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1. Introduction. Let G be a group and let H be a subgroup of G. The automizer
AutG (H ) of H in G is de®ned as the group of automorphisms of H induced by
conjugation of elements of NG (H ). Thus AutG (H )�NG (H )=CG (H ), and we
obviously have

In�H� � AutG�H� � Aut�H�:

We call AutG (H ) large if AutG (H )=Aut (H) and small if AutG (H)=In(H).
H. Zassenhaus proved in [10] an elegant result which can be rephrased as fol-

lows: a ®nite group is abelian if and only if the automizers of all its abelian sub-
groups are small. Lennox and Wiegold [6] have considered groups, in which the
automizers of all subgroups are large, that they called MD-groups. The ®nite MD-
groups are scarce: they are isomorphic to the symmetric groups Sn for n�3Ðsee also
Deaconescu [2]. For more about in®nite MD-groups, see [7] and [8].

Here we consider ®nite nonabelian groups in which the automizers of all non-
abelian subgroups are small; for convenience, we shall call these groups SANS-
groups (Small Automizers for Nonabelian Subgroups). By de®nition, this is equiva-
lent to saying that NG(H) induces inner automorphisms on every nonabelian sub-
group H of G. The latter condition is equivalent to NG(H)=HCG(H), for every
nonabelian subgroup H of G. These conditions will frequently be used instead of the
original de®nition without further reference.

The ®nite minimal nonabelian groups, that is the ®nite nonabelian groups all of
whose proper subgroups are abelian, are typical examples of SANS-groups. All
these are soluble SANS-groups, but there exist simple SANS-groups as well, as for
example L2(5). This raises the problem of describing the structure of SANS-groups.
Our main result is as follows.

Theorem. I. A p-group G is a SANS-group if and only if G=TZ(G), where T is a
minimal nonabelian subgroup of G. In particular, if G is a SANS-group, then jG0j=p
and jG : Z(G)j=p2.

II. If a nilpotent group G with jp(G)j�2 is a SANS-group, then G=P�Op0(G),
where P2Sylp(G) is a SANS-group and Op0(G) is abelian.

III. If G is a soluble nonnilpotent SANS-group, then F(G) is abelian and
jG : F(G)j is a prime.

IV. If G is a nonsoluble SANS-group, then G=H�Z(G). Here H is a simple
group isomorphic to L2(q), where q=2n, where n�3 and qÿ1 is a Mersenne prime, or
q is odd and (qÿ1)=2 is a prime.
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Since the structure of the minimal nonabelian p-groups is known ([4, p. 309]),
the Cases I and II of the Theorem give a complete description of the nilpotent
SANS-groups. It will be shown that the condition in Case III is a su�cient one,
provided that all Sylow subgroups of G are abelian.

The notation is standard and follows that of Aschbacher [1] and Huppert [4].
All groups considered here are ®nite.

2. Preliminaries. We need the following result of Zassenhaus [10]. The original
proof is somewhat lengthy and so the following simple argument may be of some
interest.

Lemma 2.1. Let G be a group in which NG(H)=CG(H), for every abelian sub-
group H of G. Then G is abelian.

Proof. Let P2Sylp(G) and let A be a maximal abelian normal subgroup of P.
Then A=CP(A), and since, by hypothesis, P induces in A only inner automorph-
isms, one obtains P=ACP(A)=A. Hence P is abelian.

The hypothesis, applied to P, yields NG (P )=CG (P ) and, by a well-known
result of Burnside ([4, Hauptsatz 2.6, p. 419]), G is p-nilpotent. As this is true for all
primes, G is nilpotent and the result follows.

The proof of the theorem relies on the following two elementary lemmas.

Lemma 2.2. Every nonabelian section of a SANS-group G is a SANS-group. In
particular, G does not have any section isomorphic to the symmetric group S4.

Proof. The proof of this lemma is straightforward and we omit it.

Lemma 2.3. Let G=A�B be a SANS-group. Suppose that A is nonabelian. Then
B is abelian.

Proof. By Lemma 2.1, it su�ces to prove that if T is an abelian subgroup of B
then NB(T)=CB(T).

By way of contradiction, assume that there exists b2NB(T)\CB(T). Consider
the nonabelian subgroup H=A�T of G. Then b2NG (H ). Moreover, we have
CG (H )=Z(A ) �CB(T ), which implies HCG(H)=A�CG (B). Thus b 62HCG (H ) and
NG�H� 6� HCG�H�, a contradiction.

The next result provides a class of examples of soluble, nonnilpotent SANS-
groups.

Proposition 2.4. Let G be a group with abelian Sylow subgroups. Suppose that
jG: F(G)j=p, where p is a prime. Then G is a SANS-group.

Proof. By hypothesis, F(G) is abelian, and so we can apply a result of Taunt (see
[4, p. 752]) in order to deduce that F(G)=G0�Z(G).

Let H be a nonabelian subgroup of G. First, assume that H is normal in G. We
need to show HCG(H)=G. As H is nonabelian, we have H 6� F�G�. Let x 2 H nF�G�.
Since jG : F(G)j=p, we get G=F(G)hxi. First of all, note that G0= hxGi�H as H is
normal in G. As clearly Z(G)�CG(H), this implies that
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HCG�H � � hG 0;Z�G �; xi � hF�G �; xi � G;

as claimed.
If H is nonnormal in G, the argument above, applied within NG(H), proves that

NG(H)=HCG(H). Thus G is a SANS-group and the proof is complete.
Finally, we record a series of simple SANS-groups.

Lemma 2.5. (i) The groups SL2(q), with q odd, are not SANS-groups.
(ii) Let G=L2(2

n), where n�3. Then G is a SANS-group if and only if 2n ÿ 1 is a
prime.

(iii) Let G=PSL(2, q), where q=pf is odd and q�5. Then G is a SANS-group if
and only if (q ÿ 1)=2 is a prime. In particular, either q=3f, where f is a prime, or
q=p�5 is a prime.

Proof. (i) Let G � SL2�q�, with q odd. Then G contains precisely one involution
z and Z�G� � hzi. By Dickson's list [4, p. 213], the group G=Z(G ) contains a sub-
group K=Z(G ) isomorphic to A4. Its preimage K is nonabelian and K has a Sylow
2-subgroup H isomorphic to the quaternion group Q8. In particular, H is non-
abelian. But the elements of order 3 of K act as outer automorphisms on H, which
proves that G is not a SANS-group.

(ii) Let G � L2�2n�, where n�3, and suppose that 2n ÿ 1 � ab�a; b > 1� is not a
Mersenne prime. The normalizer of a Sylow 2-subgroup of G has a nonabelian
normal subgroup of order (2n ÿ 1)a on which a cyclic group of order b acts as a
group of outer automorphisms. Thus G is not a SANS-group. The converse follows
from an inspection of Dickson's list.

(iii) The ®rst statement follows as in (ii), while the remaining ones are obvious
using elementary number theory.

3. Proof of the theorem. We split the proof into several cases, according to
whether G is a p-group, a nilpotent group, a soluble nonnilpotent group and a
nonsoluble group.

I. The p-group G is a SANS-group.

If G is a minimal nonabelian group the result follows from a theorem of ReÂ dei
quoted in [4, p. 309]. Let now M be a nonabelian maximal subgroup of G. Then we
have G � NG�M� �MCG�M�. But Z�M� �M \ CG�M�4Z�G� and, since
jG : Mj � jCG�M� : Z�M�j � p, this implies that CG�M� is abelian. Thus
G �MCG�M�4CG�CG�M��, forcing CG�M� � Z�G�. Hence G �MZ�G�.

By Lemma 2.2 and by induction on the order of G, we have M � TZ�M�, where
T is a minimal nonabelian subgroup ofM. ThusG �MZ�G� � TZ�M�Z�G� � TZ�G�.
Since by ReÂ dei's result p � jT 0j � jG 0j and p2 � jT : Z�T�j � jG : Z�G�j, the necessity
is proved.

To prove su�ciency, let G be a p-group and suppose that G has a minimal
nonabelian subgroup T such that G � TZ�G�. Let K be a nonabelian subgroup of G.
In order to show that G is a SANS-group, we have to prove that NG�K� � KCG�K�.

First, as K is nonabelian and jG 0j � p, we have G 0 � K0, and so K is normal
in G. We thus need to show that G � KCG�K�. For this, we note that
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KCG�K�=CG�K� � K=Z�K� is of order at least p2 as K is nonabelian. But
Z�K�4CG�K�4KCG�K�4G and jG : Z�G�j � p2. The remarks above yield
G � KCG�K�. Thus G is a SANS-group and the proof is complete.

II. G is a nilpotent SANS-group and jp(G)j�2.

In this case, since G is nonabelian by de®nition, there exists a nonabelian Sylow
p-subgroup P of G and, of course, we have G � P�Op 0 �G�. Lemma 2.2 implies that
P is a SANS-group, and by Lemma 2.3 we get that Op 0 �G� must be abelian.

III. G is a soluble, nonnilpotent SANS-group.

If F(G ) is nonabelian, then G � NG�F�G �� � F�G �CG�F�G �� � F�G �, contrary
to the hypothesis. Therefore F(G ) is abelian. If H=F�G � is a nonabelian minimal
subgroup of G=F�G �, then clearly F�G � < H, and H is nonabelian since H is
nonnilpotent. Thus CG�H�4CG�F�G��4F�G� < H, whence G � NG�H� �
HCG�H�4H. Since G=H, the solvability of G implies that jG : F �G�j is a prime.

We remark that Proposition 2.4 provides a partial converse to the statement of
Case III, provided that all Sylow subgroups of G are abelian.

IV. G is a nonsoluble SANS-group.

Let G denote for the moment an arbitrary ®nite nonsoluble group. Recall that a
component of G is a subnormal subgroup X of G such that X0 � X and X=Z�X� is a
simple group. If E�G� � hXjX is a component of G i, the generalized Fitting sub-
group of G is the subgroup F��G� � E�G�F�G�. The next lemma summarizes some of
the main properties of E (G ) and F*(G ).

Lemma 3.1. (i) F*(G) is a central product of E(G) and F(G). Moreover, we have
CG�F � �G�� 4 F*(G).

(ii) E(G)=Z�E�G�� is a direct product of simple nonabelian groups; the number of
factors in the direct product is equal to the number of components of G.

(iii) If S=Z�F�G�� is the socle of CG�F�G��=Z�F�G��, then S=E(G)Z�F�G�� and
E(G)=E(G)0=S0.

(iv) F�CG�F�G��=Z�F�G��=1.

Proof. See Chapter 11 of [1].

From now on G will denote a nonsoluble SANS-group. The next two lemmas
are essential.

Lemma 3.2. (i) Every chief factor of G is either abelian or simple.
(ii) If 1< H / G and if Z(H)=1, then G=H�Z(G).

Proof. (i) This follows from Lemmas 2.1 and 2.3.

(ii) As H is nonabelian and H \ CG�H� � Z�H� � 1 we get G � NG�H� �
H �CG�H�. By Lemma 2.3, we know that CG�H� is abelian and so CG�H� � Z�G�.
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Lemma 3.3. Suppose that G is nonsimple. Then
(i) F�G�6�1.
(ii) G � F��G� � E�G�F�G�.
(iii) G has a unique component.

Proof. (i) Suppose that F�G� � 1. Since G is nonsimple and nonsoluble, G has a
minimal nonabelian normal subgroup H and, by Lemma 3.2(ii), G � H� Z�G�.
This contradicts F�G� � 1.

(ii) Since G is nonsoluble, E(G) is nontrivial and F��G� � E�G�F�G� is non-
abelian. Thus G � NG�F��G�� � F��G�CG�F��G�� � F��G�, by Lemma 3.1(i).

(iii) By hypothesis and by Lemmas 2.2, 2.3 and 3.1(ii), we get that E�G�=Z�E�G��
is a nonabelian simple group.

At this stage we split our discussion into four subcases.

IV(a). G is a simple group.

By Lemma 2.2, no section of G is isomorphic to S4. Hence a result of Glauber-
man (see [3, Theorem 7.1]) implies that G is one of the following groups.

(i) A simple group of Ree type.
(ii) Sz�22n�1�, with n�1.
(iii) U3�2n�, with n�2.
(iv) The ®rst Janko group J1.
(v) L2�q�, where either q � 2n, with n�3, or q�5 and q � 3,5 (mod 8).
If G is of Ree type, then Theorem 13.2 of [5] implies that G has a 3-subgroup P

with jP 0j> 3, contradicting Lemma 2.2 and Case I of the Theorem.
If G is a Suzuki group as in (ii), then G has a 2-subgroup S with jS0j> 2, giving

a contradiction as before.
If G � U3�2n�, with n�2, then by [4, p. 242], G has a 2-subgroup Q with jQ0j >

2, giving a contradiction.
If G � J1, then G has a subgroup which is a direct product of two dihedral

groups of orders 6 and 10; see [9, p. 213]. But this contradicts Lemmas 2.2 and 2.3.
If G is a simple SANS-group, it follows that G � L2�q� is as described in (v).

Thus Lemma 2.5 completes the analysis of Case IV(a).

IV(b). G is nonsimple and has a minimal nonabelian normal subgroup.

Let H be a minimal nonabelian normal subgroup of G. Then H is simple, by
Lemma 3.2(i), while Lemma 3.2(ii) implies that G � H� Z�G�.

IV(c). G is nonsimple; all minimal normal subgroups of G are abelian and F�G� is
abelian.

We wish to apply part (iii) of Lemma 3.1. For this, we ®rst determine S. Since
Z�F�G�� � F�G�, we have S � E�G�F�G� � G, by Lemma 3.3(ii). Hence part (iii) of
Lemma 3.1 implies CG�F�G�� � G, and we get F�G� � Z�G�.

Now consider G=Z�G�. By Lemma 3.3(ii), we have G � E�G�Z�G�, so that
G=Z�G� � E�G�=E�G� \ Z�G�. Clearly, we have Z�E�G��4Z�G�, so that we get
E�G� \ Z�G� � Z�G�. This, together with Lemma 3.3(iii), implies that
G=Z�G� � E�G�=Z�E�G�� is a nonabelian simple group.
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Next consider the normal subgroup G0Z�G �=Z�G � of the simple group G=Z�G �.
We must have G0Z�G � � G. This implies G=Z�G� � G0=G0 \ Z�G�, which is iso-
morphic to one of the simple groups Y listed in part IV of the Theorem. If
Y � L2�2n� with n � 3, then the Schur multiplicator of Y is trivial [1, p. 251] and we
get G 0 \ Z�G � � 1, so that G � G 0 � Z�G � � Y� Z�G �.

If Y � L2�q�, where q is odd, and if G0 \ Z�G � 6� 1, it follows that G � SL�2; q�.
But by Lemma 2.5(i) G is not a SANS-group, a contradiction.

IV(d). G is nonsimple; all minimal normal subgroups of G are abelian and F�G� is
nonabelian.

Lemmas 3.1 and 3.3 imply G � F��G� � F�G�E�G� and �F�G�;E�G�� � 1. Suppose
that F(G ) is nonabelian. Then we cannot have G � F�G� � E�G�, since both factors
are nonabelian and Lemma 2.3 applies.

Thus we have F�G� \ E�G� � Z�E�G�� 6� 1. In particular, the quasisimple group
E(G) is not simple. An inspection of the Schur multiplicators of the simple SANS-
groups shows that E�G�=Z�E�G�� � L2�q�, where q is odd. From this, we readily get
E�G� � SL�2; q�. This contradicts Lemma 2.5. The proof of the Theorem is now
complete.
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