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On the Generalized Auslander–Reiten
Conjecture under Certain Ring Extensions

Saeed Nasseh

Abstract. We show that under some conditions a Gorenstein ring R satisfies the Generalized
Auslander–Reiten conjecture if and only if R[x] does. When R is a local ring we prove the same result
for some localizations of R[x].

1 Introduction

Convention In this paper, R is a commutative noetherian ring with identity, and
all R-modules are unital.

The original version of a conjecture of Auslander and Reiten [2] is a generalized
version of a conjecture of Nakayama. It states that over an Artin algebra Λ, vanishing
of Exti

Λ(M,M ⊕ Λ) for a finitely generated Λ-module M and for all i > 0 implies
that M is projective. Auslander and Reiten proved this conjecture for several classes
of rings. Later, Auslander, Ding, and Solberg [1] studied this conjecture for arbitrary
commutative noetherian rings. This version is known as the Auslander–Reiten con-
jecture and is proved affirmatively in some special cases; see for instance [3, 5–7, 9].
A generalized version of the Auslander-Reiten conjecture, studied by several authors,
including [4, 10, 11], follows.

Conjecture 1.1 Let n be a positive integer, and let M be a finitely generated R-module.
If Exti

R(M,M ⊕ R) = 0 for all i > n, then pdR(M) ≤ n.

Related to this, the finitistic extension degree of the ring R, denoted fed(R), has
been recently introduced by Diveris in [4]. This invariant is tightly connected to
Conjecture 1.1 over Gorenstein rings.

Theorem 1.2 ([4, Corollary 3.2]) If R is Gorenstein, then fed(R) is finite if and only
if Conjecture 1.1 holds for R.

By definition,

fed(R) = sup{n | Exti
R(M,M) = 0 for all i > n and Extn

R(M,M) 6= 0},
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where the supremum is taken over all finitely generated R-modules M such that
Exti

R(M,M) = 0 for i � 0. Diveris also studies the behavior of this dimension un-
der certain base changes of rings. Among other results, he proves that when (R,m) is
Gorenstein and local, finiteness of any of fed(R), fed(R̂), fed(R[[x]]), or fed(R[x](m,x))
implies finiteness of the others; see [4, Theorem 4.4]. In other words, when (R,m) is
a Gorenstein local ring, if one of the rings R, R̂, R[[x]], or R[x](m,x) satisfies Conjec-
ture 1.1, then they all do.

The aim of this paper is to examine how finiteness of the finitistic extension degree
of a Gorenstein ring, hence the condition of Conjecture 1.1, is preserved under cer-
tain faithfully flat ring extensions. Section 2 of this paper is devoted to the primary
results and the notation that is used in the entire paper. In Section 3, we prove our
main theorems (Theorems 3.4 and 3.6) that are related to the base ring extensions
R → R[x] when R is a Gorenstein ring, and R → R[x]mR[x] when R is a Gorenstein
local ring with the maximal ideal m. This section also contains another base change
result (Proposition 3.3) that may be of independent interest. In Section 4 we investi-
gate Conjecture 1.1 under a different ring extension. As a consequence, we improve
Theorem 3.4 slightly when R is local.

2 Preliminaries

We begin by establishing the notation that will be used in the paper.

Notation 2.1 Let R be an algebra over a field k and let M be a module over the
polynomial ring R[x]. For an element α ∈ k we set

Mα := M ⊗k[x]

(
k[x]/(x − α)k[x]

)
.

Remark 2.2 We work in the setting of Notation 2.1. For each element α ∈ k, the
module Mα is simply a residue module of M by the submodule (x − α)M. If M is a
finitely generated R[x]-module, then it has a presentation of the form

R[x]β1
m(x)−−→ R[x]β0 −→ M −→ 0,

where β0, β1 are non-negative integers and m(x) is a β0 × β1-matrix consisting of
polynomials in R[x]. Therefore, by using the isomorphism

(2.1) R = R[α] ∼= R[x]/(x − α)R[x],

the module Mα has a presentation of the form

Rβ1
m(α)−−−→ Rβ0 −→ Mα −→ 0,

where m(α) is a β0 × β1-matrix consisting of elements in R. In particular, if M is a
finitely generated R[x]-module, then Mα is a finitely generated R-module.

For more information about Mα we refer the reader to [12].

The following lemma will be used several times in this paper.
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Lemma 2.3 Let R be an algebra over a field k, and let α ∈ k. If x − α is a
non-zero-divisor on an R[x]-module M, then for each i we have Exti

R[x](M,Mα) ∼=
Exti

R(Mα,Mα).

Proof This isomorphism follows from (2.1) and [8, Lemma 2(ii), p. 140].

The following two lemmas are important tools that we use in the proofs of our
main results in the next section.

Lemma 2.4 Let R be an algebra over a field k, and let M be an R[x]-module. Then for
each ideal I of R[x] and eachα ∈ k, we have (IM)α = IMα and (M/IM)α ∼= Mα/IMα.

Proof Without loss of generality we can assume that I is non-zero. For the first
equality note that Mα has an R[x]-module structure that uses the natural ring ho-
momorphism R[x]→ R[x]α. This gives the second equality in the following display:

(IM)α = (IM)⊗k[x] k[x]/(x − α)k[x]

= I
(

M ⊗k[x] k[x]/(x − α)k[x]
)

= IMα.

For the second equality in the statement of the lemma, let I = (t1, . . . , tl) for some
positive integer l. Then we have an exact sequence

l⊕
j=1

M
f
−→ M −→ M/IM −→ 0,

where f is the matrix multiplication by (t1, . . . , tl). By applying the right exact func-
tor−⊗k[x] k[x]/(x − α)k[x] we get an exact sequence

l⊕
j=1

Mα

f⊗id
−−−→ Mα −→ (M/IM)α −→ 0,

where id is the identity map on k[x]/(x − α)k[x]. Now we have

(M/IM)α ∼= Mα/ Im( f ⊗ id) = Mα/(Im( f ))α = Mα/(IM)α = Mα/IMα

as desired.

Lemma 2.5 Let R be an algebra over a field k, and let α ∈ k. If x − α is a non-zero-
divisor on an R[x]-module M, then for each i ≥ 0 there exists an exact sequence

0 −→ Exti
R[x](M,M)α −→ Exti

R(Mα,Mα)

−→ Tork[x]
1

(
Exti+1

R[x](M,M), k[x]/(x − α)k[x]
)
−→ 0.

Proof Using the exact sequence

0 −→ M
x−α
−−→ M −→ Mα −→ 0,

we get the long exact sequence

Exti
R[x](M,M)

x−α
−−→ Exti

R[x](M,M)

−→ Exti
R[x](M,Mα) −→ Exti+1

R[x](M,M)
x−α
−−→ · · · ,
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where x − α represents the multiplication map

Exti
R[x](M,M)

x−α
−−→ Exti

R[x](M,M).

By Lemma 2.3 we have an isomorphism Exti
R[x](M,Mα) ∼= Exti

R(Mα,Mα) for each
integer i. Thus, for each integer i we get the following short exact sequence

0 −→ Coker(x − α) −→ Exti
R(Mα,Mα) −→ ker(x − α)→ 0.

By definition we have Coker(x−α) = Exti
R[x](M,M)α. Now to compute ker(x − α),

the short exact sequence

0 −→ k[x]
x−α
−−→ k[x] −→ k[x]/(x − α)k[x] −→ 0

gives us the following long exact sequence

0 −→ Tork[x]
1

(
Exti+1

R[x](M,M),k[x]/(x − α)k[x]
)
−→ Exti+1

R[x](M,M)⊗k[x] k[x]

x−α
−−→ Exti+1

R[x](M,M)⊗k[x] k[x]

So we have ker(x − α) ∼= Tork[x]
1

(
Exti+1

R[x](M,M), k[x]/(x − α)k[x]
)
. This completes

the proof of the lemma.

We recall a straightforward fact that will be used later.

Fact 2.6 Let R be a Gorenstein ring, and let 0 → M1 → F → M → 0 be an exact
sequence of finitely generated R-modules where F is projective. It follows from the
long exact sequence

Exti
R(M, F) −→ Exti

R(M,M) −→ Exti+1
R (M,M1) −→ Exti+1

R (M, F)

that Exti
R(M,M) ∼= Exti+1

R (M,M1) for all i > idR(F). Also, by using the long exact
sequence

Exti
R(F,M1) −→ Exti

R(M1,M1) −→ Exti+1
R (M,M1) −→ Exti+1

R (F,M1),

we get the isomorphism Exti
R(M1,M1) ∼= Exti+1

R (M,M1) for all i > 0. Therefore, for
the finitely generated module M over the Gorenstein ring R, we have Exti

R(M,M) = 0
for all i � 0 if and only if Exti

R(M1,M1) = 0 for all i � 0.

3 Main Results

In this section, we prove our main theorems about Conjecture 1.1; see Theorems 3.4
and 3.6. The method that we use for the proofs of both theorems uses the well-known
decomposition of finitely generated modules over principal ideal domains. We begin
this section with the following lemma.

Lemma 3.1 Let k be an algebraically closed field, and let R be a Gorenstein k-
algebra. Let k(x) be a transcendental extension of k, and assume that both fed(R) and
fed(R⊗k k(x)) are finite. Then fed(R[x]) <∞.
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Proof Set f := fed(R) < ∞ and g := fed(R ⊗k k(x)) < ∞. Let M be a finitely
generated R[x]-module such that Exti

R[x](M,M) = 0 for all i � 0. Since R[x] is a
Gorenstein ring, by Fact 2.6 we can replace M with its first syzygy in an arbitrary free
resolution and assume that M is submodule of a free R[x]-module. In particular, M
is assumed to be a torsion-free R[x]-module.

Now for each α ∈ k, by using the short exact sequence

(3.1) 0 −→ M
x−α
−−→ M −→ Mα −→ 0,

our vanishing assumption is equivalent to Exti
R[x](M,Mα) = 0 for all i � 0, and by

Lemma 2.3, this is equivalent to Exti
R(Mα,Mα) = 0 for all i � 0. Since by Remark 2.2

the R-module Mα is finitely generated, our assumption implies that Exti
R(Mα,Mα) =

0 for all i > f . Therefore, by using the long exact sequence of Ext obtained from the
short exact sequence (3.1) and the isomorphism Exti

R[x](M,Mα) ∼= Exti
R(Mα,Mα)

from Lemma 2.3, we observe that x − α acts bijectively on Exti
R[x](M,M) for all

i > f + 1 and all α ∈ k.
Now consider the set

S :=
{

(x − α1)n1 . . . (x − αl)
nl | n j ∈ N ∪ {0} and α j ∈ k for 1 ≤ j ≤ l

}
.

Note that S is a multiplicatively closed subset of k[x] and for each i > f + 1 the
cohomology module Exti

R[x](M,M) is an S−1k[x]-module.
On the other hand, since k is algebraically closed, we have the equality S−1k[x] =

k(x), and therefore,

S−1R[x] ∼= S−1(R⊗k k[x]) = R⊗k (S−1k[x]) = R⊗k k(x).

This isomorphism gives the last isomorphism in the next display for each i > f + 1:

Exti
R[x](M,M) ∼= S−1 Exti

R[x](M,M) ∼= Exti
S−1R[x](S−1M, S−1M)

∼= Exti
R⊗kk(x)(S−1M, S−1M).

Hence, Exti
R⊗kk(x)(S−1M, S−1M) = 0 for all i � 0. Our assumption implies that

Exti
R⊗kk(x)(S−1M, S−1M) = 0 for all i > g. Therefore, Exti

R[x](M,N) = 0 for all
i > h := max{ f + 1, g}. Note that h is independent of the choice of the finitely
generated R[x]-module M, and we conclude that fed(R[x]) ≤ h <∞.

Remark 3.2 It is straightforward to check that if R → S is a faithfully flat ring
homomorphism with fed(S) < ∞, then fed(R) ≤ fed(S) < ∞. This follows from
the fact that for every finitely generated R module M and for each integer i we have
Exti

R(M,M) = 0 if and only if Exti
S(M⊗R S,M⊗R S) = 0. Therefore, it follows from

Theorem 1.2 that if R and S are Gorenstein rings such that S satisfies Conjecture 1.1,
then so does R.

Proposition 3.3 Let k be an uncountable field, and let R be a Gorenstein finite
dimensional k-algebra. Let k(x) be a transcendental extension of k, and assume that
fed(R) <∞. Then fed(R⊗k k(x)) <∞. More precisely, fed(R) = fed(R⊗k k(x)).

Proof Set f := fed(R) < ∞. Let N be a finitely generated R ⊗k k(x)-module such
that Exti

R⊗kk(x)(N,N) = 0 for i � 0. We know that R ⊗k k(x) ∼= S−1R[x] where S
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is the multiplicatively closed subset k[x]\{0}. Thus, there exists a finitely generated
R[x]-submodule M of N such that

N ∼= M ⊗R[x] S−1R[x] ∼= M ⊗R[x]

(
R[x]⊗k[x] S−1k[x]

)
∼= M ⊗k[x] S−1k[x] = M ⊗k[x] k(x).

Note that N is a k(x)-module by using the natural ring homomorphism k(x) →
R ⊗k k(x). More precisely, for each a(x) ∈ k(x) and each n ∈ N the scalar mul-
tiplication is defined by a(x).n := (1 ⊗ a(x))n. Now, let f (x) ∈ k[x] ⊆ k(x)
be a non-zero polynomial such that f (x).n = 0 for some n ∈ N. It follows that
n = (1/ f (x)) f (x).n = 0. This implies that N is a torsion-free k[x]-module. Hence,
M is a torsion-free k[x]-module as a submodule of N. This implies that x − α is a
non-zero-divisor on M for each α ∈ k.

Now by the isomorphism Exti
R⊗kk(x)(N,N) ∼= Exti

R[x](M,M)⊗k[x] k(x), we see that

Exti
R[x](M,M)⊗k[x] k(x) = 0 for i � 0.
On the other hand, since by assumption R is a finite dimensional k-algebra, for

each i ≥ 0 the R[x]-module Exti
R[x](M,M) is a finitely generated k[x]-module;

i.e., Exti
R[x](M,M) is finitely generated over a principal ideal domain. Therefore,

Exti
R[x](M,M) has a k[x]-module decomposition as

Exti
R[x](M,M) ∼=

ci⊕
j=1

k[x]/(wi j(x))k[x]⊕ k[x]vi ,

where 0 6= wi j(x) ∈ k[x] and each vi is a non-negative integer.
Since Exti

R[x](M,M) ⊗k[x] k(x) = 0 for all i � 0, we get vi = 0 for i � 0.
Also there are only countably many polynomials wi j(x). Since by assumption k is
uncountable, there exists α ∈ k such that wi j(α) 6= 0 for all i, j. Therefore, x − α
acts bijectively on k[x]/(wi j(x))k[x] for all i, j. Since x − α is a non-zero-divisor on

each k[x]vi , we conclude that Tork[x]
1

(
Exti+1

R[x](M,M), k[x]/(x − α)k[x]
)

= 0 for all i.

Since vi = 0 for i � 0, we obtain that Exti
R[x](M,M)α = 0 for i � 0. Therefore,

Lemma 2.5 implies that Exti
R(Mα,Mα) = 0 for i � 0. Note that by Remark 2.2 the

R-module Mα is finitely generated. Thus, by assumption we have Exti
R(Mα,Mα) = 0

for all i > f . Since Exti
R[x](M,M)α is a submodule of Exti

R(Mα,Mα) by Lemma 2.5,
we have Exti

R[x](M,M)α = 0 for all i > f . This implies that vi = 0 for i > f , which

is equivalent to Exti
R[x](M,M) ⊗k[x] k(x) = 0 for i > f . This is also equivalent to

Exti
R⊗kk(x)(N,N) = 0 for i > f , and this shows that fed(R ⊗k k(x)) ≤ f < ∞.

Equality now follows from Remark 3.2.

With the previous results in hand, we are ready to prove our first main theorem.

Theorem 3.4 Let k be an uncountable algebraically closed field, and let R be a finite
dimensional k-algebra that is Gorenstein. Then fed(R) <∞ if and only if fed(R[x]) <
∞. Therefore, by Theorem 1.2, R satisfies Conjecture 1.1 if and only if R[x] does.
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Proof It follows from Proposition 3.3 that fed(R ⊗k k(x)) < ∞. Therefore, by
Lemma 3.1 we conclude that fed(R[x]) < ∞. This shows that if R satisfies Con-
jecture 1.1, then so does R[x]. The reverse implication follows directly from Re-
mark 3.2.

Remark 3.5 By [4, Corollary 3.5], for a Gorenstein ring R, finiteness of fed(R)
implies that fed(R) = id(R). Therefore, under the assumptions of Theorem 3.4, we
have fed(R) = fed(R⊗k k(x)) = 0, and fed(R[x]) = 1.

The next result is our second main theorem.

Theorem 3.6 Let (R,m, k) be a Gorenstein local ring with an uncountable coeffi-
cient field k. Then fed(R) < ∞ if and only if fed(R[x]mR[x]) < ∞. Therefore, by
Theorem 1.2, R satisfies Conjecture 1.1 if and only if R[x]mR[x] does.

Proof Set f := fed(R) < ∞, and let N be a finitely generated R[x]mR[x]-module
such that Exti

R[x]mR[x]
(N,N) = 0 for i � 0. Since R[x]mR[x] is a Gorenstein ring, by

Fact 2.6 we can replace N by its first syzygy in an arbitrary free resolution and assume
that N is torsion-free.

Notice that since we are working with localization, we can find a finitely generated
R[x]-submodule M of N such that Exti

R[x]mR[x]
(N,N) ∼= Exti

R[x](M,M)mR[x] for all i.
Therefore, by our assumption we get

Exti
R[x](M,M)mR[x] = 0 for all i � 0.

On the other hand, for each i, Nakayama’s lemma implies the first equivalence in
the following display:

Exti
R[x](M,M)mR[x] = 0⇐⇒

(
Exti

R[x](M,M)/m Exti
R[x](M,M)

)
mR[x]

= 0

⇐⇒
(
Exti

R[x](M,M)/m Exti
R[x](M,M)

)
⊗k[x] k(x) = 0.

The second equivalence follows from the fact that mR[x] is the zero ideal of k[x].
Hence, (Exti

R[x](M,M)/m Exti
R[x](M,M))⊗k[x] k(x) = 0 for all i � 0.

Since for each i the R[x]-module Exti
R[x](M,M) is finitely generated, the

k[x]-module Exti
R[x](M,M)/m Exti

R[x](M,M) is finitely generated as well. Hence, as

we explained in the proof of Proposition 3.3, each Exti
R[x](M,M)/m Exti

R[x](M,M)
has a k[x]-modules decomposition as

Exti
R[x](M,M)/m Exti

R[x](M,M) ∼=
ci⊕

j=1
k[x]/(wi j(x))k[x]⊕ k[x]vi ,

where 0 6= wi j(x) ∈ k[x] and each vi is a non-negative integer.
Since (Exti

R[x](M,M)/m Exti
R[x](M,M))⊗k[x] k(x) = 0 for all i � 0, we get vi = 0

for i � 0. As in the proof of Proposition 3.3, there exists α ∈ k such that wi j(α) 6= 0
for all i, j. Hence, x− α acts bijectively on k[x]/(wi j(x))k[x] for all i, j. This implies
that

(3.2)
(

Exti
R[x](M,M)/m Exti

R[x](M,M)
)
α
∼= kvi
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for all i. Since vi = 0 for all i � 0, it follows that for all i � 0,(
Exti

R[x](M,M)/m Exti
R[x](M,M)

)
α

= 0.

On the other hand, for all i we have the following isomorphism by Lemma 2.4:

(3.3)
(

Exti
R[x](M,M)/m Exti

R[x](M,M)
)
α
∼= Exti

R[x](M,M)α/m Exti
R[x](M,M)α.

Therefore, Nakayama’s lemma implies that Exti
R[x](M,M)α = 0 for all i � 0. Equiv-

alently,

Exti
R[x](M,M)

x−α
−−→ Exti

R[x](M,M)

is a bijective map for all i � 0. Thus,

Tork[x]
1

(
Exti+1

R[x](M,M), k[x]/(x − α)k[x]
)

= 0 for all i � 0.

It follows from Lemma 2.5 that Exti
R(Mα,Mα) = 0 for all i � 0. Since

Mα is a finitely generated R-module by Remark 2.2, our assumption implies that
Exti

R(Mα,Mα) = 0 for all i > f . Again from Lemma 2.5, we get Exti
R[x](M,M)α = 0

for all i > f . In particular, (Exti
R[x](M,M)/m Exti

R[x](M,M))α = 0 for all i > f
by (3.3). It follows from equation (3.2) that vi = 0 for i > f . We conclude now that

Exti
R[x](M,M)/m Exti

R[x](M,M)⊗k[x] k(x) = 0 for all i > f .

As we explained above, this is equivalent to saying that Exti
R[x](M,M)mR[x] = 0 for all

i > f . Hence, Exti
R[x]mR[x]

(N,N) = 0 for all i > f . Thus, fed(R[x]mR[x]) ≤ f < ∞.
This shows that if R satisfies Conjecture 1.1, then so does R[x]mR[x]. The reverse
implication follows from Remark 3.2.

4 Conjecture 1.1 Under Another Type of Ring Extension

Let R be a local ring. In this section, we investigate the condition of Conjecture 1.1
under the base ring extension R → R[x]M, where M is a maximal ideal of the poly-
nomial ring that contracts to the maximal ideal of R. The next proposition is our
main result in this section.

Proposition 4.1 Let (R,m) be a Gorenstein local ring with algebraically closed residue
field, and let M be a maximal ideal of R[x] such that m = M∩R. Then fed(R) <∞ if
and only if fed(R[x]M) <∞. Therefore, R satisfies Conjecture 1.1 if and only if R[x]M

does.

Proof Suppose that fed(R) < ∞. By Hilbert’s nullstellensatz, there exists an ele-
ment r ∈ R such that M = (m, x − r)R[x]. Since R ∼= R[x]/(x − r)R[x] and x − r
is a non-zero-divisor on R[x], we conclude that R[x]/(x − r)R[x] is a local Goren-
stein ring with maximal ideal M/(x− r)R[x] such that fed(R[x]/(x− r)R[x]) <∞;
see [4, Proposition 4.3]. On the other hand, we have a ring isomorphism

R[x]/(x − r)R[x] ∼= R[x]M/(x − r)R[x]M,

which implies that fed(R[x]M/(x− r)R[x]M) <∞. Since x− r is a non-zero-divisor
on R[x]M, again [4, Proposition 4.3] implies that fed(R[x]M) < ∞. This shows that
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if R satisfies Conjecture 1.1, then so does R[x]M. The reverse implication follows
from Remark 3.2.

We conclude the paper by proving a corollary of Proposition 4.1 that improves
Theorem 3.4 when R is a local ring. Before stating the corollary, we need to prove the
following lemma.

Lemma 4.2 Let R be a Gorenstein ring of finite Krull dimension. If fed(Rm) <∞ for
each maximal ideal m of R, then fed(R) <∞.

Proof By [4, Theorem 3.1], for each maximal ideal m we have fed(Rm) ≤ id(Rm) =
dim(Rm) ≤ dim(R). Therefore,

(4.1) c := sup{fed(Rm) | m is a maximal ideal of R} ≤ dim(R) <∞.
Let M be a finitely generated R-module, and assume that Exti

R(M,M) = 0 for all
i � 0. Thus, for every maximal ideal m of R we have

Exti
R(Mm,Mm) ∼= Exti

R(M,M)m = 0 for all i � 0.

Therefore, by (4.1), for every maximal ideal m of R we get Exti
R(M,M)m = 0 for all

i > c. This implies that Exti
R(M,M) = 0 for all i > c. Thus, fed(R) ≤ c <∞.

Corollary 4.3 Let (R,m) be an artinian Gorenstein local ring with algebraically
closed residue field. Then fed(R) < ∞ if and only if fed(R[x]) < ∞. Therefore, R
satisfies Conjecture 1.1 if and only if R[x] does.

Proof Assume that fed(R) < ∞. Since R is artinian, for each maximal ideal M of
R[x] we have M∩R = m. It follows from Proposition 4.1 that for each maximal ideal
M of R[x] we have fed(R[x]M) <∞. Therefore, Lemma 4.2 implies that fed(R[x]) <
∞. This shows that if R satisfies Conjecture 1.1, then so does R[x]. The reverse
implication follows from Remark 3.2.
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