
Publications of the Astronomical Society of Australia (PASA), Vol. 32, e033, 14 pages (2015).
C© Astronomical Society of Australia 2015; published by Cambridge University Press.
doi:10.1017/pasa.2015.33

Hyper-Fit: Fitting Linear Models to Multidimensional Data with
Multivariate Gaussian Uncertainties

A. S. G. Robotham and D. Obreschkow
ICRAR, M468, University of Western Australia, Crawley, WA 6009, Australia
Email: Aaron.robotham@uwa.edu.au

(Received July 01, 2015; Accepted August 10, 2015)

Abstract

Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covari-
ant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D − 1)-
dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best
fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical lan-
guage (github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (hyperfit.icrar.org). The hyper-fit
package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an
extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper, we include
applications to toy examples and to real astronomical data from the literature: the mass-size, Tully–Fisher, Fundamental
Plane, and mass-spin-morphology relations. In most cases, the hyper-fit solutions are in good agreement with published
values, but uncover more information regarding the fitted model.

Keywords: fitting – statistics

1 INTRODUCTION

There is a common conception that the method used for fit-
ting multidimensional data is a matter of subjective choice.
However, if the problem is mathematically well-defined, the
optimal fitting solution is, in many cases, unique. This pa-
per presents the optimal maximum likelihood fitting solution
(with the caveats that a maximum likelihood fitting approach
entails) for the frequently encountered case schematised in
Figure 1, where D-dimensional data (i) have multivariate
Gaussian uncertainties (these may be different for each data
point), and (ii) randomly sample a (D − 1)-dimensional plane
(a line if D = 2, a plane if D = 3, a hyperplane if D ≥ 4) with
intrinsic Gaussian scatter. In particular, the data have no de-
fined predictor/response variable. Hence, standard regression
analysis does not apply, and in general, it would yield differ-
ent geometric solutions depending on axis-ordering (though
see von Toussaint 2015, which presents the necessary prior
modifications to make traditional intrinsic-scatter-free re-
gression analysis rotationally invariant).

Within the assumptions above, the (D − 1)-dimensional
plane that best explains the observed data is unique and can
be fit using a traditional likelihood method. In this paper,
we present the general D-dimensional form of the likelihood

function and release a package for the R statistical program-
ming language (hyper-fit) that optimally fits data using this
likelihood approach. We also release a user-friendly web in-
terface to run hyper-fit online and apply our algorithm to
common relations in galaxy population studies.

Other authors have investigated the problem of regression
and correlation analysis (Kelly 2007; Hogg, Bovy, & Lang
2010; Kelly 2011; von Toussaint 2015) with the aim of im-
proving on the ad-hoc use of standard linear or multi-variate
regression, reduced χ2 analysis, computationally expensive
(and usually unnecessary) bootstrap resampling, and the
‘bisector method’ that is sometimes wrongly assumed to be
invariant with respect to an arbitrary rotation of the data.
Of recent work that is familiar in the astronomical commu-
nity, Kelly (2007) presents a comprehensive approach for lin-
ear regression analysis with support for non-detections, and
made available idl code that can analyse multi-dimensional
data with a single predictor variable. More recently, Hogg
et al. (2010) describes the approach to attack such joint re-
gression problems in two dimensions. Taylor et al. (2015)
describes an approach to extend the work of Hogg et al.
(2010) to multiple Gaussian mixture models to model the
red and blue populations in the Galaxy And Mass Assem-
bly survey (Liske et al. 2015). Here, we extend Hogg et al.
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2 Robotham and Obreschkow

Figure 1. Schematic representation of the linear model (blue) fitted to the
data points (red). Both the model and the data are assumed to have Gaussian
distributions, representing intrinsic model scatter and statistical measure-
ment uncertainties, respectively. In both cases, 1σ -contours are shown as
dashed lines.

(2010) to arbitrary dimensions and include a suite of tools to
aid scientists with such analysis.

In Section 2, we describe the likelihood method for an
arbitrary number of dimensions and for different projection
systems (to allow for maximum flexibility in its application).
In Section 3, we describe and publicly release the hyper-fit
package for R, a user friendly and fully-documented package
that can be applied to such problems. We also introduce a
simple web interface for the package. In Section 4, we show
simple applications of hyper-fit to toy examples, including
the dataset presented in Hogg et al. (2010). In Section 5, we
show more advanced examples taken directly from published
astronomy papers, where we can compare our fitting proce-
dure against the relationships presented in the original work.
In the appendix, we add a discussion regarding the subtle
biases contained in an extraction of model intrinsic scatter,
and provide a route to properly account for a non-uniformly
sampled data. We also illustrate the implementation of the
2D-fitting problem in hierarchical Bayesian inference soft-
ware, with an illustrative model using Just Another Gibbs
Sampler ( jags1).

2 MATHEMATICAL DERIVATION

This section develops the general theory for fitting data points
in D dimensions by a (D−1)-dimensional plane, such as fit-
ting points in two dimensions by a line (Figure 1). As de-
scribed in Section 1, we assume that the data represent a ran-
dom sample of a population exactly described by a (D−1)-
dimensional plane with intrinsic Gaussian scatter, referred
to as the ‘generative model’. The objective is to determine
the most likely generative model, by fitting simultaneously
for the (D−1)-dimensional plane and the intrinsic Gaus-
sian scatter, given data points with multivariate Gaussian

1mcmc-jags.sourceforge.net/

uncertainties: the uncertainties are (1) different for each data
point (heteroscedasticity), (2) independent between different
data points, and (3) covariant between orthogonal directions,
e.g. x-errors and y-errors can be correlated. We first present
the general method in D dimensions in coordinate-free form
(Section 2.1) and in Cartesian coordinates (Section 2.2). Ex-
plicit equations for the two-dimensional case are given in
Section 2.3. Subtleties and generalisations are presented in
the appendix.

2.1 Coordinate-free solution in D dimensions

Consider N data points i = 1, . . . , N in D dimensions. These
points are specified by the measured positions xi ∈ R

D rel-
ative to a fixed origin O ∈ R

D, and Gaussian measurement
uncertainties expressed by the symmetric covariance matri-
ces Ci. We can then fully express our knowledge about a
point i as the probability density function (PDF) ρ(x|xi), de-
scribing the probability that point i is truly at the position x
given the measured position xi. In the case where the intrinsic
distribution of points in any direction is uniform (the case of
non-uniform point distributions is discussed in Appendix B),
this PDF is symmetric, i.e. ρ(x|xi) = ρ(xi|x), and reads

ρ(xi|x) = 1√
(2π)D|Ci|

e− 1
2 (x−xi )

�C−1
i (x−xi ). (1)

In Figure 1, these PDFs are shown as red shading.
The data points are assumed to be randomly sampled from

a PDF, called the generative model, defined by a (D−1)-
dimensional planeH ⊂ R

D (a line if D = 2, a plane if D = 3,
a hyperplane if D ≥ 4) with Gaussian scatter σ⊥ orthogonal
to H. Note that the scatter remains Gaussian along any other
direction, not parallel to H. The blue shading in Figure 1
represents this generative model, with the solid line indicat-
ing the central line H and the dashed lines being the parallel
lines at a distance σ⊥ from H. The plane H is fully specified
by the normal vector n ⊥ H going from O to H, and the
distance of a point x ∈ R

D from H equals |n̂�x − n|, where
n = |n| and n̂ = n/n. Thus, H is the ensemble of points x
that satisfy

n̂�x − n = 0 . (2)

Given this parameterisation, the generative model is fully
described by the PDF

ρm(x) = 1√
2πσ 2

⊥
e
− (n̂�x−n)2

2σ2⊥ , (3)

expressing the probability of generating a point at position
x. Note that we here assume that the generative model is
infinitely uniform along any dimension in the plane. If the
selection function was, e.g. a power law distribution, then
ρ(x|xi) �= ρ(xi|x), and Equation (3) cannot be a simply
stated. Such scenarios are discussed in Appendix B.
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Hyper-Fit 3

The likelihood of measuring data point i at position xi then
equals

Li =
∫

RD
dx ρ(xi|x)ρm(x) = 1√

2πs2
⊥,i

e
− (n̂�xi−n)2

2s2⊥,i , (4)

where s2
⊥,i ≡ σ 2

⊥ + n̂�Cin̂. Following the Bayesian theorem
and assuming uniform priors on n̂ and σ⊥, the most likely
model maximises the total likelihoodL = ∏N

i=1 Li and hence
its logarithm lnL. Up to an additive constant N

2 ln(2π),

lnL = −1

2

N∑
i=1

[
ln(s2

⊥,i) + (n̂�xi − n)2

s2
⊥,i

]
. (5)

Note that Equation (5) is manifestly rotationally invariant in
this coordinate-free notation, as expected when fitting data
without a preferred choice of predictor/response variables.
For the purpose of numerical optimisation, free parameters
in the form of unit vectors are rather impractical, because of
their requirement to have a fixed norm. It is therefore helpful
to express Equation (5) entirely in terms of n, without using
n̂ and n,

lnL =−1

2

N∑
i=1

[
ln

(
σ 2

⊥+
n�Cin
n�n

)
+ (n�[xi − n])2

σ 2
⊥n�n+n�Cin

]
. (6)

In summary, assuming that the data samples a linear genera-
tive model described by Equation (3), the model-parameters
that best describe the data are found by maximising the like-
lihood function given in Equation (5) or (6).

2.2 Notations in Cartesian coordinates

For plotting and further manipulation, it is often useful to
work in a Cartesian coordinate system with D orthogonal
coordinates j = 1, . . . , D. The typical expression of a linear
model in such coordinates is

xD = �D−1
j=1 α jx j + β, (7)

where x j is the j-th coordinate of x = (x1, . . . , xD)�, α j =
∂xD/∂x j is the slope along the coordinate j, and β is the zero-
point along the coordinate D. Equation (7) can be rewritten
as α�x + β = 0, where α� ≡ (α1, . . . , αN−1,−1) is a nor-
mal vector of the (D−1)-dimensional plane. The Gaussian
scatter about this plane is now parameterised with the scatter
σD along the coordinate D. A vector calculation shows that
the transformation between the coordinate-free model pa-
rameters {n, σ⊥} and the coordinate-dependent parameters
{α, β, σD} takes the form

n = −βα(α�α)−1

σ⊥ = σD(α�α)−1/2 (8)

or, inversely,

α = −n/nD

β = (n�n)/nD (9)

σD = σ⊥(n�n)1/2/|nD|.

In practice, one can always fit for {n, σ⊥} by maximising
Equation (6) and then convert {n, σ⊥} to {α, β, σD}, if desired.
Alternatively, we can rewrite Equation (6) directly in terms
of the parameters {α, β, σD} as

lnL = 1

2

N∑
i=1

[
ln

α�α

σ 2
D + α�Ciα

− (α�xi + β)2

σ 2
D + α�Ciα

]
, (10)

however, this formulation of the likelihood is prone to op-
timisation problems since the parameters diverge when H
becomes parallel to the coordinate D.

2.3 Two-dimensional case

Let us now consider the special case of N points in D = 2
dimensions (Figure 1), adopting the standard ‘xy’ notation,
where x replaces x1 and y replaces x2 = xD. The data points
are specified by the positions xi = (xi, yi)

� and heteroscedas-
tic Gaussian errors σx,i and σy,i with correlation coefficients
ci; thus the covariance matrix elements are (Ci)xx = σ 2

x,i,
(Ci)yy = σ 2

y,i, (Ci)xy = σxy,i = ciσx,iσy,i. These points are to
be fitted by a line

y = αx + β, (11)

which we can also parameterise by the normal vector n =
n(cos φ, sin φ)� going from the origin to the line. The pa-
rameters α, β, and σy (σy = σD being the intrinsic scatter
along y) are then given by [following Equation (9)]

α = −1

tan φ
, β = n

sin φ
, σy = σ⊥

| sin φ| , (12)

which manifestly diverge as the line becomes vertical (φ ∈
πZ). In these notations, Equations (5) and (10) simplify to

lnL = −1

2

N∑
i=1

[
ln s2

⊥,i+
(xi cos φ+yi sin φ−n)2

s2
⊥,i

]

= 1

2

N∑
i=1

[
ln

α2 + 1

s2
y,i

− (αxi − yi + β)2

s2
y,i

]
, (13)

where s2
⊥,i ≡ σ 2

⊥ + σ 2
x,i cos2φ + σ 2

y,i sin2φ + 2σxy,i cos φ sin φ

and s2
y,i ≡ σ 2

y + σ 2
x,iα

2 + σ 2
y,i − 2σxy,iα (reminder: σy is the in-

trinsic vertical scatter of the model, whereas σy,i is the ver-
tical uncertainty of point i). The most likely fit to the data
is obtained by maximising Equation (13), either through ad-
justing the parameters (φ, n, σ⊥) or (α, β, σy). Following
Appendix A, unbiased estimators for the population-model
(as opposed to the sample-model) of the scatter σ⊥ or σy and
its variance σ 2

⊥ or σ 2
y can be obtained via Equations (A2) and

(A1), respectively.
It is worth stressing that the exact Equation (13) never

reduces to the frequently used, simple minimisation of
χ2 ≡ ∑

i(yi − αxi − β)2, not even if the data has zero uncer-
tainties and if the intrinsic scatter is fixed. This reflects the
fact that the χ2-minimisation breaks the rotational invariance
by assuming a uniform prior for the slope α (rather than the
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4 Robotham and Obreschkow

angle φ). The term ln(α2 + 1) in Equation (13) is needed to
recover the rotational invariance.

3 NUMERICAL IMPLEMENTATION

Having established the above mathematical framework for
calculating the likelihood for a multi-dimensional fit, we de-
veloped a fully documented and tested R package called
hyper-fit. This is available through a github repository2

and can be installed from within R with the following
commands:

> install.packages('magicaxis',
dependencies=TRUE)

> install.packages('MASS',
dependencies=TRUE)

> install.packages('rgl',
dependencies=TRUE)

> install.packages('devtools')

> library(devtools)

> install_github('asgr/

LaplacesDemon')

> install_github('asgr/hyper.fit')

To load the package into your R session, run

> library(hyper.fit)

The core function that utilises the maths presented in the pre-
vious Section is hyper.like, which calculates the likeli-
hood (Equation 6) for a given set of hyperplane parameters
and a given dataset. This dataset can be error-free, or include
covariant and heteroscedastic errors. To fit a hyperplane, the
hyper.like function is accessed by hyper.fit, a util-
ity fitting function that attempts to optimally fit a generative
model to the data. The package includes a number of user-
friendly summary and plotting outputs in order to visualise
the fitted model and investigate its quality. The full 35 pages
manual detailing the hyper-fit package can be viewed at
hyperfit.icrar.org, and is included within the help files of the
package itself (e.g. see > ?hyper.fit within R once the
package is loaded.).

3.1 Hyper.like

The basic likelihood function hyper.like requires the
user to specify a vector of model parametersparm, an N × D
dimensional position matrixX (where N is the number of data
points and D the dimensionality of the dataset, i.e. 10 rows
by 2 columns in the case of 10 data points with x and y
positions) and a D × D × N array covarray containing

2https://github.com/asgr/hyper.fit

the covariance error matrix for each point stacked along the
last index. A simple example looks like

> hyper.like(parm, X, covarray)

parm must be specified as the normal vector n that points
from the origin to the hyperplane concatenated with the in-
trinsic scatter σ⊥ orthogonal to the hyperplane. E.g. if the
user wants to calculate the likelihood of a plane in 3D
with equation z = 2x + 3y + 1 and intrinsic scatter along
the z-axis of 4, this becomes a normal vector with el-
ements [−0.143,−0.214, 0.071] with intrinsic scatter or-
thogonal to the hyperplane equal to 1.07. In this case,
parm=c(-0.143, -0.214, 0.071, 1.07), i.e. as
expected, a 3D plane with intrinsic scatter is fully described
by 4 (= D + 1) parameters. Because of the large number
of coordinate systems that unambiguously define a hyper-
plane (and many of them might be useful in different cir-
cumstances), the hyper-fit package also includes the func-
tion hyper.convert that allows the user to convert be-
tween coordinate systems simply. In astronomy, the Euclid-
ian z = α[1]x + α[2]y + β system is probably the most com-
mon (e.g. Fundamental Plane definition, Faber et al. 1987;
Binney & Merrifield 1998), but this has limitations when it
comes to efficient high dimensional hyperplane fitting, as we
discuss later.

3.2 Hyper.fit

In practice, we expect most user interaction with the hyper-
fit package will be via the higher levelhyper.fit function
(hence the name of the package). For example, to find an
optimal fit for the data in the N × D dimensional matrix X
(see Section 3.1) with no specified error, it suffices to run

> fit=hyper.fit(X)

This function interacts with the hyper.like function and
attempts to find the best generative hyperplane model via
a number of schemes. The user has access to three main
high-level fitting routines: the base R optim function (avail-
able with all installations), the LaplaceApproximation
function, and theLaplacesDemon function (both available
in the laplacesdemon package).

3.2.1 Optim

optim is the base R parameter optimisation routine. It al-
lows the user to generically find the maximum or minimum
of a target function via a number of built-in schemes that
are popular in the statistical optimisation community. The
default option is to use a Nelder–Mead (Nelder & Mead
1965) optimiser that uses only function values. This is ro-
bust but relatively slow, with the advantage that it will work
reasonably well for non-differentiable functions, i.e. it does
not compute the local hessian at every step. Conjugate gra-
dient (Hestenes & Stiefel 1952); quasi-Newtonian BFGS
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(Broyden, Fletcher, Goldfarb, and Shanno; Fletcher 1970);
and simulated annealing (Belisle 1992) are some of the other
popular methods available to the user. All of these schemes
are fully documented within the optim manual pages that
is included with any standard R implementation.

3.2.2 LaplaceApproximation

To offer the user more flexibility, we also allow access to
the non-base open-source MIT-licensed laplacesdemon
package that users can install from github.com/asgr/
LaplacesDemon (the direct R installation code is provided
above). It is developed by Statisticat and currently contains
18 different optimisation schemes. Many of these are shared
with optim (e.g. the default option of Nelder–Mead; con-
jugate gradient descent), but many are unique to the package
(e.g. Levenberg–Marquardt, Marquardt 1963; particle swarm
optimisation, Kennedy & Eberhart 1995).

The LaplaceApproximation function offers a host
of high level user tools, and with these object oriented exten-
sions, it tends to be slower to converge compared to the same
method inoptim. The large range of methods means the user
should be able to find a robustly converged solution in most
situations, without having to resort to much more compu-
tationally expensive Markov-Chain Monte-Carlo (MCMC)
methods accessed through the LaplacesDemon function
which is also available in the laplacesdemon package.

The LaplaceApproximation function and the wider
laplacesdemon package is extensively documented, both
in the bundled manual and at the www.bayesian-inference.
com website3 maintained by the package developers.

3.2.3 LaplacesDemon

The final hyperplane fitting function that users of hyper-fit
have access to is LaplacesDemon which is also included
in the laplacesdemon package. The function includes a
suite of 41 MCMC routines, and the number is still growing.
For hyper-fit, the default routine is Griddy–Gibbs (Ritter
& Tanner 1992), a component-wise algorithm that approx-
imates the conditional distribution by evaluating the likeli-
hood model at a set of points on a grid. This proved to have
attractive qualities and well-behaved systematics for rela-
tively few effective samples during testing on toy models.
The user also has access to a large variety of routine fami-
lies, including Gibbs; Metropolis–Hasting (Hastings 1970);
slice sampling (Neal 2003); and Hamiltonian Monte Carlo
(Duane et al. 1987).

In practice, the user should investigate the range of op-
tions available, and the optimal routine for a given problem
might not simply be the default provided. To aid the user
in choosing an appropriate scheme, the laplacesdemon
package includes a comprehensive suite of analysis tools
to analyse the post convergence Markov-Chains. The po-
tential advantages to use an MCMC approach to analyse

3https://web.archive.org/web/20141224051720/
http://www.bayesian-inference.com/index

the generative likelihood model are manifold, allowing the
user of hyper-fit to investigate complex high-dimensional
multi-modal problems that might not be well suited to the
traditional downhill gradient approaches included in optim
and LaplaceApproximation. Again, the function is ex-
tensively described both in the laplacesdemon package and
on the www.bayesian-inference.com website 4.

3.3 Plot

The hyper-fit package comes with a class sensitive plotting
function where the user is able to execute a command such
as

> plot(hyper.fit(X))

where X is a 2 × N or 3 × N matrix. The plot
displays the data with the best fit. If (uncorrelated
or correlated) Gaussian errors are given, e.g. via
plot(hyper.fit(X,covarray)), they are displayed
as 2D ellipses or 3D ellipsoids, respectively. The built-in
plotting only works in 2 or 3 dimensions (i.e. x,y or x,y,z
data), which will likely be the two most common hyperplane
fitting situations encountered in astronomical applications.

3.4 Summary

The hyper-fit package comes with a class sensitive sum-
mary function where the user is able to execute a command
such as

> summary(hyper.fit(X))

where X can be any (D × N)-array with D ≥ 2 dimensions.
Using summary for 2D data will produce an output similar
to

> summary(fitnoerror)

Call used was:

hyper.fit(X = cbind(xval, yval))

Data supplied was 5rows × 2cols.

Requested parameters:

alpha1 beta.vert scat.vert

0.4680861 0.6272718 0.2656171

Errors for parameters:

err_alpha1 err_beta.vert err_scat.vert

0.12634307 0.11998805 0.08497509

4https://web.archive.org/web/20141224051720/
http://www.bayesian-inference.com/index
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6 Robotham and Obreschkow

The full parameter covariance matrix:

alpha1 beta.vert scat.vert

alpha1 0.015962572 -0.0021390417
0.0016270601

beta.vert -0.002139042 0.0143971319 -
0.0002182796

scat.vert 0.001627060 -0.0002182796
0.0072207660

The sum of the log-likelihood for the
best fit parameters:

LL

4.623924

Unbiased population estimator for the
intrinsic scatter:

scat.vert

0.3721954

Standardised parameters vertically pro-
jected along dimension 2 (yval):

alpha1 beta.vert scat.vert

0.4680861 0.6272718 0.2656171

Standardised generative hyperplane equa-
tion with unbiased population esti-
mator for the intrinsic scatter, ver-
tically projected along dimension 2
(yval):

yval � N(mu= 0.4681∗xval + 0.6273,
sigma= 0.3722)

3.5 Web interface

To aid the accessibility of the tools, we have developed in
this paper, a high-level web interface to the hyper-fit pack-
age has been developed that runs on a permanent virtual
server using R Shiny 5. The hyper-fit computations are
executed remotely, and the web interface itself is in standard
JavaScript and accessible using any modern popular web
browser. This website interface to hyper-fit can be accessed
at hyperfit.icrar.org. The hyper-fit website also hosts the lat-
est version of the manual, and the most recent version of the
associated hyper-fit paper. The design philosophy for the
page is heavily influenced by modern web design, where the
emphasis is on clean aesthetics, simplicity, and intuitiveness.
The front page view of the web interface is shown in Figure 2.

The hyper-fit web tool allows access to nearly all of the
functionality of hyper-fit, with a few key restrictions:

• Only 2D or 3D analysis available (R hyper-fit allows
for arbitrary ND analysis)

5http://shiny.rstudio.com/

Figure 2. The front page view of the hyper-fit web tool available at hyper-
fit.icrar.org. The web tool allows users to interact with hyper-fit through
a simple GUI interface, with nearly all hyper-fit functionality available to
them. The code itself runs remotely on a machine located at ICRAR, and
the user’s computer is only used to render the website graphics.

• Uploaded files are limited to 2 000 or fewer row entries
(R hyper-fit allows for hard-disk limited size datasets)

• When using the LaplaceApproximation or
LaplacesDemon algorithms only 20 000 iterations
are allowed (R hyper-fit has no specific limit on the
number of iterations)

• A number of the more complex LaplacesDemon
methods are unavailable to the user because the specifi-
cation options are too complex to describe via a web in-
terface (R hyper-fit allows access to all Laplaces-
Demon methods)

In practice, for the vast majority of typical use cases, these
restrictions will not limit the utility of the analysis offered by
the web tool. For the extreme combination of 2 000 rows of
data and 20 000 iterations of one of the LaplacesDemon
MCMC samplers, users might need to wait a couple of min-
utes for results.

4 MOCK EXAMPLES

In this Section, we give some examples using two sets of
idealised mock data.

4.1 Simple examples

To help novice users get familiar with R and the hyper-fit
package, we start this Section by building the basic example
shown in Figure 1. We first create the central x and y positions
of the five data points, encoded in the five-element vectors
x_val and y_val,

> xval = c(-1.22, -0.78, 0.44, 1.01,
1.22)
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Figure 3. 2D fit with no errors. Figure shows the default plot output of the
hyper.plot2d function (accessed via the class specific plot method)
included as part of the R hyper-fit package, where the best generative
model for the data is shown as a solid line with the intrinsic scatter indicated
by dashed lines. The colouring of the points shows the ‘tension’ with respect
to the best-fit linear model and the measurement errors (zero in this case),
where redder colours indicate data that is less likely to be explainable.

> yval = c(-0.15, 0.49, 1.17, 0.72,
1.22)

We can obtain the hyper-fit solution and plot the result
(seen in Figure 3) with

> fitnoerror=hyper.fit(cbind(xval,
yval))

> plot(fitnoerror) (Figure 3)

Since this example has no errors associated with the data
positions, the generative model created has a large intrin-
sic scatter that broadly encompasses the data points (dashed
lines in Figure 3). Extending the analysis, we can add x-
errors x_err (standard deviations of the errors along the
x-dimension) and y-errors y_err and recalculate the fit and
plot (Figure 4) with

> xerr = c(0.12, 0.14, 0.20, 0.07,
0.06)

> yerr = c(0.13, 0.03, 0.07, 0.11,
0.08)

> fitwitherror=hyper.fit(cbind(xval,
yval), vars=cbind(xerr, yerr)ˆ2)

> plot(fitwitherror) (Figure 4)

Since we have added errors to the data, the intrinsic scatter
required in the generative model is reduced. To extend this
2D example to the full complexity of Figure 1, we assume
that we know xy_cor (the correlation between the errors
for each individual data point) and recalculate the fit and plot
(Figure 5) with
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Figure 4. 2D fit with uncorrelated (between x and y) errors. The errors are
represented by 2D ellipses at the location of the xy-data. See Figure 3 for
further details on this Figure. The reduction in the intrinsic scatter required
to explain the data compared to Figure 3 is noticeable (see the dashed line
intersects on the y-axis).
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Figure 5. 2D fit with correlated (between x and y) errors. The errors are
represented by 2D ellipses at the location of the xy-data. See Figure 3 for
further details on this Figure. The keen reader might notice that this Figure
uses data from the Figure 1 schematic.

> xycor = c(0.90, -0.40, -0.25, 0.00,
-0.20)

> fitwitherrorandcor=hyper.fit(cbind
> (xval, yval), covarray=
> makecovarray2d(xerr, yerr, xycor))

> plot(fitwitherrorandcor) (Figure 5)

The effect of including the correlations can be quite subtle,
but inspecting the intersections on the y-axis, it is clear that
both the best-fitting line and the intrinsic scatter have slightly
changed. To see how dramatic the effect of large errors can
be on the estimated intrinsic scatter, we can simply inflate
our errors by a large factor. We recalculate the fit and plot
(Figure 6) with
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Figure 6. 2D fit with correlated (between x and y) errors. The errors here
are a factor 1.9 times larger than used in Figure 5. See Figure 3 for further
details on this Figure.
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Figure 7. 2D fit with correlated (between x and y) errors. The errors here
are a factor 1.9 times larger than used in Figure 5 and the correlation matrix
is rotated by 90◦. See Figure 3 for further details on this Figure.

> fitwithbigerrorandcor=hyper.fit
(cbind(xval, yval),
covarray=makecovarray2d(xerr∗1.9,
yerr∗1.9, xycor))

> plot(fitwithbigerrorandcor) (Figure 6)

Per-data-point error covariance is often overlooked during
regression analysis because of the lack of readily available
tools to correctly make use of the information, but the impact
of correctly using them can be non-negligible. As a final
simple example, we take the input for Figure 6 and simply
rotate the covariance matrix by 90◦. We recalculate the fit
and plot (Figure 7) with

> fitwithbigerrorandrotcor=hyper.fit
> (cbind(xval, yval),
covarray=makecovarray2d(yerr∗1.9,
xerr∗1.9, -xycor))

> plot(fitwithbigerrorandrotcor)
(Figure 7)
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Figure 8. 2D toy data with correlated (between x and y) errors taken from
Hogg et al. (2010). The top panel shows the fit to the Hogg et al. (2010)
data minus row 3, as per exercise 17 and Figure 13 of Hogg et al. (2010),
the bottom panel shows the MCMC posterior chains for the intrinsic scatter,
as per Figure 14 of Hogg et al. (2010). The vertical dashed lines specify the
95th and 99th percentile range of the posterior chains, as requested for the
original exercise. See Figure 3 for further details on the top two panels of
this Figure.

The impact of simply rotating the covariance matrix is to
flatten the preferred slope and to slightly reduce the intrinsic
scatter.

4.2 Hogg example

In the arXiv paper by Hogg et al. (2010), the general approach
to the problem of generative fitting is explored, along with
exercises for the user. The majority of the paper is concerned
with 2D examples, and an idealised data set (Table 1 in
the paper) is included to allow readers to recreate their fits
and plots. This dataset comes bundled with the hyper-fit
package, making it easy to recreate many of the examples
of Hogg et al. (2010). Towards the end of their paper, they
include an exercise on fitting 2D data with covariant errors.
We can generate the hyper-fit solution to this exercise and
create the relevant plots (Figure 8) with
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> data(hogg)

> hoggcovarray= makecovarray2d(hogg
[-3,'x_err'], hogg[-3,'y_err'],
hogg[-3,'corxy'])

> plot(hyper.fit(hogg[-3,c('x', 'y')],
covarray=hoggcovarray)) (Figure 8)

The fit we generate agrees very closely with the example
in Hogg et al. (2010), which is not surprising since the
likelihood function we maximise is identical, bar a normal-
ising factor (i.e. an additive constant in lnL). The differ-
ences seen between Hogg’s Figure 14 and the bottom panel
of our Figure 8, showing the projected posterior chain den-
sity distribution of the intrinsic scatter parameter, are likely
to be due to our specific choice of MCMC solver. In our
hyper-fit example, we use Componentwise Hit-And-Run
Metropolis (CHARM, Turchin 1971), being a particularly
simple MCMC for a novice user to specify, and one that per-
forms well as long as the number of data points is greater
than ∼10.

5 ASTROPHYSICAL EXAMPLES

In this Section, we have endeavoured to include a mixture
of real examples from published astronomy papers. In some
cases, aspects of the data are strictly proprietary (in the sense
that the tables used to generate paper Figures have not been
explicitly published), but the respective authors have allowed
us to include the required data in our package.

5.1 2D Mass-size relation

The galaxy mass-size relation is a topic of great popularity
in the current astronomical literature (Shen et al. 2003; Tru-
jillo et al. 2004; Lange et al. 2015). The hyper-fit package
includes data taken from the bottom-right panel of Figure 3
from Lange et al. (2015). To do our fit on these data and cre-
ate Figure 9, we make use of the published data errors and
the 1/Vmax weights calculated for each galaxy by running

> data(GAMAsmVsize)

> plot(hyper.fit(GAMAsmVsize[,c
('logmstar', 'logrekpc')],
vars=GAMAsmVsize[,c('logmstar_err',
'logrekpc_err')]ˆ2,
weights=GAMAsmVsize[,'weights']))
(Figure 9)

This analysis produces a mass-size relation of

log10 Re ∼ N [μ = (0.382 ± 0.006) log10 M∗ − (3.53 ± 0.06),

σ = 0.145 ± 0.003],

where Re is the effective radius of the galaxy in kpc, N
is the normal distribution with parameters μ (mean) and
σ (standard deviation), and M∗ is the stellar mass in
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Figure 9. GAMA mass-size relation data taken from Lange et al. (2015)
See Figure 4 for further details on this Figure.
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Figure 10. Tully–Fisher data taken from Obreschkow & Meyer (2013),
with the best-fit hyper-fit generative model for the data shown as a solid
line and the intrinsic scatter indicated with dashed lines. See Figure 3 for
further details on this Figure.

solar mass units. The relation published in Lange et al.
(2015) is log10 Re = 0.46 ± 0.02(log10 M∗) − 4.38 ± 0.03.
The function in Lange et al. (2015) is noticeably steeper due
to being fit to the running median with weighting determined
by the spread in the data and the number of data points in the
stellar mass bin, rather than directly to the data including the
error.

5.2 2D Tully–Fisher relation

One of the most common relationships in extragalactic as-
tronomy is the so-called Tully–Fisher relation (TFR, Tully
& Fisher 1977). This tight coupling between inclination cor-
rected disc rotation velocity and the absolute magnitude (or,
more fundamentally, stellar mass) of spiral galaxies is an im-
portant redshift-independent distance indicator, as well as a
probe for galaxy evolution studies. Here, we use TFR data
included in the hyper-fit package that has been taken from
Figure 4 of Obreschkow & Meyer (2013), where we fit the
data and create Figure 10 with
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> data(TFR)

> plot(hyper.fit(TFR[,c('logv',
'M_K')], vars=TFR[,c('logv_err',
'M_K_err')]ˆ2)) (Figure 10)

This yields a TFR of

MK ∼ N [μ = (−9.3 ± 0.4) log10 vcirc − (2.5 ± 0.9),

σ = 0.22 ± 0.04],

where MK is the absolute K-band magnitude and vcirc is
the maximum rotational velocity of the disc in km s−1.
Obreschkow & Meyer (2013) find

MK ∼ N [μ = (−9.3 ± 0.3) log10 vcirc − (2.5 ± 0.7),

σ = 0.22 ± 0.06],

where all the fit parameters comfortably agree within quoted
errors. The parameter errors in Obreschkow & Meyer (2013)
were recovered via bootstrap resampling of the data points,
whereas hyper-fit used the covariant matrix via the inverse
of the parameter Hessian matrix. Using hyper-fit, we find
marginally less constraint on the slope and intercept, but
slightly more on the intrinsic scatter.

5.3 3D fundamental plane

Moving to a 3D example, perhaps the most common appli-
cation in the literature is the Fundamental Plane for elliptical
galaxies (Faber 1987; Binney & Merrifield 1998). This also
offers a route to a redshift-independent distance estimator,
but from a 3D relation rather than a 2D relation (although
an approximate 2D version also exists for elliptical galax-
ies via the Faber–Jackson relation; Faber & Jackson 1976).
In hyper-fit, we include 6dFGS data released in Campbell
et al. (2014), where we fit the data and generate Figure 11
with

> data(FP6dFGS)

> plot(hyper.fit(FP6dFGS[,c
('logIe_J', 'logsigma',
'logRe_J')], vars=FP6dFGS[,c
('logIe_J_err', 'logsigma_err',
'logRe_J_err')]ˆ2,
weights=FP6dFGS[,'weights'])) (Figure 11)

This yields a Fundamental Plane relation of

log10 ReJ ∼ N [μ = −(0.853 ± 0.005) log10 IeJ

+ (1.508 ± 0.012) log10 σvel − (0.42 ± 0.03),

σ = 0.060 ± 0.001],

where ReJ (in kpc) is the effect radius in the J-band, IeJ
(in mag arcsec−2) is the average surface brightness inten-
sity within ReJ and σvel (in km s−1) is the central velocity

Figure 11. 6dFGS Fundamental Plane data and hyper-fit fit. The two
panels are different orientations of the default plot output of the hy-
per.plot3d function (accessed via the class specific plot method)
included as part of the R hyper-fit package, where the best-fit hyper-
fit generative model for the data is shown as a translucent grey 3D plane.
The package function is interactive, allowing the user the rotate the data and
the overlaid 3D plane to any desired orientation. See Figure 3 for further
details on this Figure.

dispersion. Magoulas et al. (2012) find

log10 ReJ ∼ N [μ = −(0.89 ± 0.01) log10 IeJ

+ (1.52 ± 0.03) log10 σvel − (0.19 ± 0.01),

σ = 0.12 ± 0.01].

It is notable that our fit requires substantially less intrinsic
scatter than Magoulas et al. (2012). It is difficult to assess the
origin of this difference since the methods used to fit the plane
differ between this work and Magoulas et al. (2012), where
the latter fit a 3D generative Gaussian with 8◦ of parameter
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freedom, which is substantially more general than the 3D
plane with only 4◦ of parameter freedom that hyper-fit
used.

5.4 3D mass-spin-morphology relation

The final example of hyper-fit uses astronomical data from
Obreschkow & Glazebrook (2014). They measured the fun-
damental relationship between mass (here the baryon mass
(stars+cold gass) of the disc), spin (here the specific baryon
angular momentum of the disc), and morphology (as mea-
sured by the bulge-to-total mass ratio). Hereafter, this relation
is referred to as the MJB relation. This dataset is interesting
to analyse with hyper-fit because it includes error correla-
tion between mass and spin, caused by their common depen-
dence on distance. In hyper-fit, we included the MJB data
presented in Obreschkow & Glazebrook (2014). We can fit
these data and generate Figure 12 with

> data(MJB)

> plot(hyper.fit(X=MJB[,c('logM',
'logj', 'B.T')],
covarray=makecovarray3d(MJB$logM_err,
MJB$logj_err, MJB$B.T_err, MJB$corMJ,
0, 0))) (Figure 12)

This leads to a MJB relation of

B/T − (0.34 ± 0.03) log10 j − (0.04 ± 0.01),

σ = 0.002 ± 0.006],

where B/T is the galaxy bulge-to-total ratio, M is the disc
baryon mass in 1010 solar masses, and j is the specific baryon
angular momentum in 10−3 kpc km s−1 (see Obreschkow &
Glazebrook 2014, for details on measuring this quantity).
Obreschkow & Glazebrook (2014) find

B/T ∼ N [μ = (0.34 ± 0.03) log10 M
− (0.35 ± 0.04) log10 j − (0.04 ± 0.02),

σ = 0].

The agreement between hyper-fit and Obreschkow &
Glazebrook (2014) is excellent, with all parameters consis-
tent within quoted 1σ errors. Our results are consistent with
zero intrinsic scatter within parameter errors. In fact, running
the analysis using MCMC and the CHARM algorithm, we
used hyper-fit to directly sample the likelihood of the in-
trinsic scatter being exactly 0. This is possible because we
use the wall condition that any intrinsic scatter sample below
0 (which is non-physical) is assigned to be exactly 0. We find
that 90.4% of the posterior chain samples have intrinsic scat-
ter of exactly 0 post application of the wall condition (which
imposes a spike + slab posterior), which can be interpreted
to mean that the data is consistent with P(σ = 0) = 0.904.

This agrees with the assessment in Obreschkow & Glaze-
brook (2014), where they conclude that the 3D plane gen-

Figure 12. Mass-spin-morphology (MJB) data and hyper-fit fit. The two
panels are different orientations of the default plot output. All error ellipsoids
overlap with the best-fit 3D plane found using hyper-fit, implying that the
generative model does not require any additional scatter. Indeed the observed
data is unusually close to the plane, implying slightly overestimated errors.
See Figures 3 and 11 for further details on this Figure.

erated does not require any additional scatter to explain the
observed data, probably indicating that the errors have been
overestimated6.

6If the real generative model is a hyperplane with no scatter then we expect to
observe P(σ = 0) = U (0, 1), where U is the uniform distribution. P(σ =
0) can be cast as the frequentist p-value, where the null hypothesis is a
generative model with no intrinsic scatter. The posterior we form via the
addition of the wall condition is formally not a Bayesian posterior. A fully
rigorous approach would be to compare Bayes factors for a model with
σ = 0 and another model with σ > 0. Using the wall condition, posterior as
described should alert the user to situations where such a model comparison
is potentially necessary.
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6 CONCLUSION

In this paper, we have extended previous work (Kelly 2007;
Hogg et al. 2010; Kelly 2011) to describe the general form
of the D dimensional generative hyperplane model with in-
trinsic scatter. We have also provided the fully-documented
hyper-fit package for the R statistical programming lan-
guage, available immediately for installation via github7. A
user friendly Shiny web interface has also been developed
and can be accessed at hyperfit.icrar.org. The hyper-fit ver-
sion released in conduction with this paper is v1.0.2, and
regular updates and support are planned.

To make the package as user-friendly as possible, we have
provided examples for simple 2D datasets, as well as complex
3D datasets utilising heteroscedastic covariant errors taken
from Obreschkow & Glazebrook (2014). We compared the
published fits to the new hyper-fit estimates, and in most
cases find good agreement for the hyperplane parameters (not
all original papers attempt to make an intrinsic scatter esti-
mate). hyper-fit offers users access to higher level statistics
(e.g. the parameter covariance matrix) and includes simple
class sensitive summary and plot functions to assist in
analysing the quality of the generative model.

The ambition is for hyper-fit to be regularly updated
based on feedback and suggestions from the astronomy and
statistics community. As such, in the long term, the docu-
mentation included as part of the package might supersede
some details provided in this paper.

7 FUTURE WORK

The current R hyper-fit package does not have a mecha-
nism for handling censored data, and we currently implicitly
assume a uniform population distribution along the hyper-
plane. Both of these issues can arise with astronomy data,
where typically some fraction of sources might be left cen-
sored (i.e. below a certain value but uncertain where, and
usually represented by an upper limit) and sampled from an
unknown power-law type distribution (hyper-fit allows for
the description of known power-law selection functions, see
Appendix B). A future extension for hyper-fit will allow for
multi-parameter censoring, i.e. where a data point might exist
some subset of parameters (e.g. stellar mass and redshift) but
only has an upper limit for others (e.g. star-formation rate and
HI mass). Kelly (2007) allows for censoring of the response
variable, but not multiple observables simultaneously. It is
possible to account for such censoring using a hierarchical
Bayesian inference software program, such as bugs, jags, or
stan. An example jags model of the hyper-fit scheme is
provided in Appendix C. We also aim to allow generic distri-
bution functions along and perpendicular to the hyperplane
including power-laws and Gaussian mixture models. Again,
using a hierarchical Bayesian inference, software program
is one potential route to achieve this, but at the expense of
generalisability and simplicity.

7github.com/asgr/hyper.fit
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A INTRINSIC SCATTER ESTIMATOR BIAS

A subtle point is that the expectation of the most likely model is
not generally identical to the true model. Let us assume a fixed
generative model described by Equation (3) with known parameters
ntrue and σ true

⊥ . From this model, we randomly draw a sample of N
points and estimate the most likely values, i.e. the modes, nML

and σ ML
⊥ by maximising Equation (5). This procedure is repeated

ad infinitum, always with the same model and the same number
of points, resulting in infinitely many different estimates nML and
σ ML

⊥ . By definition, the expectations of these estimators are the
ensemble-averages 〈nML〉 and 〈σ ML

⊥ 〉. The question is whether these
expectations are identical to the input parameters ntrue and σ true

⊥ . If
so, the estimators are called unbiased, if not, they are biased. The
mirror-symmetry of our generative model implies that nML is an
unbiased estimator9, i.e. 〈nML〉 = ntrue.

By contrast, the intrinsic scatter is generally biased, i.e. 〈σ ML
⊥ 〉 �=

σ true
⊥ . There are two reasons for this bias. Firstly, maximising the

likelihood function L finds the most likely generative model of a
sample of N data points, which is not generally the most likely
model of the population, i.e. the imaginary infinite set, from which
the N points were drawn at random. For example, consider a two-
dimensional population described by a straight line with some in-
trinsic scatter. From this population, we draw a sample of two
points. No matter which two points we choose, they can always
be fitted by a straight line without scatter. Hence, the most likely
sample model, maximising Equation (5), will have zero intrinsic
scatter, even if the population model has non-zero scatter. The
transition from the most likely model of the sample to the most
likely model of the population is achieved by the so-called Bessel
correction,

σ̃ 2
⊥ = N

N − D
σ 2

⊥ , (A1)

where D is the number of parameters of the hyperplane (also re-
ferred to as the ‘degrees of parameter freedom’ or simply ‘degrees
of freedom’), which equals the number of dimensions. In the spe-
cial case of Gaussian data with no errors (Ci ≡ 0), the variance
estimator σ̃ 2

⊥ is unbiased, i.e. 〈(σ̃ ML
⊥ )2〉 = (σ true

⊥ )2. In the general
case, one can estimate the population variance by computing the
mean of its marginal posterior PDF. This is often achieved using
a Markov Chain Monte Carlo (MCMC) approach, but note that
many MCMC algorithms introduce new biases in the way they
determine when a Markov Chain becomes stable (Cowles et al.
1999).

Secondly, the non-linear relation between σ̃ 2
⊥ and σ̃⊥ skews the

posterior PDF in such a way that the expectation of the mode σ̃ ML
⊥

is generally smaller than σ true
⊥ . In the case of data with no errors

(Ci ≡ 0), an unbiased estimator can be derived from Cochran’s
theorem,

˜̃σ⊥ =
√

N−D

2

�
(

N−D
2

)
�

(
N−D+1

2

) σ̃⊥ =
√

N

2

�
(

N−D
2

)
�

(
N−D+1

2

)σ⊥. (A2)

9Note that nML can become a biased estimator, when the data is drawn
from the population with a non-uniform selection function, as discussed in
Appendix B.
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Figure A1. Convergence tests for simulated generative hyperplane
datasets. The solid lines show the raw mean intrinsic scatter for different
types of generative model and fitting, and the dashed lines show the intrinsic
scatter once the appropriate combination of bias and sample–population cor-
rections have been applied. In all cases, the generative model was simulated
with an intrinsic scatter for the population equal to 3.

This estimator then satisfies 〈 ˜̃σ⊥〉 = σ true
⊥ . hyper-fit includes the

Bessel and Cochran corrected versions of the intrinsic scatter (where
appropriate). Figure A1 gives three example fits for different DoF
and different samples N. The black and the red solid lines are direct
maximum likelihood estimation fits. These are the most biased
initially, requiring both a Bessel and Cochran correction to give the
dashed unbiased lines. The blue line shows a MCMC expectation
estimation, and as such only requires the Cochran correction to give
the unbiased dashed line. These corrections do not properly account
for the presence of heteroscedastic errors, but they should offer
the minimum appropriate correction to apply. Bootstrap resampling
offers a window to properly correct for such data biases, but this
can be extremely expensive to compute.

B EXTENSION TO NON-UNIFORM SELECTION
FUNCTIONS

We now consider the more general situation, where the popula-
tion is not sampled uniformly, but with a probability proportional
to ρs(x), known as the selection function in astronomy. In this
case, the effective PDF ρm′ (x) of the generative model and the
selection function is the product ρm(x)ρs(x), renormalised along
the direction perpendicular to H,

∫ ∞
−∞ dl ρm′ (ln̂) = 1. The renor-

malisation is crucial to avoid a dependence of the normalisa-
tion of ρm′ (x) on the fitted-model parameters. The effective PDF
reads

ρm′ (x) = ρm(x)ρs(x)∫ ∞
−∞ dl ρm(ln̂)ρs(ln̂)

. (B1)

The likelihood of point i then becomes

Li =
∫

RD
dx ρ(xi|x)ρm′ (x). (B2)
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Analytical closed-form solutions of Equation (A4) can be found for
some functions ρs(x). To illustrate this, let us consider the case of
an exponential selection function

ρs(x) = ek�x, (B3)

where k is the known (and fixed) sampling gradient, i.e. in
the direction of k the probability of drawing a point from the
population increases exponentially. This selection function is im-
portant in many fields of science, since it represents a power-law
selection function in the coordinates x̃, if x is defined as x = ln x̃.
This can be seen from

ek�x =
D∏

j=1

ek jx j =
D∏

j=1

(
ex j

)k j =
D∏

j=1

x̃
k j
j , (B4)

which is a generic D-dimensional power-law.
Substituting ρm(x) and ρs(x) in Equation (A3) for Equations (3)

and (A5) solves to

ρm′ (x) = 1√
2πσ 2

⊥
e
− (n̂�[x−σ2

⊥k]−n)2

2σ2⊥ . (B5)

In analogy to Equation (4), the likelihood terms then become

Li =
∫

RD
dx ρ(xi|x)ρm′ (x) = 1√

2πs2
⊥,i

e
− (n̂�ξi−n)2

2s2⊥,i , (B6)

where s2
⊥,i = σ 2

⊥ + n̂�Cin̂ and ξi = xi − σ 2
⊥k. Up to an additive

constant, the total likelihood function lnL = ∑N
i=1 lnLi reads

lnL = −1

2

N∑
i=1

[
ln(s2

⊥,i) + (n̂�ξi − n)2

s2
⊥,i

]
. (B7)

This likelihood is identical to that of the uniform case (Equa-
tion 5), as long as we substitute the positions xi for ξi. Upon
performing this substitution, all results of Sections 2.1 to 2.3 re-
main valid in the case of a power-law sampling. Incidentally,
it is easy to see that ξi = xi if the data are sampled uniformly
(k = 0).

The hyper-fit package allows for the addition of such a power-
law selection function via the k.vec vector input argument in the
hyper.like and hyper.fit functions.

C HIERARCHICAL IMPLEMENTATION OF 2D
HYPER-FIT USING JAGS

Over recent years, a number of hierarchical Bayesian inference soft-
ware programs have become popular, e.g. Bayesian inference Using
Gibbs Sampling ( bugs10), Just Another Gibbs Sampler (jags11),
and Stan12. They are all somewhat similar in terms of the modelling
language, with an emphasis on constructing complex hierarchical
models with relative ease (Gelman & Hill 2006). An example 2D im-
plementation of the generative hyper-fit model can be constructed
in jags using the following model specification:

10www.mrc-bsu.cam.ac.uk/software/bugs/
11mcmc-jags.sourceforge.net/
12mc-stan.org

model {
f o r ( i in 1 :N) {

xyobs [ 1 : 2 , i ] ˜ dmnorm( xytrue [ 1 : 2 , i ] ,

e r r o r s [ 1 : 2 , 1 : 2 , i ] )

}
f o r ( i in 1 :N) {

e r r o r s [ 1 , 1 , i ] <− 1/xsd [ i ]ˆ2/(1− rho [ i ] ˆ 2 )

e r r o r s [ 2 , 2 , i ] <− 1/ysd [ i ]ˆ2/(1− rho [ i ] ˆ 2 )

e r r o r s [ 1 , 2 , i ] <− rho [ i ] / xsd [ i ] /

ysd [ i ]/(1− rho [ i ] ˆ 2 )

e r r o r s [ 2 , 1 , i ] <− rho [ i ] / xsd [ i ] /

ysd [ i ]/(1− rho [ i ] ˆ 2 )

}
f o r ( i in 1 :N) {

xytrue [ 1 , i ] <− d i s t f r omo r i g i n [ i ] *

cos ( angle *0.01745)−
s i n ( angle *0 .01745)* s ca t [ i ]

xytrue [ 2 , i ] <− d i s t f r omo r i g i n [ i ] *

s i n ( angle *0.01745)+

cos ( angle *0 .01745)* s ca t [ i ]+

o r i g i ny

}
f o r ( i in 1 :N) {

d i s t f r omo r i g i n [ i ] ˜ dun i f ( −1000 ,1000)

s ca t [ i ] ˜ dnorm(0 ,1/ i n t r i n v a r )

}
ang le ˜ duni f (−90 ,90)

o r i g i ny ˜ duni f ( −1000 ,1000)

i n t r i n v a r ˜ duni f (0 ,10000)

}

In the above 2D model, the observed x–y data is contained in
the 2 × N matrix xytrue, the x errors are in the N vector xsd,
the y errors are in the N vector ysd, and the error correlations
between x and y are in the N vector rho. The rotation angle of the
generative model, the offset of the model from the origin, and the
intrinsic variance of the model are all sampled from uniform prior
distributions in this example. The model specification using Stan
or other bugs style software programs is very similar in construct
to the above.

Compared to the hyper-fit software, the jags modelling solution
converges slowly (factors of a few slower for equally well-sampled
posteriors) and tends to suffer from poor mixing between highly
correlated parameters. This is a common problem with Gibbs sam-
pling, and in practice the typical user can gain confidence in their fit
solution using hyper-fit by attempting a number of the available
routines, where e.g. Slice Sampling is an empirical approximation
to true Gibbs sampling. Fully hierarchical based solutions (e.g.
bugs, jags, and Stan) are also hard to extend into arbitrary di-
mensions, and in general need to be carefully hand-modified for
bespoke datasets. However, these programs offer clear advantages
in elegantly handling left or right censored data, with very little
modification to the above specified model required.
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