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We apply field–particle correlations – a technique that tracks the time-averaged
velocity-space structure of the energy density transfer rate between electromagnetic
fields and plasma particles – to data drawn from a hybrid Vlasov–Maxwell simulation
of Alfvén-ion cyclotron turbulence. Energy transfer in this system is expected
to include both Landau and cyclotron wave–particle resonances, unlike previous
systems to which the field–particle correlation technique has been applied. In this
simulation, the energy transfer rate mediated by the parallel electric field E‖ comprises
approximately 60 % of the total rate, with the remainder mediated by the perpendicular
electric field E⊥. The parallel electric field resonantly couples to protons, with the
canonical bipolar velocity-space signature of Landau damping identified at many
points throughout the simulation. The energy transfer mediated by E⊥ preferentially
couples to particles with vtp . v⊥ . 3vtp, where vtp is the proton thermal speed, in
agreement with the expected formation of a cyclotron diffusion plateau. Our results
demonstrate clearly that the field–particle correlation technique can distinguish distinct
channels of energy transfer using single-point measurements, even at points in which
multiple channels act simultaneously, and can be used to determine quantitatively the
rates of particle energization in each channel.
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1. Introduction
Identifying the mechanisms that transport energy between electromagnetic fields

and charged particles in nearly collisionless plasmas is a critical step in the broader
effort to characterize and ultimately predict the dissipation of turbulence in space
and astrophysical plasmas. Proposed mechanisms for energy transfer can broadly be
grouped into three classes: (i) resonant mechanisms, e.g. Landau damping, Barnes
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damping or cyclotron damping (Landau 1946; Barnes 1966; Kennel & Engelmann
1966); (ii) non-resonant mechanisms, e.g. stochastic heating by low-frequency,
large-amplitude kinetic Alfvén waves (McChesney, Stern & Bellan 1987; Chen, Lin
& White 2001; Johnson & Cheng 2001; Chandran et al. 2010; Chandran 2010) or
magnetic pumping (Berger et al. 1958; Lichko et al. 2017); and (iii) spatially localized
mechanisms, e.g. magnetic reconnection at intermittent current sheets (Dmitruk,
Matthaeus & Seenu 2004; Matthaeus & Velli 2011; Servidio et al. 2011; Karimabadi
et al. 2013; Zhdankin et al. 2013; Osman et al. 2014a,b; Zhdankin, Uzdensky &
Boldyrev 2015). The solar wind, a hot and diffuse plasma emanating from the Sun,
serves as a natural laboratory for observing which energization mechanisms operate
under what plasma conditions. A significant limitation of in situ measurements of
the solar wind is that most observations occur at a single point, therefore it is not
possible to assess the entire energy budget of the system. However, as different
mechanisms preferentially transfer energy to particles with specific characteristic
velocities, single-point observations of the velocity-space structure of the energy
transfer may enable the determination of which energization mechanisms are at work.

A field–particle correlation technique (Klein & Howes 2016; Howes, Klein &
Li 2017) has been proposed to capture the velocity-space structure of energization
mechanisms from single-point observations. This technique resolves the electric-field
component of the field–particle interaction term in the Vlasov equation as a function
of velocity and averages the energy density transfer rate over some correlation
time interval. By capturing the transfer rate as a function of velocity, the regions
in phase space that lose energy to or gain energy from the fields are identified.
Performing a time average removes the oscillatory energy transfer between the
plasma and the fields, isolating the secular component of the transfer that leads to
net energization. Combined, this velocity-resolved and time-averaged transfer rate,
denoted the velocity-space signature, can be used to characterize the energization
mechanisms operating in a plasma measured only at a single point in space.

Previous applications of this field–particle correlation technique include numerical
studies of electrostatic waves (Klein & Howes 2016; Howes et al. 2017) and
instabilities (Klein 2017), monochromatic kinetic Alfvén waves (Howes 2017),
energization near current sheets arising from strong Alfvén wave collisions (Howes,
McCubbin & Klein 2018) as well as low-frequency, wavevector-anisotropic, strong
turbulence (Klein, Howes & TenBarge 2017). The technique has also been applied to
turbulent magnetosheath plasma measured by MMS (Chen, Klein & Howes 2019). For
both simulations and observations, a clear signature of energy transfer as a function
of v‖ was identified, which is indicative of significant energy being transferred
via the Landau resonance. The previous numerical simulations of turbulence used
AstroGK, a gyrokinetic code in which the low-frequency approximation arising
through the gyroaveraging procedure eliminates the physics of the cyclotron resonance
(Howes et al. 2006). In this work, we use a hybrid Vlasov–Maxwell code, HVM, to
simulate higher-frequency Alfvén-ion cyclotron turbulence, a system in which proton
cyclotron damping may contribute to the removal of energy from the turbulence. For
the Alfvén-ion cyclotron system, both the parallel and perpendicular electric field
components, E‖ and E⊥, can contribute to the energy density transfer via the Landau
and cyclotron resonances, respectively. At most points throughout the simulation,
resonant signatures near the proton thermal velocity, |v‖| ∼ vtp, are associated with
energization due to E‖, while particles with vtp . v⊥. 3vtp couple most strongly with
E⊥. By diagnosing the energy transfer at 64 spatial points distributed throughout the
simulation, we find that the energy transfer mediated by E‖ after one Alfvén crossing
time at these points accounts for 62 %± 24 % of the total energy transfer.
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The remainder of this paper is organized as follows. An overview of the relevant
damping mechanisms and the simulation code employed, HVM, is given in §§ 2 and 3.
The field–particle correlation method is presented in § 4 and is applied to simulation
data in § 5. In § 6, we discuss the relative importance of the electric field and
advection to energy transfer, followed by conclusions in § 7. This extension of the
field–particle correlation technique to a regime of higher-frequency turbulence, distinct
from previous numerical studies of low-frequency turbulence, demonstrates that this
technique can successfully employ single-point measurements both to distinguish
distinct mechanisms of energy transfer and to determine quantitatively the rates of
particle energization in each channel.

2. Energy transfer in ion-cyclotron turbulence
Collisionless resonant mechanisms that mediate energy transfer in magnetized

plasmas sensitively depend on the frequency of the associated plasma fluctuations.
These mechanisms require a portion of the particle velocity distribution with
significant phase space density to approximately satisfy the resonance condition
ω(k) − k‖v‖ − nΩs = 0, where ω(k) is the wavevector-dependent normal mode
frequency, k‖ is the component of the wavevector parallel to the mean magnetic field
B0, v‖ is the parallel particle velocity, Ωs = qsB/msc is the cyclotron frequency for
species s and n is an integer. Previous field–particle correlation work specifically
focused on energy transfer in systems where the Landau, or n = 0, resonance is
the only available channel for collisionless damping, including both systems with
monochromatic waves (Klein & Howes 2016; Howes 2017; Howes et al. 2017; Klein
2017) and simulations of strong, wavevector-anisotropic turbulence (Klein et al. 2017;
Howes et al. 2018).

The Landau resonance is important for low-frequency, wavevector-anisotropic
fluctuations of the kind typically observed in the solar wind. A significant body of
evidence, including observational (Sahraoui et al. 2010; Chen et al. 2013; Roberts,
Li & Jeska 2015), theoretical (Schekochihin et al. 2009; Kunz et al. 2015, 2018)
and numerical (Howes et al. 2008; Mallet, Schekochihin & Chandran 2015; Grošelj
et al. 2018) studies, suggests that magnetized collisionless turbulence is dominated
by low-frequency, anisotropic Alfvénic fluctuations. However, as discussed in Cerri
et al. (2016) and Arzamasskiy et al. (2019), the role of higher-frequency fluctuations
in realistic turbulent systems is still an area of active debate. For higher-frequency
fluctuations, with turbulent fluctuation frequencies at or above the proton cyclotron
frequency ω & Ωp, collisionless damping may proceed through the n 6= 0 cyclotron
resonances.

In this work, we focus on determining the velocity-space signatures of energy
transfer to the protons in higher frequency, Alfvén-ion cyclotron turbulence. In
order to select a wavevector region for which cyclotron damping may be present,
we consider the collisionless power absorption for the Alfvén dispersion surface as
derived from linear kinetic theory. The power absorption by species s due to a normal
mode with frequency ω(k) in one wave period, following Quataert (1998), is given
by

γs(k)
ω(k)

=
E∗(k) ·Λa

s
(k) ·E(k)

4WEM(k)
. (2.1)

The Fourier-transformed vector electric field and its complex conjugate are given by
E(k) and E∗(k), the electromagnetic wave energy by WEM(k) and the anti-Hermitian
part of the linear susceptibility tensor for species s is Λa

s
(k). The decomposition of

https://doi.org/10.1017/S0022377820000689 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000689


4 K. G. Klein, G. G. Howes, J. M. TenBarge and F. Valentini

(a) (b)

(c) (d)

FIGURE 1. Eigenfunction relations for the Alfvén dispersion surface as a function of kρp
for a βp = 1 plasma (in which ρp = dp). (a) The normalized total proton damping rate
γp/ω from (2.1). (b) The normalized parallel phase velocity ω/k‖vA. (c) The fraction of
the proton damping rate due to the Landau resonance. (d) The fraction of the proton
damping rate due to the cyclotron resonance. The boxes outline the wavevector ranges
for HVM simulations presented here (black) and in previous gyrokinetic simulations of
low-frequency, strong turbulence (red) Klein et al. (2017). The red dots indicate the values
of (|k⊥|, |k‖|)ρp with initialized Alfvén waves for the HVM simulation. The grey region
in the upper left-hand corner shows where γp > ω, and the white region in the upper
right-hand corner shows where ω= 0.

the power absorption by species given by (2.1) is valid as long as the total damping
rate is small compared to the wave frequency

∑
s γs <ω. In figure 1(a), we use (2.1)

to compute the proton power absorption for the Alfvénic dispersion surface for a
proton-electron plasma with βp = 8πnpTp/B2

= 1 and Tp = Te calculated using the
PLUME dispersion solver (Klein & Howes 2015), showing significant proton damping
primarily in two regions:1 (i) k⊥ρp ∼ 1 (yellow) and (ii) k‖ρp & 1 (red2). The parallel

1The white triangle for k⊥ρp > k‖ρp > 1 represents the wavevector region where the Alfvén mode is
non-propagating with ω= 0, causing (2.1) to be invalid.

2The region where γp >ω, and thus linear theory is formally invalid for the Alfvén solution, is shaded in
grey.
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wave phase velocity ω/k‖vA is plotted in figure 1(b), showing three general regimes:
(i) the non-dispersive MHD Alfvén wave regime with k‖ρp� 1 and k⊥ρp < 1 where
ω/k‖vA= 1; (ii) the ion-cyclotron wave regime with k‖ρp & 1 where the phase velocity
decreases as k‖ρp increases; and (iii) the kinetic Alfvén wave regime with k‖ρp� 1
and k⊥ρp & 1 where the phase velocity increases as k⊥ρp increases. Note that, for a
plasma with βp = 1, the proton Larmor radius ρp = vtp/Ωp is the same as the proton
inertial length dp = vA/Ωp, as the scales can be related via ρp = dp/

√
βp.

To quantify the relative contributions to the proton damping rate γp from Landau
and cyclotron damping, we recalculate (2.1) using a susceptibility tensor Λ

p
constructed using only the n=0 contributions (Landau damping) or n 6=0 contributions
to the (x, y) manifold (cyclotron damping, cf. Stix (1992) § 11.8). This decomposition
by the characteristic resonance shows that the two primary regions of significant
proton damping are caused by distinct mechanisms. In figure 1(c), we plot the
ratio of the Landau damping rate to the total proton damping rate γp[n = 0]/γp,
showing that, in the region k‖ρp � 1, Landau damping is dominant, so that the
yellow region at k⊥ρp ∼ 1 and k‖ρp � 1 in figure 1(a) is dominated by Landau
damping. In figure 1(d), we plot the ratio of the cyclotron damping rate to the total
proton damping rate γp[cyclotron]/γp, showing that, in the region k‖ρp & 1, cyclotron
damping is dominant, so the red and black regions at k‖ρp & 1 in figure 1(a) is
dominated by cyclotron damping.

For Landau damping of Alfvén waves in the wavevector-anisotropic region with
k⊥ρp ∼ 1 and k‖ � k⊥, the collisionless energy transfer is associated with resonant
parallel phase velocities ω/k‖∼ vA, which are of order vtp for plasmas with βp≈ 1. For
waves with k⊥ρp� 1, the parallel phase velocity of the wave increases, moving out
of resonance with the thermal proton population, reducing the effectiveness of proton
Landau damping. As the parallel wavevector k‖ρp increases to unity and beyond, the
parallel phase velocity decreases ω/k‖→0, similarly leading to a quenching of Landau
damping.

For cyclotron damping, the velocity distribution evolves along circular pitch-angle
contours centred about the parallel wave phase velocity, where this pitch-angle
diffusion drives the distribution toward a state where it is constant along contours
(v‖ − ω/k‖)2 + v2

⊥
(Kennel & Engelmann 1966; Marsch & Tu 2001; He et al. 2015).

For a spectrum of proton cyclotron waves propagating both up and down the magnetic
field, with k‖ > 0 and k‖ < 0, this evolution leads to the formation of a quasilinear
cyclotron diffusion plateau in the region with significant overlap of constant energy
contours with vtp . v⊥ . 3vtp. The parallel structure of this plateau peaks at small
v‖, corresponding to higher phase-space densities near the centre of the proton
distribution.

With the identification of the different regions of wavevector space (k⊥ρp, k‖ρp)
in which Landau or cyclotron damping are expected to dominate, as shown in
figure 1, we may now specify an appropriate wavevector range to yield significant
proton cyclotron damping in a simulation of high-frequency Alfvén-ion cyclotron
turbulence.

3. Hybrid simulations of Alfvén-ion cyclotron turbulence
Based upon these power absorption calculations, we select a wavevector region for

which both Landau and cyclotron damping may be active. For our HVM simulation
of Alfvén-ion cyclotron turbulence, we simulate a turbulent plasma in a domain over
a wavevector range 0.2 6 k⊥dp 6 3.2 and 0.2 6 k‖dp 6 3.2, denoted by the black
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box in figure 1. For comparison, the previous turbulent gyrokinetic simulations used
in Klein et al. (2017) spanned 0.25 6 k⊥dp 6 5.5 under the asymptotic anisotropic
conditions k‖ � k⊥ of the gyrokinetic approximation, a wavevector range denoted
by the red box in figure 1. To describe turbulent fluctuations with finite parallel
wavevectors k‖dp & 1 and ion-cyclotron frequencies ω ∼ Ωp, we employ the hybrid
Vlasov-Maxwell code HVM (Valentini et al. 2007). HVM self-consistently solves the
Vlasov equation for ions on a uniform fixed three-dimensional (3-D) grid in physical
space and a uniform fixed three-dimensional grid in velocity space (3V), coupled with
an isothermal fluid description for the electrons through Maxwell’s equations. This
method allows for accurate simulation of ion kinetic-scale phenomena. By employing
an Eulerian approach, these simulations are able to resolve velocity-space structure
without the statistical noise associated with particle-in-cell macroparticles. Since the
ions are fully kinetic, we resolve ion-cyclotron frequency physics, which is outside
the gyrokinetic formalism.

The simulation employs 323 spatial grid points and 513 velocity grid points. The
velocity grid spans ±5vtp for all three directions, and the size of the isotropic
simulation cube is L = 10πdp. The proton plasma beta is unity, βp = 1, and the
proton and electron temperatures are in equilibrium Tp= Te. The uniform background
magnetic field is in the ẑ direction, B0 = B0ẑ. The simulation dissipates small scale
fluctuations using grid-scale resistivity by adding an ηJ term into Ohm’s law. A
small value for the resistivity η has been chosen in order to achieve relatively
high Reynolds numbers and to remove any spurious numerical effects due to the
presence of grid-scale current sheets. The choice of this small value for the resistivity
corresponds to a very small correction, confined to small scales, with the resulting
dissipation electric field ηJ only becoming dominant for the largest wavenumbers in
the simulation.

Twelve Alfvén wave modes at the largest two spatial scales in the domain are
initialized: kdp = (kxdp, kydp, kzdp) = (0.2, 0, ±0.2), (0, 0.2, ±0.2), (0.2, 0.2, ±0.2),
(−0.2, 0.2, ±0.2), (0.4, 0, ±0.2) and (0, 0.4, ±0.2). The magnetic and velocity
fluctuations satisfy the magnetohydrodynamic (MHD) Alfvén wave eigenfunctions
and are assigned distinct random phases φk ∈ [0, 2π] for each initialized wavevector k.
The real amplitude of each Fourier wavevector mode is chosen so that the system will
have a sufficiently strong turbulent cascade, as measured by the nonlinearity parameter,
χ = (k⊥/k‖)(δB⊥/B0) ≈ 1; we set amplitudes δB̂k = 1/

√
2 for kdp = (0.2, 0, ±0.2)

and (0.0, 0.2,±0.2), δB̂k = 1/4 for kdp = (0.2, 0.2,±0.2) and (−0.2, 0.2,±0.2) and
δB̂k= 1/(4

√
2) for kdp= (0.4, 0.0,±0.2) and (0.0, 0.4,±0.2), which correspond to an

overall initial root-mean-square amplitude of δB⊥/B0= 1/2. In contrast to gyrokinetic
simulations, where the significant wavevector anisotropy k‖� k⊥ allows the turbulence
to be strong (i.e. χ ∼ 1) for δB⊥/B0 � 1, having a system of strong turbulence for
the wavevectors considered here with k‖ ∼ k⊥ requires δB⊥ ∼ B0.

This simulation box size was intentionally chosen to enclose wavevectors susceptible
to both Landau and cyclotron resonances, allowing the application of the field–particle
correlation technique to systems in which multiple heating mechanisms operate. This
work does not necessarily replicate solar wind turbulence, which is typically found to
have more significant wavevector anisotropies than are simulated here, as described
for instance in Chen (2016).

The simulation was evolved to tmax = 45Ω−1
p . We selected 64 points, r0, in the

simulation’s 3-D spatial domain, producing output of the electromagnetic fields
E′(r0, t) and B′(r0, t) in the simulation frame of reference as well as the 3V
proton velocity distribution fp(r0, v, t) at each of the selected points. To demonstrate
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(a) (b)

FIGURE 2. (a,b) Frequency power spectral density for electric and magnetic fields
extracted from the 64 spatial points throughout the HVM simulation used in this work (grey).
The initialized frequencies ω0/Ωp are indicated with an arrow on the left-hand side. The
frequency ranges accessible to the Alfvén and fast dispersion surfaces for this simulation
are indicated with horizontal arrows.

that there is significant power distributed across a broadband range of frequencies,
rather than being composed of a handful of monochromatic Alfvén waves, we
plot in figure 2 the frequency power spectral density for the electric and magnetic
field at each of the 64 spatial points. We see a broad distribution of power
across frequency at each point, rather than a peak at 2πf0/Ωp = ω0/Ωp, where
ω0 are the initialized Alfvén frequencies, ω0(k⊥dp = 0.2, k‖dp = 0.2) = 0.192Ωp,
ω0(k⊥dp = 0.282, k‖dp = 0.2) = 0.195Ωp, and ω0(k⊥dp = 0.4, k‖dp = 0.2) = 0.198Ωp.
Comparing this frequency distribution to the initial frequencies indicates significant
nonlinear energy transfer from the initialized modes, producing a broadband turbulent
system. The time series from which the frequency power spectra are calculated are
stationary in the turbulent simulation, rather than traversing it at super-Alfvénic speeds
as is typical of in situ measurements of the solar wind. As such, these single-point
spectra do not capture the underlying spatial structure of the plasma fluctuations,
which requires either invoking Taylor’s hypothesis, that the plasma-frame frequency
is small compared to spatial advection (Taylor 1938; Howes, Klein & TenBarge
2014), or measuring the system at multiple spatial points (Klein et al. 2019).

We compare the observed broadband distribution of frequencies to frequency ranges
accessible to the Alfvén and fast normal mode solutions within the simulation’s
wavevector range 0.2 6 k⊥dp 6 3.2 and 0.2 6 k‖dp 6 3.2, calculated using the PLUME
dispersion solver, see figure 13. Alfvén solutions are limited to a relatively narrow
range of frequencies, ω/Ωp ∈ [.19, 1.0]. Above this frequency, we see a significant
break in the power spectral densities in figure 2, indicating that there is relatively
little power in higher frequency, non-Alfvénic fluctuations. Integrating the power
in the electric and magnetic fluctuations in the Alfvén and fast frequency ranges,
we find that nearly 95 % of the total power is contained at Alfvénic frequencies,
with less than 30 % found in the partially overlapping fast frequency range. Further
discussion of wave mode identification using single-point time series can be found in
appendix A.
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4. Applying the field–particle correlation technique
This section provides a brief overview of the field–particle correlation technique.

The field–particle correlation analysis captures how energy is transferred between
charged particles and electromagnetic fields by correlating the structure of the particle
velocity distribution function with the electric field. Applications of this technique
to simulations have been limited to velocity distributions in one or two dimensions.
Here we discuss the application of the field–particle correlation technique to three
dimensional velocity distributions generated by the HVM code.

4.1. Overview of field–particle correlations
For a collisionless magnetized plasma, the Vlasov equation

∂fs

∂t
+ v · ∇fs +

qs

ms

[
E+

v×B
c

]
·
∂fs

∂v
= 0 (4.1)

describes the time evolution of the velocity distribution function of charged particles
of each species s, fs(r, v, t), qs and ms are the intrinsic charge and mass respectively,
and c is the speed of light. Combined with Maxwell’s equations, the Vlasov–Maxwell
system describes the self-consistent dynamics of a collisionless plasma. We want to
measure the time rate of change of the microscopic kinetic particle energy, Ws(t) ≡∫

dr
∫

dv msv
2fs/2. However, ∂tWs can only be calculated by integrating over all of

3D–3V phase space. Such a calculation is accessible to numerical simulations, but
not to measurements made from a single point in coordinate space, as is typical for
in situ measurements of heliospheric plasmas, such as the solar wind.

We therefore choose to track the energy density at a single point in 3D–3V phase
space, Θs(r, v, t) ≡ msv

2fs(r, v, t)/2, and its time rate of change, which is found by
multiplying the Vlasov equation by msv

2/2 and not performing any integration

∂Θs(r, v, t)
∂t

=−
msv

2

2
v · ∇fs − qs

v2

2
E ·

∂fs

∂v
−

qs

c
v2

2
(v×B) ·

∂fs

∂v
. (4.2)

Of the three terms on the right-hand side of (4.2), it can be shown (Howes et al.
2017) that only the electric-field term will contribute to the net transfer of energy
between the electromagnetic fields and particles: the first term is zero for periodic
or infinitely distant boundary conditions and does not exchange energy between the
fields and the distribution; and the magnetic field in the third term does no work on
the distribution.

Integrating by parts the second term over velocity yields the species current
density dotted into the electric field js · E, representing the work done by E on fs or
vice versa. By not integrating this term, we resolve the velocity-space structure of
energy density transfer. As different mechanisms preferentially energize particles with
different characteristic velocities, resolving the velocity-space structure of the energy
density transfer allows damping mechanisms to be differentiated using measurements
from a single point in coordinate space.

In an electromagnetic system, to determine the net contribution of the parallel
and perpendicular electric field to the energization of a species s, we calculate the
correlations

CE‖(r, v, t, τ )=C

(
−qs

v2
‖

2
∂δfs(r, v, t)

∂v‖
, E‖(r, t)

)
(4.3)
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CE⊥(r, v, t, τ ) = C
(
−qs

v2
⊥1

2
∂δfs(r, v, t)
∂v⊥1

, E⊥1(r, t)
)

+C
(
−qs

v2
⊥2

2
∂δfs(r, v, t)
∂v⊥2

, E⊥2(r, t)
)
. (4.4)

The unnormalized correlation of discretely sampled time series A and B with uniform
spacing 1t at time ti is defined as

C(ti, τ =N1t)≡
1
N

i+N/2∑
j=i−N/2

AjBj, (4.5)

with correlation interval of length τ =N1t. Parallel and perpendicular are defined with
respect to the background magnetic field B0, with ⊥1 and ⊥2 denoting the orthogonal
components in the plane perpendicular to b̂ = B0/|B0|. The v2 component in the
electric-field term of (4.2) is replaced by the square of the component of the velocity
vi associated with the component of the field with which the distribution is being
correlated Ei, as the net velocity integration is zero for the other two components, vj
and vk. By averaging over a time interval τ longer than the characteristic timescale
of the dominant oscillations, rather than calculating the instantaneous rate of change
CEl(ti, τ = 0)=−qsv

2
l El∂vl fs/2, the contribution due to any oscillatory energy transfer,

which does not contribute to the net energization of the distribution, largely cancels
out.

The spatial energy density transfer rate at a single point r0 associated with a single
component of the electric field El is given by integrating over 3V velocity space,

∂w̄El

∂t
(r0, ti, τ )≡

∫
dv CEl(r0, v, ti, τ ) (4.6)

and the accumulated spatial energy density transferred through time t is

1w̄El(r0, t, τ )=
∫

dt′
∂w̄El(r0, t′, τ )

∂t
. (4.7)

All energy density quantities are normalized to the average energy density at that point
in space over the simulated time interval T , w0(r0) = 〈

∫
dv mpv

2fp(r0, v, t)/2〉T , e.g.
∂tw̄El(r0, t, τ )= ∂twEl(r0, t, τ )/w0(r0).

4.2. Field–particle correlation implementation
Here we describe how we calculate the velocity-resolved energy density transfer rate
using the simulated proton distribution fp(r0, v, t) and the simulation-frame fields
B′(r0, t), and E′(r0, t) at a single spatial point r0, one of the 64 points r0 probed in
the turbulent HVM simulation described in § 3. As discussed in Howes et al. (2017),
∂tw̄El is the same for correlations calculated using the velocity derivative of the
full distribution ∂vi fs or a perturbed distribution ∂viδfs, where the perturbed velocity
distribution δfs = fs − F0,s is computed by subtracting a suitably time-averaged mean
velocity distribution, F0,s = 〈 fs〉t, as long as F0,s is an even function of velocity. Here
we calculate F0,p(r0, v) = 〈 fp(r0, v, t)〉T averaged over duration of the simulation T
and use the perturbed distribution δfp(r0, v, t) for all of our correlation calculations.3

3We leave to a later work a discussion of the effects of different choices of mean velocity distributions
F0,s.
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The vector velocity derivatives ∂vδfp(r0, v, t) are constructed using a centred-
difference method. The time-averaged bulk fluid velocity for a given point U(r0) =
〈vb(r0, t)〉T is computed using the instantaneous bulk velocity vb(r0, t) = [1/n(r0, t)]∫

dv vfp(r0, v, t) and the instantaneous density n(r0, t) =
∫

dv fp(r0, v, t). Both
∂vδfp(r0, v, t) and E′(r0, t) are transformed to the frame of reference moving at the
average bulk flow velocity at each point, U(r0). For the electric field, this requires
applying the Lorentz transformation, discussed for instance in Howes et al. (2014),

E=E′ +U×B/c, (4.8)

where E′ is the electric field in the simulation frame, and E is the field in the average
bulk flow frame. Note that, under the non-relativistic limit relevant to heliospheric
plasmas, the magnetic field requires no such transformation (Howes et al. 2014), i.e.
B=B′.

We define an instantaneous magnetic-field-aligned coordinate system at position
r0 by parallel direction b̂(r0, t) = B(r0, t)/|B(r0, t)| and the plane normal to b̂(r0, t)
spanned by in-plane unit vectors ê⊥1 = x̂× b̂(r0, t) and ê⊥2 = b̂(r0, t)× [x̂× b̂(r0, t)].
We rotate the proton velocity distribution fp and the electric-field components
into this field-aligned coordinate systems. Note that, due to the large-amplitude
magnetic field fluctuations required to achieve strong turbulence in this Alfvén-ion
cyclotron system, it is essential to project the fields and particle velocities along
the instantaneous magnetic field direction to avoid smearing out of the resulting
velocity-space signatures of the energy transfer due to the variation in the magnetic
field direction over the correlation interval.

Using the electric field and proton velocity distribution in the average bulk flow
frame and field-aligned coordinates, we calculate the parallel and perpendicular field–
particle correlations using (4.3) and (4.4), yielding the 3V velocity-space resolved
correlations CE‖(r0, v, t, τ ) and CE⊥(r0, v, t, τ ). We then integrate these correlations
over 3V velocity space to obtain the spatial energy density transfer rates, ∂tw̄E‖(r0, t, τ )
and ∂tw̄E⊥(r0, t, τ ), according to (4.6) and integrate those quantities over time to obtain
the accumulated spatial energy density changes, 1w̄E‖(r0, t, τ ) and 1w̄E⊥(r0, t, τ ),
according to (4.7).

The next step is to determine a sufficiently long correlation time interval τ over
which to average in order to isolate the secular component of the energy density
transfer due to the electric field. In this HVM turbulence simulation, the domain
supports at the largest-scale MHD Alfvén waves that satisfy the dispersion relation
ω = k‖vA. In addition, as indicated by the Alfvén mode wave phase velocities in
figure 1(b) over the range of resolved wavevectors (black box), the simulation also
supports higher-frequency kinetic Alfvén waves at k⊥dp > 1 and lower-frequency
ion-cyclotron waves at k‖dp > 1. In previous studies (Howes et al. 2017; Klein
et al. 2017), it was found that averaging over intervals longer than the linear
wave periods associated with the transfer mechanisms of interest was sufficient
to isolate signatures of the secular transfer. Note that the domain scale MHD Alfvén
waves initialized in the simulation have a frequency ω = k‖vA = 2πvA/L‖, and
therefore the period of these waves, normalized to the proton cyclotron frequency, is
T0Ωp = 2πΩp/ω = L‖Ωp/vA = 10πdpΩp/vA ' 31.4. Here, we substituted the domain
parallel length L‖ = 10πdp and have used the relation between the proton inertial
length and proton cyclotron frequency, dp = vA/Ωp, to simplify the results. With the
period of these largest-scale waves as guidance, we choose to test a range of possible
correlation intervals 0 6 τΩp 6 40.
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(a) (b)

(c) (d)

FIGURE 3. Velocity integrated correlations at a single point in the simulation domain for a
range of correlation intervals τΩp, indicated in colour. (a,b) Energy density transfer rates
∂tw̄E‖ and ∂tw̄E⊥ . (c,d) Accumulated energy density transferred 1w̄E‖ and 1w̄E⊥ . The thick
black line indicates the correlation interval τΩp= 22.5 used in the remainder of this work.

In figure 3, we plot ∂tw̄El and 1w̄El from a single spatial point over this range
of correlation intervals 0 6 τΩp 6 40. While the instantaneous spatial energy density
transfer rate (τ = 0, dark blue) from E‖ and E⊥ varies significantly, we see that as the
correlation interval τ increases, this large variation is reduced, leading to a smooth,
net positive energy transfer rate; 1w̄El(r0, t, τ ) is adjusted to account for changes
in the total integration time for varying correlation lengths, producing the expected
convergent behaviour.

To determine a sufficiently long interval τ to remove the oscillatory transfer we
calculate the mean and standard deviation of ∂tw̄E⊥ and ∂tw̄E‖ as a function of τ for all
64 spatial points (not shown). As expected by the form of the field–particle correlation,
the mean of the transfer rate is not significantly affected by the choice of τ , but the
standard deviation is reduced for longer correlation intervals. For a correlation interval
τΩp = 22.5, the mean of the standard deviation, averaged over the 64 output spatial
points, of ∂tw̄E⊥ and ∂tw̄E‖ are reduced to less than 20 % of the standard deviation
for τ = 0. We therefore take the interval τΩp = 22.5 to be the correlation length
used throughout this study; results are qualitatively similar to those obtained using
τΩp = 31.4.

5. Velocity-space signatures of particle energization
In this section, we present the results of a field–particle correlation analysis of

proton energization occurring in the Alfvén-ion cyclotron turbulence simulation
described in § 3. In particular, we present the first determination of the typical
velocity-space signature of proton cyclotron damping in § 5.1. In addition, we analyse
quantitatively the range of variation of the velocity-space signatures of both proton
cyclotron damping and Landau damping in this simulation in § 5.2 and study the
time variability in § 5.3. This section also demonstrates the key capability that the
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(a) (b)

FIGURE 4. Typical velocity-space signatures of (a) ion-cyclotron damping and (b) ion
Landau damping for point 40 at time tΩp = 24.66 using a correlation interval τΩp =

22.5, showing that the field–particle correlation technique can recover, using single-point
measurements, the signatures of both energization mechanisms acting simultaneously at
the same point in space. Curved dashed lines in (a) indicate contours of constant energy
in the ion-cyclotron wave-frame. The vertical dashed lines in (b) indicate the resonant
velocities for the largest simulated scale (purple) and the most strongly Landau damped
Alfvén waves (green).

field–particle correlation method can successfully employ single-point measurements
both to distinguish distinct mechanisms of energy transfer occurring at the same
point in space and to determine quantitatively the rates of particle energization in
each channel.

5.1. Velocity-space signature of cyclotron damping
Applying the perpendicular field–particle correlation CE⊥ , given by (4.4), to a single
point in the Alfvén-ion cyclotron turbulence simulation with a correlation interval
τΩp= 22.5, we plot the typical velocity-space signature of proton cyclotron damping,
shown in figure 4(a). Here we have reduced the full 3V correlation CE⊥(v‖, v⊥,1, v⊥,2)

to a 2V correlation over gyrotropic velocity space by integrating over the gyrophase
angle CE⊥(v‖, v⊥) =

∫
dθ v⊥CE⊥(v‖, v⊥,1, v⊥,2) at time tΩp = 24.66. We find that

protons are energized by the perpendicular component of the electric field in a region
of velocity space with 16 v⊥/vtp 6 3 and −1.36 v‖/vtp 6 1.3 for the βp= 1 turbulence
simulation. This first demonstration of the velocity-space signature of proton cyclotron
damping in a kinetic simulation of plasma turbulence is a key result of this study.

The location in velocity space of the cyclotron energization of the protons
generally agrees with predictions for the quasilinear cyclotron diffusion plateau
(Kennel & Engelmann 1966; Marsch & Tu 2001; He et al. 2015), where the energy
transfer mediated by E⊥ is largest at the confluence of the contours of constant
energy for the forward and backward propagating ion-cyclotron waves, which satisfy√
(v‖ ±ω/k‖)2 + v2

⊥= C. In figure 4(a), we plot example contours (purple dot-dashed)
with C/vtp = [1, 2, 3, 4] for ion-cyclotron waves with (k‖dp, k⊥dp) = (1, 0.2), for
which the linear Vlasov–Maxwell dispersion relation yields a parallel phase velocity
ω/k‖vA =ω/k‖vtp = 0.335 in this βp = 1 plasma.

As shown in figure 2, this simulation generates a broadband turbulent frequency
spectrum. The dispersive nature of the Alfvén-ion cyclotron waves leads to a range of
parallel phase velocities (and thus a range of frequencies) 0.13 6 ω/k‖vA 6 0.96 over
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the range of parallel wavevectors in this simulation, 0.2 6 k‖ρp 6 3.2. The centres of
the sets of circular contours in figure 4(a) would shift with this variation in parallel
phase velocities ω/k‖, potentially leading to a smearing of the observed velocity-space
signature. Therefore, the particular contours (purple) plotted in figure 4(a) for ion-
cyclotron waves with (k‖dp, k⊥dp)= (1, 0.2) are merely presented as useful guide for
the qualitative interpretation of the velocity-space signature.

We also plot in figure 4(b) the parallel field–particle correlation over 2V gyrotropic
velocity space, CE‖(v‖, v⊥), given by (4.3), for the same spatial point and using the
same correlation interval τΩp= 22.5 centred at the same time tΩp= 24.66. Here, we
find that protons are energized by the parallel component of the electric field in two
regions of velocity space, defined by 1 6 |v‖/vtp|6 2.5 and 0 6 v⊥/vtp 6 1.5.

To interpret quantitatively the location of the parallel energization in velocity
space, we plot vertical lines at the resonant parallel phase velocity ω/k‖vtp for the
domain-scale Alfvén waves with k⊥dp= 0.2 (purple) and for the kinetic Alfvén waves
with the peak proton Landau damping rate at k⊥dp = 1.2(green). We find that the
proton energization is negative (blue) for parallel velocities less than the resonant
phase velocities |v‖/vtp| < ω/k‖vtp and is positive (red) for parallel velocities greater
than the resonant phase velocities |v‖/vtp| > ω/k‖vtp. This typical bipolar signature
of the energy transfer about the resonant parallel phase velocity indicates that this
collisionless energy transfer is associated with the Landau resonance, consistent with
previous determinations of the velocity-space signature of the Landau damping of
Alfvén waves in single wave simulations (Howes 2017; Klein et al. 2017), gyrokinetic
turbulence simulations (Klein et al. 2017) and observations of the Earth’s turbulent
magnetosheath (Chen et al. 2019). The HVM results here represent an independent
confirmation of the velocity-space signature of Landau damping in Alfvén-ion
cyclotron turbulence.

We further reduce the 2-D gyrotropic velocity space to a function of either v⊥
or v‖ in figure 5. In this reduced space, we plot the proton distribution function
measured at point 40 averaged over the duration of the simulation, as well as the
standard deviation around the average value. The structures of CE‖(v‖) and CE⊥(v⊥)
have the same shape as inferred from the gyrotropic representation. By reducing
the correlations to a function of v⊥, we can compare the perpendicular heating to
quasilinear predictions. If the perpendicular velocity diffusion coefficient associated
with cyclotron heating is independent of perpendicular velocity, as predicted by
Kennel & Engelmann (1966) and Isenberg & Vasquez (2007), we would expect
CE⊥(v⊥) ∝ v

3
⊥

exp(−v2
⊥
/v2

th). To test this prediction, we fit the average perpendicular
thermal width of the reduced proton velocity distribution, vfit

⊥,tp and then fit CE⊥(v⊥)

to the functional form (v⊥/v
fit
⊥,tp)

α exp(−v2
⊥
/vfit
⊥,tp)

2. We are able to extract a good fit
from this procedure but find α≈ 6.6, rather than the expected value of 3, qualitatively
similar to the results presented in Arzamasskiy et al. (2019), indicating a strong
dependence of the energy diffusion on v⊥.

It is worth noting that the bipolar aspect of the energy transfer via the Landau
resonance is less apparent in this HVM simulation of Alfvén-ion cyclotron turbulence
than in previous analyses of gyrokinetic simulations and magnetosheath observations.
This smearing out of the velocity-space signature may be due to the perpendicular
motions of the large-amplitude Alfvén waves with δB⊥ ∼ B0 in the HVM simulation.
These relatively large-amplitude Alfvénic fluctuations lead to significant shifts in the
proton velocity distribution from the average bulk velocity frame, as seen in the
width of the standard deviation about the time-averaged velocity distribution function
(VDF) in figure 5(a,b), broadening the velocity-space regions over which energy
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(a)

(c)

(b)

(d)

FIGURE 5. Time-averaged reduced proton velocity distributions and their standard
deviation measured at a single spatial point (a,b) and the associated reduced correlations
CE⊥,‖(v‖) (c) and CE⊥,‖(v⊥) (d). The vertical dashed lines in (c) indicate the dominant
parallel resonant velocities for the simulation, while the black dashed line in (d) represents
the best fit to CE⊥(v⊥).

is transferred. For the anisotropic Alfvénic fluctuations with k‖ � k⊥ in gyrokinetic
simulations and in the dissipation-range turbulence of the magnetosheath, strong
turbulence can be achieved with δB⊥� B0, possibly leading to a more clear bipolar
velocity-space signature, because the smaller amplitude of the turbulent fluctuations
would lead to less smearing of the characteristic bipolar appearance.

The velocity-space signatures of (a) cyclotron damping and (b) Landau damping,
computed using single-point measurements of the electric field and proton velocity
distribution over the same correlation time interval and at the same position in
space, clearly demonstrate a second key result of this study: that the field–particle
correlation method can successfully employ single-point measurements to distinguish
distinct mechanisms of energy transfer occurring at the same point in space.

Of course, since the parallel correlation CE‖ integrated over velocity simply yields
j‖pE‖, and the velocity-integrated perpendicular correlation CE⊥ yields j

⊥p · E⊥, one
could argue that this separation of cyclotron from Landau energization mechanisms
could simply be achieved by separating the parallel and perpendicular components
of j ·E. However, determining the components of j ·E provides only the rate of change
of spatial energy density due to the different components of E, but nothing about the
specific physical mechanism responsible for this energy transfer. The field–particle
correlations CE‖(v, t, τ ) and CE⊥(v, t, τ ), because they provide the variation of the
energization as a function of particle velocity, yield vastly greater detail about the
mechanisms through their velocity-space signatures, with the possibility to distinguish
one mechanism from another through qualitative or quantitative differences in the
characteristic velocity-space signatures of each mechanism.

For example, proton cyclotron damping in a βp= 1 plasma, as shown in figures 4(a)
and 5(c,d), is expected to energize protons with velocities 1 6 v⊥/vtp 6 3 and
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−1.3 6 v‖/vtp 6 1.3. Landau damping in a βp = 1 plasma, on the other hand, is
expected to energize protons with velocities 1 6 |v‖/vtp| 6 2.5 and 0 6 v⊥/vtp 6 1.5,
with a bipolar signature changing sign about the parallel resonant phase velocity.
These detailed quantitative features enable one to identify the specific physical
mechanisms responsible for the energization. Ongoing work to determine the
velocity-space signatures of different energization mechanisms, including their
variation as a function of the plasma parameters such as βp, will provide a
framework for the interpretation of the velocity-space signatures obtained through the
field–particle correlation analysis of both kinetic numerical simulations and spacecraft
observations, potentially providing a clear procedure for the identification of the
particle energization mechanisms that play a role in the dissipation of turbulence in
these systems.

5.2. Variation of velocity-space signatures
Now that we have presented fiducial velocity-space signatures for cyclotron damping
and Landau damping in figure 4, we seek to quantify the variation of the velocity-
space signatures of the 2V gyrotropic perpendicular and parallel correlations
CE⊥(v‖, v⊥) and CE‖(v‖, v⊥) in our HVM simulation of Alfvén-ion cyclotron turbulence.

Intuition gained from plane-wave studies of linear collisionless damping of waves
often leads people to believe that linear collisionless damping is expected to occur
uniformly in space. This belief is not correct. Similar to the case that any spatially
varying waveform can be decomposed into its plane-wave components, the spatial
distribution of energy transfer associated with linear collisionless damping mechanisms
is controlled by the spatial distribution of the field doing the work, and this field may
arise in a spatially non-uniform manner if numerous plane-wave modes contribute
to the waveform of the field. In plasma turbulence, early studies discovered that
intermittent current sheets naturally develop (Matthaeus & Montgomery 1980;
Meneguzzi, Frisch & Pouquet 1981), and more recent work has shown that the
dissipation of turbulent energy is largely concentrated near these current sheets
(Uritsky et al. 2010; Osman et al. 2011; Zhdankin et al. 2013; Navarro et al.
2016). Although the idea of dissipation in current sheets suggests a possible role of
magnetic reconnection, in fact, a recent study has shown a clear counterexample in
which collisionless wave–particle interactions underlie spatially non-uniform energy
transfer. In a gyrokinetic simulation where strongly nonlinear Alfvén wave collisions
(Howes & Nielson 2013) self-consistently generate current sheets (Howes 2016),
spatially non-uniform particle energization occurs, with greater energy transfer near
current sheets, but the underlying mechanism of energy transfer in this case is clearly
identified, using the field–particle correlation technique, as Landau damping (Howes
et al. 2018). Therefore, even if the removal of energy from turbulent fluctuations
occurs dominantly through collisionless wave–particle interactions, one would expect
that the net energy transfer would vary significantly from point to point in a strongly
turbulent system.

Furthermore, collisionless energy transfer via wave–particle interactions is reversible,
meaning that in addition to positive energy transfer from the fields to the particles,
one can also find regions of negative energy transfer from the particles to the
fields. Nonetheless, the regions of negative energy transfer mediated by collisionless
wave–particle interactions still yield velocity-space signatures characteristic of the
energy transfer mechanism, but with opposite sign (Howes et al. 2018). Here we
hope to explore the typical variation in space of the velocity-space signatures of the
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perpendicular and parallel field–particle correlations, examining regions of positive
energy transfer, negative energy transfer, and negligible energy transfer.

Here we characterize the variations of the perpendicular and parallel correlations
CE⊥(v⊥, v‖) and CE‖(v⊥, v‖) at four different spatial points in our HVM turbulence
simulation, representing cases with significant energy transfer either direction between
the protons and E⊥ or E‖, as well as cases with relatively little net energy transfer.
To quantify the variation in the velocity-space signature, we use a correlation interval
τΩp = 22.5 to compute the correlation CE⊥(v⊥, v‖, t, τ ) at each point as a function
of the time t at the centre of the correlation interval. We compute the mean of this
correlation over the entire simulation time T , 〈CE⊥〉T , and the standard deviation of
its variation σ(CE⊥) at each point in gyrotropic velocity space (v⊥, v‖). To visualize
the variation in time at each of the four points, we plot in figure 6 the mean value
in the central column, the mean minus the standard deviation at each point (a), and
the mean plus the standard deviation (c).

Regardless of the sign or amplitude of CE⊥ , we see in figure 6 that the transfer
associated with E⊥ is strongly concentrated between 1 6 v⊥/vtp 6 3 and −2 6
v‖/vtp 6 2. We plot the same contours (purple) of constant

√
(v‖ ±ω/k‖)2 + v2

⊥ = C
for ion-cyclotron waves used in figure 4 with (k‖dp, k⊥dp) = (1, 0.2) as a guide for
interpretation.

At point 40 in figure 6, where we find significant energy transfer to the protons, we
observe that protons with v⊥ > vtp gain a significant amount of energy while protons
with v⊥ < vtp lose a relatively small amount of energy to E⊥. At point 8, where
we observe energy transfer from the protons, the pattern remains similar, but with
the signs reversed. At points 35 and 11 where the net spatial energy density transfer
(integrated over all velocity space) is relatively small, we see two distinct behaviours.
At point 35, we find regions of strong energy density transfer of opposite sign in
adjacent bands of v⊥ that approximately follow contours of constant energy. When
integrated over velocity, the opposite signs of these bands significantly reduce the net
transfer. At point 11, the sign of CE⊥ changes part way through the simulation, leading
to little net energy transfer when averaged over the full simulation time.

In figure 7, we present the quantitative analysis of the variation of the parallel
correlation CE‖(v⊥, v‖) at the same four points considered in figure 6, with the mean
over the entire simulation time 〈CE‖〉T in (b), and minus or plus the standard deviation
in (a,c), respectively. Here we find that the energy transfer is concentrated in two
regions, defined by 0.5 6 |v‖/vtp|6 3 and 0 6 v⊥/vtp 6 2.

At all four points, we see some evidence of the bipolar resonant signature associated
with Landau damping seen in previous numerical (Howes 2017; Klein et al. 2017;
Howes et al. 2018) and observational studies (Chen et al. 2019). The change of sign
is generally consistent with the resonant parallel phase velocities of the largest-scale
Alfvén waves in the system (purple) and the most strongly damped kinetic Alfvén
waves with k⊥dp = 1.2 (green). At points 40, 35 and 11, net energy is transferred
from E‖ to the protons, with positive energy transfer at parallel velocities above the
resonant velocity and negative energy transfer below. At point 8, where there is net
transfer from the protons to E‖, the bipolar pattern of resonant collisionless energy
transfer is the same, but the signs of the energy transfer are reversed, consistent with
a previous study of Landau-resonant energization in current sheets generated by strong
Alfvén wave collisions Howes et al. (2018).

The careful reader will note a difference in the widths of the regions of
resonant transfer between this simulation and the strong gyrokinetic turbulence
simulation described in Klein et al. (2017). As δB⊥/B0 is necessarily much larger
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(a) (b) (c)

FIGURE 6. Mean secular energy density transfer rate between the protons and E⊥ at
four points throughout the HVM simulation, 〈CE⊥〉T , (b). The velocity-dependent standard
deviation at each point is added to or subtracted from the mean in (c) and (a). Contours
of constant energy in the wave frame of forward and backward propagating Alfvén-ion
cyclotron waves are shown in purple.

for this wavevector-isotropic system in order for the simulation to satisfy χ =
(k⊥/k‖)(δB⊥/B0) ≈ 1, the proton distribution is more perturbed, resulting in a
broadening of the resonant signature. Studies of the effect of variations in k⊥/k‖
and δB⊥/B0 will be left to future work.

In summary, we find that although the amplitude and sign of the energization of
particles by E⊥ and E‖ varies from position to position in strong turbulence, the
regions of velocity space where particles participate in the energy transfer remain
remarkably constant. Furthermore, the velocities at which the energy transfer changes
sign also appear to be reproducible from point to point. This pattern of energy transfer
in velocity space, denoted the velocity-space signature, provides a valuable tool for
the identification of the physical mechanisms responsible for the removal of energy
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(a) (b) (c)

FIGURE 7. Mean secular energy density transfer rate between the protons and E‖ at the
same four points considered in figure 6, 〈CE‖〉T , (b), with the velocity-dependent standard
deviation added to or subtracted from the mean in (c) and (a). The Landau resonant
velocity for the largest simulated and the most strongly Landau damped Alfvén waves
are shown in purple and green.

from turbulent fluctuations and consequent energization of particles. Further work is
needed to determine how these velocity-space signatures change quantitatively as a
function of the plasma parameters, in particular the plasma βp, which controls where
the wave phase velocities fall within the thermal distribution of particle velocities.

It is worthwhile to note that the different regions in velocity space of energy transfer
for E‖ and E⊥ are partly enforced by the mathematical form of the correlations,
equations (4.3) and (4.4). For example, the presence of the v2

‖
term in CE‖ dictates

that the parallel energy transfer must drop to zero as |v‖| → 0, and similarly the
presence of the v2

⊥1 and v2
⊥2 factors in CE⊥ require that the perpendicular energy

transfer drops to zero as |v⊥| → 0. Nonetheless, the mathematical forms of CE‖

https://doi.org/10.1017/S0022377820000689 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000689


Field–particle correlations and ion-cyclotron turbulence 19

and CE⊥ are simply the terms for the parallel and perpendicular energy transfer in the
equation for the evolution of the phase-space energy density, equation (4.2). Therefore,
the results of the correlation can be interpreted directly in physical terms, where the
unnormalized correlation is precisely the rate of change of phase-space energy density
at each point in 3D–3V phase space. A key additional point to emphasize is that the
change of sign of the energy transfer – such as that frequently found at the parallel
resonant velocity in CE‖(v‖, v⊥) – is not guaranteed by the mathematical form of the
correlation. This feature is therefore indicative of the governing physical mechanism,
suggesting that such features in the velocity-space signatures of different mechanisms
can be used to identify the mechanisms dominating particle energization in both
numerical simulations and single-point spacecraft observations.

5.3. Time evolution of CE⊥ and CE‖

The 2V gyrotropic velocity-space signatures presented in figures 4–7 provide valuable
information about the energy transfer as a function of particle velocity but do
not contain information about the variation of the energy transfer as a function
of time. Time stack plots of the reduced perpendicular correlation CE⊥(v⊥, t) =∫

dv⊥ CE⊥(v‖, v⊥, t) and reduced parallel correlation CE‖(v‖, t) =
∫

dv‖ CE‖(v‖, v⊥, t)
enable the energy transfer to be visualized as a function of time and the most
relevant component of velocity space. The motivation of these particular reductions is
the strong dependence of CE⊥ on v⊥ and weak dependence on v‖, as seen in figure 6;
similarly, CE‖ has a strong dependence on v‖ and a weak dependence on v⊥, as seen
in figure 7. We have therefore not included plots of CE⊥(v‖) and CE‖(v⊥).

In figures 8–11, we consider the same four spatial points highlighted earlier in
figures 6 and 7. In each figure, columns (a) and (b) present time stack plots of
CE⊥(v⊥, t; τ = 0) and CE⊥(v⊥, t; τΩp= 22.5). Plotted at the bottom of each column is
the mean value averaged over the entire simulation time T , 〈CE⊥(v⊥, t, τ )〉T (black),
with the extent of the standard deviation about the mean (shaded). Columns (c) and
(d) present the same for CE‖(v‖, t; τ = 0) and CE‖(v‖, t; τΩp = 22.5). Column (e)
presents velocity-integrated energy density transfer rates, ∂tw̄E‖ (black) and ∂tw̄E⊥
(green) for τ = 0 (dashed) and τΩp = 22.5 (solid). Note that ∂tw̄E‖ is equal to the
work done by the parallel electric field on the protons, j‖,pE‖, and ∂tw̄E⊥ is equal to
the work done by the perpendicular electric field on the protons, j

⊥,p ·E⊥.
Several key points can be gleaned from the set of time stack plots in figures 8–11.

First, in all cases, throughout the evolution of the simulation, the perpendicular energy
transfer diagnosed by CE⊥(v⊥) falls primarily in the range 1 6 v⊥/vtp 6 3 and the
parallel energy transfer diagnosed by CE‖(v‖) falls primarily within the two ranges
−3 6 v‖/vtp 6 −0.5 and 0.5 6 |v‖/vtp| 6 3, consistent with the findings of the 2V
gyrotropic velocity-space signatures in § 5.2. Second, as shown in the lower panels
of columns (a,c) in the figures, the instantaneous energy transfer rate (the correlation
with τ = 0) experiences a wide variation (shaded region) of CE⊥(v⊥) and CE‖(v‖)
in time, consistent with the idea of a significant oscillating energy transfer (Howes
et al. 2017). This oscillating energy transfer largely averages out over sufficiently long
correlation intervals, as shown in the lower panels of columns (b,d) for τΩp = 22.5,
where the variation of the energy transfer rate is greatly diminished, as intended with
the field–particle correlation method. This removal of the oscillating component can
be seen clearly in the velocity-integrated spatial energy transfer rates ∂tw̄E‖ and ∂tw̄E⊥
in column (e), where the amplitude of the energy transfer in the instantaneous case
(τ = 0, dashed) is greatly reduced when a sufficiently long correlation interval is
chosen (τΩp = 22.5, solid).
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(a) (b) (c) (d) (e)

FIGURE 8. Reduced field–particle correlations CE⊥(v⊥) with (a) τ = 0 and (b) τΩp= 22.5
and CE‖(v‖) with (c) τ = 0 and (d) τΩp= 22.5. The lower panels of columns (a–d) show
the time-averaged, velocity-dependent energy transfer rate, with the mean in black and one
standard deviation in red. (e) The velocity-integrated spatial energy density transfer rates
∂tw̄E⊥ (green) and ∂tw̄E‖ (black) are shown for τΩp = 0 (dashed) and 22.5 (solid).

Third, for the two points, 35 and 11, at which there is little net energy transfer by
the perpendicular electric field, we find two different behaviours. Although, as shown
in panel (a) both cases display significant instantaneous transfers of energy at various
points in velocity and time, the cancellation of these positive and negative transfers
is different in the two cases: (i) at point 35, the energy transfer varies as a function
of v⊥, so that the velocity-integrated energy transfer remains small at all times; and
(ii) at point 11, the velocity-integrated energy transfer is positive at early times and
negative at late times, so that, when averaged over time (lower panel, column a), the
net energy transfer is small.

Finally, considering all 64 spatial points diagnosed in the simulation (not shown),
the fraction of the energy density transfer mediated by E‖ compared to the total
transfer rate, |∂tw̄E‖ |/|∂tw̄E‖ + ∂tw̄E⊥ |, does vary somewhat as a function of spatial
location r0. The mean and standard deviation of this parallel-to-total energy transfer
ratio – averaged over the entire simulation time T and over all 64 diagnosed points r0
– is equal to 0.67± 0.24, with no significant variation for different choices of τ . This
result indicates that both E‖ and E⊥ contribute to the energy transfer, though points
where one component dominates over the other will be highlighted in the following
sections.

6. Comparing electric field and heat flux contributions
As shown by (4.2), the change of phase-space energy density at a given point in

3D–3V phase space (r, v) is the sum of changes due to each of the three terms on
the right-hand side of the equation. The first term represents the advective heat flux,
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(a) (b) (c) (d) (e)

FIGURE 9. Reduced field–particle correlations, organized in the same format at figure 8
but for point 8. At this point, there is a net transfer of energy from the protons to E‖
and E⊥, with E‖ receiving more energy.

(a) (b) (c) (d) (e)

FIGURE 10. Reduced field–particle correlations, organized in the same format at figure 8
but for point 35. At this point, there is a net transfer of energy to the protons via E‖, and
very little transfer of energy mediated by E⊥.

https://doi.org/10.1017/S0022377820000689 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000689


22 K. G. Klein, G. G. Howes, J. M. TenBarge and F. Valentini

(a) (b) (c) (d) (e)

FIGURE 11. Reduced field–particle correlations, organized in the same format at figure 8
but for point 19. At this point, there is relatively little net transfer of energy between the
protons and the electric field.

the second is the work done on the particles by the total electric field (the sum
of work done by E‖ and E⊥), and the third is the work done by the magnetic
field (which must be zero when integrated over velocity space). The field–particle
correlation provides information about the work done by the electric field, but it is
worthwhile to analyse how all of the terms lead to the net energy transfer to or from
the protons at a single point in space.

To calculate the net rate of change of the spatial energy density at a single point r0
in time, ∂tw̄(r0, t), we may simply integrate (4.2) over all velocity space, identifying
each of the different terms. Note that this equation must be satisfied instantaneously,
so we do not time average the correlations in this analysis. The total rate of change
in the proton spatial energy density is given by

∂w̄
∂t
(r0, t)=

∂

∂t

∫
dv

mv2f
2
. (6.1)

The instantaneous rate of work done by the parallel and perpendicular components of
the electric field on the protons is simply given by (4.6) with a correlation interval
τ = 0. Note that τ = 0 will be implicitly assumed unless otherwise mentioned for all
determinations of ∂tw̄E‖(r0, t) and ∂tw̄E⊥(r0, t) for the remainder of this section, and
the total rate of work done by the electric field is given by ∂tw̄E(r0, t)= ∂tw̄E‖(r0, t)+
∂tw̄E⊥(r0, t). Following this procedure, the rate of change of the proton spatial energy
density due to the magnetic field is given by

∂tw̄B(r0, t)=
qs

c

∫
dv
v2

2
(v×B) ·

∂fs

∂v
. (6.2)

As with the energy transfer rates calculated in § 4, all of the rates in this section
are calculated in the time-averaged bulk velocity frame for each spatial point in the
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simulation. Note that integrating by parts in velocity of (6.2) enables the integrand to
be manipulated into the form v · (v×B)fs= 0, so the net work done by the magnetic
field must equal zero, as expected. Nonetheless, evaluating (6.2) with the numerical
velocity derivatives provides a convenient means for estimating the accuracy of the
integration and assessment of ∂vfs.

Since the spatial gradients in the ballistic (advective) term in (4.2) are not available
with only single-point measurements, we cannot directly evaluate this term. But,
since we can determine all of the other terms in the equation using single-point
measurements,4 we may obtain the contribution from the advective heat flux at point
r0 by combining all of the other terms,

∂tw̄Ball(r0, t)= ∂tw̄− ∂tw̄E(r0, t)− ∂tw̄B(r0, t). (6.3)

In figure 12, we plot the time evolution of the contributions to the rate of change
in the proton spatial energy density at spatial points (a) 40, (b) 8, (c) 35 and (d) 11:
(i) total change in proton spatial energy density ∂tw̄(r0, t) (black); (ii) the ballistic (heat
flux) contribution ∂tw̄Ball(r0, t), (red); (iii) the total electric-field contribution ∂tw̄E(r0, t)
(blue); and (iv) the magnetic field contribution ∂tw̄B(r0, t) (green). As expected the
contribution from the magnetic field is nearly zero, providing a practical diagnostic
for the accuracy of our velocity derivatives of the 3V distribution function at a given
point, fp(r0, v, t).

A salient, and somewhat unexpected, feature that stands out in the time series
in panels (a–d) is the strong anti-correlation of the ballistic (red) and electric-field
(blue) terms. This anti-correlation can be quantified by plotting the mean value,
over the entire simulation duration T , of the energy transfer due to these two terms,
〈∂tw̄Ball〉T and 〈∂tw̄E〉T against each other for each of the 64 spatial points, as shown
in figure 12(e) with error bars given by the standard deviations of the means. While
the standard deviation of these energy transfer rates has a significant spread, the mean
values are well described with a linear fit of ∂tw̄Ball = −1.005∂tw̄E + 0.004, a nearly
perfect anti-correlation.

One plausible interpretation of this finding is that, when energy is transferred to
the protons by the electric field, the heat flux efficiently advects the energy away.
Conversely, when energy is lost from the protons through energy transfer to the
electric field, the heat flux causes a net energy flow to that point in space. In other
words, energy is efficiently transported away from regions where j · E is positive,
and toward regions where j · E is negative. The anti-correlation between ∂tw̄E and
∂tw̄Ball supports the general picture of two different recent energy transport models,
described in Yang et al. (2017) and Howes et al. (2018), where the electromagnetic
work done on the particles is merely one step in a process of converting turbulent
energy into plasma heat. It must be emphasized that, although locally the field–particle
and advective terms nearly cancel out, only the field–particle term represents a net
(integrated over configuration space volume) change in the particle energy, and thus
represents particle energization. The ballistic term simply leads to a transport in
configuration space of the energy gained by the particles when E does work.

The anti-correlation identified in figure 12(e) does not establish cause and effect:
is the change in spatial energy density driven by the work done by the electric field

4As discussed in § 7.1 of Howes et al. (2017), whether our measurement of the plasma occurs at a single
point, or along a single trajectory, it is sufficient for the correlation to be averaged over an interval longer
than 2π of the phase of the wave, φ = k · v − ωt, in order to resolve the nature of the secular transfer of
energy.
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(a) (b)

(c) (d)

(f)(e)

FIGURE 12. (a–d) Components of the energy density transfer rate ∂tw̄ due to the electric
field (blue), magnetic field (green), and the ballistic term (red), as well as the overall
transfer rate (black) at four points in the simulation domain. (e) The mean and standard
deviation of the ballistic and instantaneous (correlation length τ = 0) electric field transfer
rates at each spatial point. ( f ) The mean and standard deviation of the transfer rate due
to the perpendicular and parallel electric field, with correlation length τΩp = 22.5.

or by the heat flux? A detailed look at the time evolution of the heat flux and
electric field terms over the time range 0 6 tΩp 6 8 in figure 12(a) suggests that the
work by the electric field is the primary driver of the energy evolution. Over the
interval 06 tΩp 6 3, the electric field is energizing the protons (blue), and the rate of
change of the spatial energy density is positive (black). At tΩp = 3, the rate of work
done by the electric fields peaks and then begins to decline; at the same time, the
rate of change spatial energy density swings to negative (black), suggesting that the
removal of energy density by the heat flux (red) begins to dominate, advecting energy
away from the diagnosed point. This evolution suggests that first the electric field
energizes the protons locally, and subsequently the extra energy is carried away by
advection.
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Finally, in figure 12( f ), we plot the time-averaged rate of work done by the
parallel electric field 〈∂tw̄E‖(r0, t, τΩp = 22.5)〉T and perpendicular electric field
〈∂tw̄E⊥(r0, t, τΩp = 22.5)〉T against one another, with error bars from the standard
deviations. We find that the statistical correlation between parallel and perpendicular
energization is fairly weak, with a mean and standard deviation of 0.15 ± 0.53,
indicating that the energy transfer due to E‖ and E⊥ are not strongly correlated.

In summary, the unexpectedly clear anti-correlation found here between the heat flux
and electric-field terms motivates a more detailed investigation of their time evolution,
with an aim to identify cause and effect, rather than just anti-correlation. Consideration
of the contribution of the heat flux to the rate of change of the spatial energy density,
especially in systems with significant spatial inhomogeneities, will be essential for
fully characterizing the entire chain of energy transport from turbulent plasma flows
and electromagnetic fields to plasma heat.

7. Conclusions

We present in this work the first application of the field–particle correlation
technique to a system of Alfvén -ion cyclotron turbulence, using electromagnetic
field and proton distribution data drawn from an HVM numerical simulation of kinetic
protons and fluid electrons. Unlike previous tests of the field–particle correlation
technique using gyrokinetic simulations of strong plasma turbulence that prohibit
the possibility of ion-cyclotron damping (Klein et al. 2017), the use of a hybrid
code enables collisionless energy transfer to the protons via both the Landau and
cyclotron resonances. An isotropic simulation domain over a range of wavevectors
spanning ion kinetic scale lengths was chosen here to allow proton energization
by both Landau damping and cyclotron damping. This simulation domain is not
necessarily representative of solar wind turbulence, which is typically found to have
more significant wavevector anisotropies.

The first key finding of this study is that we have provided the first numerical
determination of the characteristic velocity-space signature of proton cyclotron
damping in a strong turbulence simulation using the field–particle correlation
technique, shown in figure 4(a). The region of velocity space controlling the energy
transfer – 1 6 v⊥/vtp 6 3 and −2 6 v‖/vtp 6 2 – is largely consistent with the
formation of a cyclotron diffusion plateau, of the kind observed in in situ solar
wind measurements, e.g. He et al. (2015). The velocity region of energization is
inconsistent with the predictions of stochastic heating by low-frequency Alfvénic
turbulence (Chandran et al. 2010), which is predicted to preferentially heat particles
with v⊥/vtp . 1 (Klein & Chandran 2016).

Our study also confirmed the characteristic bipolar velocity-space signature
of Landau damping with an independent numerical code, confirming previous
determinations in single kinetic Alfvén wave simulations (Howes 2017; Klein et al.
2017), gyrokinetic simulations of strong plasma turbulence (Klein et al. 2017)
and observations of the Earth’s turbulent magnetosheath (Chen et al. 2019). The
determination of the velocity-space signatures of both cyclotron damping and Landau
damping acting simultaneously at the same point clearly demonstrates a second key
result: the field–particle correlation method can successfully employ single-point
measurements to distinguish distinct mechanisms of energy transfer occurring at the
same point in space. Note that, although a simple decomposition of the components
of j · E can separate the perpendicular and parallel contributions, the velocity-space
signatures generated by the field–particle correlation technique provide a practical
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means to identify definitively the physical mechanisms that are responsible, even
when multiple channels of energization are occurring simultaneously.

This study also quantitatively characterized the variations of the velocity-space
signatures of proton cyclotron damping and Landau damping at different points in
space and time, finding that the pattern of energy transfer in velocity space generally
persists, although the signs of the energy transfer can switch since collisionless
wave–particle interactions are reversible, sometimes leading to energy transfer from
the particles to the electric field.

An unexpected finding here is a strong anti-correlation of the rate of change of
spatial energy density at a single point between the ballistic (advective heat flux)
and electric-field terms. Preliminary indications suggest that, first, the electric field
energizes the protons locally, and subsequently the extra energy is carried away by
advection, but a more detailed investigation of the time evolution of these physical
mechanisms that change the local spatial energy density is required to confirm this
hypothesis.

Further work is needed to explore the variation of the velocity-space signatures
of different particle energization mechanisms with changes in the plasma parameters
(e.g. βp and Tp/Te) and the characteristics of the turbulence (e.g. nonlinear parameter
χ and anisotropy of turbulence in wavevector space). Ultimately, we aim to develop
a framework of characteristic velocity-space signatures of different proposed particle
energization mechanisms using the field–particle correlation technique, which unlike
other methods for studying plasma heating and particle energization that require
measurements of spatial gradients (e.g. Yang et al. (2017)) is designed to be
implemented using only single-point measurements. This framework can then be
used to interpret the results of the field–particle correlation analysis of single-point
particle velocity distribution and electromagnetic field measurements from current and
future spacecraft missions, such as Magnetospheric MultiScale and Parker Solar Probe.
The ultimate goal is to identify the dominant mechanisms of particle energization and
compute the resulting rates of particle energization due to the damping of turbulence
in key regions of the heliosphere – the solar corona, solar wind and planetary
magnetospheres.
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Appendix A. Single-point mode identification
In this paper, we present the velocity-space signature of ion-cyclotron damping

using the field–particle correlation technique, illustrated in figure 4(a). To establish
that this is indeed due to the ion-cyclotron resonance, we show here that the
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simulation of turbulence indeed contains ion-cyclotron waves that are expected to
damp collisionlessly via the ion-cyclotron resonance.

A common method to diagnose the nature of simulated turbulence is to calculate
power as a function of both frequency and length scale, and compare the result
to linear predictions, producing so-called ω − k diagrams. Such diagrams are not
necessarily a reliable way to identify wave modes in strong plasma turbulence. For
example, in figure 5 of TenBarge & Howes (2012), a plot of ω versus k⊥ for strong
kinetic Alfvén (KAW) turbulence shows significant broadening, which is interpreted
to be due to the strong nonlinear energy transfer among modes, and is not directly
comparable to the typical linear ω(k) dispersion relations.

To identify the nature of the turbulence simulated in this work using the single-
point time series presented in the main text, we consider the relations among different
components of the turbulent fluctuations and compare to the predicted eigenfunctions
for different wave modes from linear kinetic theory. The practice of calculating these
relations, including various helicities, polarizations and other transport ratios (Gary
1986; Gary & Winske 1992; Gary 1993; Krauss-Varban, Omidi & Quest 1994; Song,
Russell & Gary 1994), has a long history of application to in situ observations of
both the magnetosphere (Denton et al. 1995; Lacombe & Belmont 1995; Schwartz,
Burgess & Moses 1996; Zhu et al. 2019) and solar wind (He et al. 2011; Salem
et al. 2012; TenBarge et al. 2012; Chen et al. 2013; Roberts, Li & Li 2013; Klein
et al. 2014; Verscharen, Chen & Wicks 2017; Wu et al. 2019); see Klein (2013) for
a more exhaustive review.

Two particularly useful measures to distinguish between the normal modes
accessible to the region of wavevector space simulated in this work, namely
ion-cyclotron (ICW) and KAW waves on the Alfvén dispersion surface, and whistlers
on the fast dispersion surface, are the circular polarization of the electric field about
the magnetic field,

PolExy =
i(ExE∗y − E∗x Ey)

|Ex||Ey|
(A 1)

and the density–magnetic-field correlation (Howes et al. 2012; Klein et al. 2012),

〈δn, δB‖〉 =

(
δn∗δB‖ + δnδB∗‖

)
|δn| |δB‖|

, (A 2)

where δE, δB and δn are complex-valued Fourier coefficients. These two eigenfunction
relations, along with the normal mode frequencies ω/Ωp, for the Alfvén and fast
dispersion surfaces are plotted in figure 13.

The electric-field polarization changes sign between the parallel and perpendicular
kinetic extensions of the Alfvén solution, from left-handed ICWs to right-handed
KAWs. The fast modes are nearly uniformly right-handed over this wavevector regime.
Density and magnetic-field fluctuations are strongly anti-correlated for oblique Alfvén
solutions, weakly correlated for parallel Alfvén solutions, and strongly correlated for
all fast mode solutions.

These two eigenfunction relations can be used to identify the presence of ICWs in
our turbulent simulation using only single-point time series of measurements, similar
to what is measurable with spacecraft missions. At each of the four spatial points
examined in the main text, we Fourier transform in time to obtain the complex
Fourier coefficients (as a function of frequency) for Ex, Ey, δn and δB‖. From these
complex Fourier coefficients, we compute the circular polarization using (A 1) and the
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(a) (b)

(c) (d)

(e) (f)

FIGURE 13. (a,b) Normalized frequency ω(kρp)/Ωp, (c,d) electric-field polarization
PolExy(kρp), equation (A 1) and (e, f ) density–magnetic-field correlation 〈δn, δB‖〉(kρp),
equation (A 2), for the Alfvén and fast dispersion surfaces over wavevectors simulated
in this work. The grey lines indicate parallel, oblique and perpendicular cuts used for
comparison to frequency series in figure 14.

density–magnetic-field correlation using (A 2) as a function of normalized angular
frequency ω/Ωp (solid lines in figure 14).

To compare to the predicted variation of these eigenfunction relations for the
waves from linear kinetic theory, we compute the values PolExy and 〈δn, δB‖〉 along
particular trajectories through (k⊥, k‖) wavevector space, indicated in figure 13 by the
grey arrows.5 For example, the ‘parallel’ path (vertical grey arrow) transitions from
the regime of Alfvén waves to the regime of ICWs, whereas the ‘perpendicular’ path
(horizontal grey arrow) transitions from the regime of Alfvén waves to the regime of
KAWs. These predicted theoretical values are plotted in figure 14 as dashed lines.

5Note that the values of PolExy from the second row and 〈δn, δB‖〉 from the third row are plotted against
the corresponding frequency ω/Ωp from the first row.
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FIGURE 14. Electric-field polarization, equation (A 1), and density–magnetic-field
correlation, equation (A 2), calculated from frequency spectra drawn from the four spatial
points investigated in this work. Expectations from linear theory along the grey arrows in
figure 13 for both the Alfvén and fast dispersion surfaces are indicated with dashed lines.

Examining first PolExy in figure 14, at the lowest frequencies ω/Ωp 6 0.4 (which
correspond only to the Alfvén solutions, as all of the fast wave modes have higher
frequencies ω/Ωp > 0.4), we find PolExy < 0 for three of the four spatial points. The
only region for the Alfvén or fast solutions that has PolExy < 0 is the ICW regime,
so we can conclude that, at those three points, there exists a significant contribution
of ICW fluctuations. At ω/Ωp > 0.4, we find PolExy > 0 at all four points, suggesting
that the fluctuations at these frequencies are either KAWs or any of the fast mode
fluctuations.

Turning next to 〈δn, δB‖〉 in figure 14, again at the lowest frequencies ω/Ωp 6 0.4
we find a 〈δn, δB‖〉> 0, agreeing well with the prediction for ICWs (light blue, dashed
line). Shifting to the frequency range 0.46ω/Ωp 6 0.9, we find 〈δn, δB‖〉< 0 for three
of the four spatial points. Since only the KAW regime has 〈δn, δB‖〉< 0, we conclude
that a substantial fraction of the fluctuations in this frequency range are KAWs.

In conclusion, at the lowest frequencies ω/Ωp 6 0.4, the combination of PolExy < 0
and 〈δn, δB‖〉 > 0 provides strong evidence that we indeed observe ICWs in our
turbulence simulation. Furthermore, looking at magnetic and electric frequency
power spectra in figure 2, there is significant power at these low frequencies, so
we expect that ion-cyclotron damping may indeed play a key role in the removal of
energy from the turbulent fluctuations in the simulation. In addition, in the frequency
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range 0.4 6 ω/Ωp 6 0.9, the combination of PolExy > 0 and 〈δn, δB‖〉 < 0 provides
strong evidence for the presence of KAWs in the turbulence simulation. Therefore,
we may expect to see signatures of ion Landau damping in our simulation.
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