00 19.06 ± 0.12 70.00 70.47 ± 0.18 10.00 10.47 ± 0.18 1.15 ± 0.28
11 10.00 9.37 ± 0.14 80.00 80.22 ± 0.12 10.00 10.41 ± 0.14 0.78 ± 0.23
12 5.00 4.55 ± 0.10 85.00 85.02 ± 0.15 10.00 10.43 ± 0.13 0.62 ± 0.22
13 2.00 1.79 ± 0.10 88.00 87.68 ± 0.25 10.00 10.53 ± 0.22 0.65 ± 0.35
14 1.00 1.00 ± 0.37 89.00 88.46 ± 0.48 10.00 10.54 ± 0.24 0.76 ± 0.65
15 0.50 0.74 ± 0.31 89.50 88.91 ± 0.36 10.00 10.36 ± 0.15 0.73 ± 0.50
16 0.20 0.36 ± 0.09 89.80 89.23 ± 0.29 10.00 10.41 ± 0.23 0.72 ± 0.38
17 0.00 0.28 ± 0.18 90.00 89.40 ± 0.31 10.00 10.32 ± 0.18 0.74 ± 0.40

All values are given in wt%, errors represent one standard deviation (SD, n = 10). A quality index �D was calculated as �D =
������������������������������
D2
a−TCP + D2

CDHA + D2
b−TCP

√
, where

Δ = Nominal – Refined. SD =
������������������������������������
SD2

a−TCP + SD2
CDHA + SD2

b−TCP

√
.

TABLE VII. Validated parameters for α-TCP and CDHA in a mixture
containing 10 wt% β-TCP contamination.

Parameter α-TCP CDHA

Linearity 0–5% α-TCP 0.9969 0.9995
Linearity 10–80% α-TCP 1.0000 1.0000
Linearity 85–90% α-TCP 0.9946 0.9928
LOD 0.81 wt% 1.23 wt%
LOQ 1.17 wt% 1.85 wt%

LOD = limit of detection = xblank + 3⋅SD
LOQ = limit of quantification = xblank + 5⋅SD.
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Figure 7. An example refinement of example 2 (nominal composition 45 wt% α-TCP + 45 wt% CDHA + 10 wt% β-TCP) converged with χ2 = 1.20.

Figure 8. The mean value (�Q) and standard deviation (Std. Dev.) of the refined α-TCP phase quantity in example 2 fluctuated at low numbers of simulations, but
stabilized when at least 29 datasets were processed. Between 29 and 99 repetitions, the mean value �Q1...n remained within one standard error (Std. Err.) from the
mean value of 100 repetitions (�Q1...100).
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phase signals. The mean refined phase quantities (Table VI)
showed that α-TCP was slightly under-estimated for the
most part of the compositional range, but became over-
estimated at a nominal quantity below 1.0 wt%, when the
peak height approached the counting noise amplitude. The
constant amount of β-TCP impurity was over-estimated in
all compositions. Validation parameters (Table VII) showed
excellent linearity of both α-TCP and CDHA phase quantities
in the entire simulated compositional range, but relatively high
limits of detection and quantification due to over-estimation at
low phase content. If an implementation of this quantification
method required lower limits, a refinement strategy optimized
for low phase content, possibly combined with a slower counting
time to improve the signal-to-noise ratio, could be considered.

According to the “Guide to the expression of uncertainty
in measurement” (JCGM, 2008), the number of repetitions n
from which an arithmetic mean value and experimental stan-
dard deviation are determined, should be large enough to
ensure that both values are reliable estimates of the population.
In other words, the number of simulations n for each phase
composition must be sufficiently large to reliably represent
the mean values and standard deviations obtained from an infi-
nite number of measurements of a real sample. To assess how
the refined mean phase quantities (�Q), their experimental stan-
dard deviation (Std. Dev.), and standard error of the mean
(Std.Err. = Std.Dev./

��
n

√
) are affected by the number of rep-

etitions n, we simulated one composition of example 2 (45 wt
% α-TCP + 45 wt% CDHA + 10 wt% β-TCP) 100 times. The
statistical parameters were then determined for the first n data-
sets, while n was gradually increased from 1 to 100. The arith-
metic mean of the refined α-TCP phase quantity, as well as the
experimental standard deviation and standard error of the
mean for n ranging from 1 to 100 are presented in Figure 8.
The mean and standard deviation were strongly affected by
individual results when n was less than 29. For n≥ 29, both
values approached the mean and standard deviation obtained
from 100 repetitions. Less fluctuation was observed among
the mean values of refined CDHA phase quantities (not
shown), but the standard deviations approached the values
obtained from 100 repetitions when n was≥ 20. These find-
ings clearly show that the determination of realistic mean
phase quantities and standard deviations requires a number
of repetitions (29 in our example 2) which in most cases can
no longer be economically justified with real samples. The
number of simulated semi-synthetic datasets can, however,
be increased without significant effort. Especially in combina-
tion with a refinement software that supports batch processing,
the additional effort due to a high number of repetitions only
manifests itself in an increased computing effort, which is of
negligible economic impact.

Using only one processed reference dataset per phase to
create all semi-synthetic multi-phase datasets was sufficient
to assess the effect of the refinement strategy on the quality
of the results. However, a validation also requires operator,
instrumental, and environmental influences on the results to
be quantified. These factors can be taken into consideration
by preparing and measuring a larger number of HSN datasets
for each reference material by multiple operators on different
days, which are then selected in a random manner to compose
the multi-phase datasets. Six reference datasets of two (three)
materials can be combined in 36 (216) unique pairs, thus min-
imizing repetitions and incorporating the external error

sources in the semi-synthetic datasets. Using multiple refer-
ence datasets for each phase also introduces a variability of
the measured background signal and the refined background
polynomial, which is subtracted from the measured intensities
[Eq. (7)] prior to impurity stripping and intensity normaliza-
tion. This additional source of error further improves the sig-
nificance of semi-synthetic datasets approximating datasets of
real phase mixtures.

The procedure we presented here produces highly realistic
diffraction patterns of precisely known phase composition. In
real multi-phase mixtures, however, the ratio of diffraction
signal intensities of the individual phases can be biased by
micro-absorption. This phenomenon occurs in samples con-
taining phases of high absorption contrast and particles large
enough to absorb a significant amount of radiation. In that
case, X-rays interacting with strongly absorbing phases are
diffracted by a smaller interaction volume than those interact-
ing with phases exhibiting low absorption coefficients. As a
result, the diffraction signals of weakly absorbing phases are
emphasized, and those of strongly absorbing phases are sup-
pressed, and the ratios of signal strength no longer reflect
the ratio of phase abundances. The bias diminishes if the par-
ticles are small enough to allow X-rays interacting with a num-
ber of particles that is representative for the composition of the
sample. The first approach to mitigating micro-absorption bias
is, therefore, a reduction of particle size. Madsen and Scarlett
(2008) also proposed using a wavelength at which the absorp-
tion contrast is minimized or at which absorption is generally
low, thus allowing the radiation to interact with a large sample
volume. Brindley (1945) proposed a mathematical correction
for the effect of micro-absorption on phase quantification,
but the model requires knowledge of the particle size and is
severely limited by broad and skewed particle size distribu-
tions. Our procedure for the preparation of semi-synthetic
datasets does not simulate the effect of micro-absorption in
its current incarnation. In samples containing phases of strong
absorption contrast, an additional systematic error may thus be
present which is not accounted for by our approach. This addi-
tional bias can be determined experimentally by quantifying a
real mixture of the reference phases. Differences in K values of
the pure substances before processing of the datasets must be
taken into account to determine the actual expected phase frac-
tions. For example, a precise 50:50 mixture by weight of our
rutile and zincite reference materials effectively contains
46.27 wt% rutile + 47.00 wt% zincite + 0.16 wt% corundum
+ 6.57 wt% unknown phases in absolute weight fractions, or
49.52 wt% rutile + 50.31 wt% zincite + 0.17 wt% corundum
in relative weight fractions, according to the compositions
and K values listed in Table I. If the quantification of a real
mixture results in a systematic error greater than that deter-
mined from the semi-synthetic datasets, the additional bias
should be attributed to micro-absorption.

A second limitation of our approach is related to preferred
orientation, which tends to be over-emphasized in datasets
obtained by a numerical combination of stripped and normal-
ized reference patterns. Anisotropic crystals within a biphasic
mixture may be stabilized by the crystals of the second phase,
which reduces preferred orientation. The reference patterns
used to compose semi-synthetic datasets, however, are mea-
sured in nearly pure condition and composed with other
phase patterns numerically after data collection. They may,
therefore, be devoid of the stabilizing effect of the other
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phases and show stronger signs of preferred orientation.
Full-pattern data processing methods, including Rietveld
refinement, are generally more robust against the bias emerg-
ing from orientation effects than single-peak based methods
because the overall intensity of the pattern remains
unchanged. Although Rietveld refinement programs imple-
ment algorithms for refinement of preferred orientation param-
eters, the common March–Dollase function (Dollase, 1986) is
only a crude approximation to reality and may not adequately
correct for extreme orientation effects. More sophisticated
models using symmetrized spherical harmonics (Järvinen,
1993) have been implemented in some programs, and the
implementation in BGMN, the Rietveld refinement kernel
applied in the present study, has been found to be particularly
robust even in cases of strong texture (Bergmann et al., 2001).
The extent of systematic errors in phase quantifications intro-
duced by preferred orientation thus not only depends on the
extent of orientation but also on the correction model imple-
mented in the refinement program. From a regulatory point
of view, over-estimation of errors is generally considered
less critical than under-estimation because a conservative esti-
mate does not imply unrealistic precision and accuracy. The
over-emphasis of texture in our reference datasets may lead
to such an over-estimate if phases prone to severe preferred
orientation are involved. Therefore, more rigorous strategies
may be required to mitigate preferred orientation than would
be necessary in case of multi-phase samples.

The limitations of our method discussed above clearly
illustrate that compliance with the common rules for good
sample preparation and data collection is of utmost impor-
tance. These rules aim at minimizing artifacts due to micro-
absorption and texture as well as changes in the sample during
preparation, while also achieving optimal particle statistics.

All data manipulations described in Eqs. (1)–(17) were
performed with the programs Profex version 4.1-beta
(Doebelin and Kleeberg, 2015) and BGMN version 4.2.23
(Bergmann et al., 1998). Rietveld refinements, calculation of
MACs, and calculations of K values [Eqs. (3)–(6)] were per-
formed with BGMN using Profex as a graphical user interface.
Algorithms for pattern merging and rescaling [Eqs. (1) and
(2)], impurity stripping and normalization [Eqs. (7)–(11)],
and pattern simulation [Eqs. (12)–(17)] were implemented
directly in Profex and are available in versions 4.1 and newer.

IV. CONCLUSION

We present a procedure for obtaining a large number of
XRD datasets with exactly known phase composition from
relatively pure reference materials that can be used to validate
phase quantification methods. This simplifies the search for
high-purity reference substances, and a large number of com-
positions in a statistically significant number of replicates can
be processed with little effort. Especially in systems contain-
ing more than two phases, the number of required mixing
ratios can quickly become unmanageable. By using semi-
synthetic datasets, the detection and quantification limits, pre-
cision, accuracy, and linearity can be reliably determined in
such systems.
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