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A CLASS OF STRONGLY DEGENERATE ELLIPTIC OPERATORS

DUONG MINH Due

Using a weighted Poincare inequality, we study (wi , . . - ,w n)-e l l ip t ic operators. This
method is applied to solve singular elliptic equations with boundary conditions in W 1 ' 2 .
We also obtain a result about the regularity of solutions of singular elliptic equations. An
application to (u>i,..., u>n)-parabolic equations is given.

0. INTRODUCTION

Let aij be continuous functions on the closure ft of an open subset ft of R", such
that for any i, j in { 1 , . . . , n) , a.ij = a,ji. Let bj , for 1 < j < n, and c be measurable

functions on ft. Denote , — and —— by Dj, Dt and Du respectively. We
dxj at ay

consider the following boundary value Dirichlet problem

[ Au = - £ Diiaij^Dju) + £ bjDjU + cu = f in fi,
(P) < U=i i=i

If ft and the coefficient functions of A are bounded and sufficiently regular, also if
A is strongly elliptic, the problem (P) has been solved. In [9, 10, 11] Fichera studied
(P), in the case when A is a degenerate elliptic operator and its coefficient functions
are smooth and denned on a bounded open subset ft. He solved problem (P) under
certain conditions on the derivatives of the coefficient functions. Under these conditions
c is positive and sufficiently large in many cases [11, pp.118-119]. The regularity of
solutions of the degenerate elliptic equation (P) is studied by Kohn, Nirenberg, Oleinik
and Radkevich [20, 24]. Stampacchia studied the case in which the coefficient functions
of (P) may be discontinuous in [30, 31]. In [32] Trudinger studied (P) under the
following condition
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178 D.M. Due [2]

where \~r and A are integrable on ft, with r ^ y .

In this paper we suppose that there exist nonnegative real functions u>i,... , u>n

and a constant M such that

I>;(*)3 < E ^Wta < M £>,•(*)#.
i=i t,>=i i=i

In this case A is called an (wj, .. ,o?n)-elliptic operator. This operator is more

general than the one in [32] and is applicable to the case studied in [6].

If A is an (wj,. .. ,a>n)-elliptic operator, the Dirichlet problem (P) may be not

only degenerate, but also singular. We solve the problem (P) for this operator, defined

on a general domain. These results generalise to those in [7] (see Theorem 2.1).

In [23] Mikhailov studied the Dirichlet problem with boundary conditions in L2

and smooth coefficient functions. Chabrowski and Thompson [4, 5], extended these
results to cases in which the coefficient functions may be nonsmooth and unbounded.
The part of a C2 -domain which is near its boundary can be described as a flow-
domain (see Definition 1.2). Using this property, Mikhailov, Chabrowski and Thompson
obtained an a priori estimate and solved the problem.

In this paper we improve a weighted Poincare inequality for the flow-domains,
established in [8]. Using this inequality we solve the singular Dirichlet porblem with
boundary conditions in W1'2 , which is more singular than the one in [4, 5, 23]. We
also answer an open problem, posed by Chabrowski (see Theorem 3.1). Actually, we
can solve the Dirichlet problem, which is not only singular, but also degenerate in the
sense of Collaps (see Theorem 3.4). Our method is also applicable to the cases in which
the domain is unbounded or nonsmooth. We get the regularity of solutions of singular
elliptic equations. This result is similar to the classical one for nonsingular elliptic
equations (see Theorem 3.3). If c = 0 and bj = 0 for any j , the regularity of solutions
of degenerate ( w j , . . . ,wn)-elliptic equations is studied in [12, 13].

On the other hand let A be a uniformly elliptic partial differential operator. Un-
der certain conditions on the smoothness and boundedness of coefficient functions and
domain, it is well-known that —(.A + XI) is the infinitesimal generator of an analytic
semigroup of contractions, where A is a sufficiently large real number [25, p.210].

In this paper, we get an explicit condition under which —A is the infinitesimal
generator of an analytic semigroup of contractions, where A is an (w1 ( . . .u>n)-elliptic
operator and may be degenerate or singular. We remark that we do not need any
positive real number A here. This property is useful in the study of nonlinear evolution
equations (see Section 6.3 in [25]).

The paper consists of four sections. We establish Poincare inequalities in the first
section. The (u>j,... , wn) -elliptic equations are studied in the second section. The

https://doi.org/10.1017/S0004972700002665 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002665


[3] Elliptic operators 179

third section is devoted to the study of the singular Dirichlet problem. We consider
(u) j , . . . , u>n) -parabolic equations in the last section.

1. W E I G H T E D POINCARE INEQUALITIES

To study elliptic partial differential equations which are degenerate or singular on
a subset V of the boundary dtt of ft, where ft is a bounded domain in R n , we
need a priori estimates of solutions and their derivatives near V. On the other hand,
the difficulty is due sometimes to the unboundedness of the domain. In this section
we improve a weighted Poincare inequality for flow-domains proved in [8]. Using this
inequality we get a priori estimates in the cases considered.

First we define flow-domain. Let m be a nonnegative integer and Rm be m-

dimensional euclidean space. If m = 0, consider Rm as {0}. Let n be a positive
integer and G be a nonempty open subset of R™"1 . Let x i—> bx be a map from G

into (0, oo]. We denote by D\ the set {(5, i ) £ R x G : 0 O < bx} . Suppose that the
interior D of D\ is the set {(s,x) € D\: 0 < s < bx}. For n — 1, D^ is identified
with the interval [O,&o)-

DEFINITION 1.1: Let h = (h\,... ,hn) be a one-to-one continuous mapping from
D\ into R n , such that h is continuously differentiable on D, with its Jacobian de-
terminant Jh(s,x) ^ 0, at every (s,x) in D. Put fi = h(D); we say that fi is a
flow-domain parametrised by (h,D).

Let Q. be flow-domain parametrised by (h,D); we put:

(1) I(h) = {j e { l , . . . ,n } I (3(s,x) G D)(j£(s,

for every (y,x) in D, write

(2) s(h,x,y)= I
Jo

dh. 2

a,

Let UJ , for j G { l , . . . , n } , be measurable nonnegative functions defined on U.
For every nonnegative measurable function w defined on ft and every j £ {i,..., n}
we put:

,j,x,y,b) = / —; ^ d(,

(4) d(h,w;uj) = sup{F(h,j,x,y,bx) : (x,y) e D},

(5) <£(/i,w;u>i,...,wn) = sup d(h,u;u>j),
i(h)
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180 D.M. Due [4]

where d(h,u>;u>l,..., wn) may be infinite.

DEFINITION 1.2: Let {£lj}j£j be a family of disjoint flow-domains, parametrised
by {hj,Dj}j£j. Let $7 be open in Rn, containing the union of {£lj}j£j, and let

m ( tt\ U Ctj I = 0, where m is the Lebesgue measure on R" . We say SI is a flow-

domain parametrised by {(hj,Dj)}j£j.

It is clear that the unit ball {x: \\x\\ < 1}, the exterior domain {x: \\x\\ > 1}
and the star-shaped domain, with C2 boundary, are flow-domains. There are other
examples of flow-domains in [8].

Let $7 be a flow-domain parametrised by {(/ij, DJ)}J^J . We write

;}) = U Z(M.

where u>J , u;J,. .. ,w^ are, respectively, the restrictions of w , u>j,... ,u;n to ilj , for any
j in J .

For any j in {1 , . . . ,n} and x = (xi,..., a;n) in the boundary <?fl of fi, we put
J{hx) = {< G R : ( K I , . . . ,Xj-i,Xj +t,Xj+i,.. .,xn) G ft}. In this paper , for any x

and j , we suppose that J(j,x) is a finite union of open intervals. We put:

djil = {x G dQ, : 0 G J(j, x) & uij(x) ^ 0},

^on = h({o} x G) u a:n u . . . u ann.

Sometimes we do not need the smoothness of dSl; then the normal vector may
not be defined at some x in d£l. But we require that d$l is partially smooth in every
direction as above. We note, for example, that a cylinder in R3 is such a domain.

We put:

S — {u = v|fj- | v G C1(Rn), having compact support and \\u\\t < oo},

So = {u G 5 | (V« G don){u{x) = 0)},

500 = {u G 5 | (Vx <E afi)(u(x) = 0)},

HI, = {HI2 + Hi!}*-
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[5] Elliptic operators 181

Let W, Wo and Woo be the completions of (-S", H'lli)> (^o, ||-|li) a n ^ (^001 IHIi)>
respectively. Note that Wo and Woo c a n be defined for any domain ft studied in
Lemma 1.2.

We have the following Poincare inequality:

LEMMA 1.1. Let fi be a Bow-domain parametrised by {{hj,Dj)}j£j, let w,
u>i,...,wn be nonnegative measurable functions on ft. Then for every u in WQ we
have:

f
Jn

\Dju{y)\2 w

PROOF: We can suppose {{hj,Dj)}j^j consists of a unique element (h,D). Let
G be as in Definition 1.1. Let u be in 5; then for any given x in G we have:

— (h(y,x)) = Vu(h(y,x)) •— (y,x) a.e. on [0,bx).

By differential calculus [28, p.178] and(l) we get:

/ Vu(h(x,y))- — {y,x)dy
Jo °y

E DMHy,'))^

By the Cauchy-Schwarz inequality we have:

\u(h(t,x))\< f
Jo

\DjU(h(y,x))\7 E dy,

/ 0 >€/(*)

Then by (2) we get:

(6)

E

dy.

Arguing as in the proof of Lemma 1 in [7], we get the results.
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182 D.M. Due [6]

Remark 1.1. In Lemma 1.1, uij may be identically zero if j is not in I(h). This

property is essential in studying degenerate elliptic equations, considered in [6].

Let ft be a bounded open subset of Rn and 8 be a positive real number; we put

fij = {i £ !1 : d(x,dfl) > 8}, where d(x,dSl) is the distance from x to d£l. We have

the following result:

LEMMA 1.2. Let ft be a bounded open subset of Rn , and let 8Q be a sufficiently

small positive real number. Let ui, Wi,..., wn be nonnegative measurable functions on

ft. We assume that for any 8 in (0, 6o] there exist an open subset Sl'6 in Rn and a

positive real number t/g such that:

(i) fis C fij C fij C fi( , and for any j in { 1 , . . . ,n} and x in Q.'6 , we have

uf1 ^ w;(x) < u8 and

(ii) ft\fti0 is a flow-domain parametrised by {(hj, DJ)}J^J , whose
diihj},^;^!,. ..,u>n) is Unite;

(iii) dn'6 is of class C2 .

Then there exists a constant C(u;; a>j,...,u>n) , such that for any u in WQ we have

/ \u\2u>(x)dx ^ C(w;wi,...,wn) / V" \DJU\2 Uj(x)dx.
Jn Jn ~Tj

PROOF: By Lemma 1.1, for any u in WQ we have:

(7) / \u\2w(x)dx^d{{hj},u^1,...,wn) f V \DjU\2cjjdx.
Jn\n', Jn\n's rTtru i-\

« « e / ({h})

Thus by the trace theorem [21, p.39] and (i) there exists a constant C\ such that,
for any u in Wo , we get

/ \u\2 u>{x)d
Jan'

S

/ /
an' Jo', \n'S0 %0

Thus, by (7), for any u in Wo we have:

(8)
>an6o
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[7] Elliptic operators 183

By the Poincare inequality ([29, p.355]) amd (i) there exists a positive real number
C2 such that for every u in Wo we have

(9) / \u\2 wdx < C2[ / Y \DjU\2 ujdx + / \u\2 wds).
n' Jn' ~i Jan'

From (7), (8) and (9) we get the lenuna with C(w;u>\,... , w n ) , which is equal to

i j} ,w;a;1 , . . . ,wn) + C1C2{1

Now consider a concrete example. Let Q be an open set in R" 1 and let x >—» c(x)
be a mapping from G into (0, oo]. Put

ft = {(x,s) \ x € G and 0 < a < c(x)}.

We have the following result:

LEMMA 1.3. Let G, ft be as above, let <j> be a. positive measurable function

2) . For any x — (xj,... ,xn) in ft we put

1,...,xn_1) and wj(x) = . . . = wn_3(a;) = 0 .

on G, and let 7 be in the interval ( | ) 2 ) . For any x — (xj,... ,xn) in ft we put

Then for any u in Wo we have:

If7 = 2, then

(10) / |w|2 u>{x)dx ^ 4 / \Dnu\2 un{x)dz;
Jn Jn

If 7 belongs to ( | ,2) , and there exists a real number G such that, for any x in

G, c{x) KG, then

(11) / \u{x)\2 w{x)dx ^ CyC
2~~< I \Dnu{x)\2 wn(x)dx,

Jn Jn

where C\ = 4(4 - 27) 2T-3 .

PROOF: Put:

bx = c{x)3'2 Vx 6 G,

D = {(s,x) \x £G &0 <s
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Then n is a flow-domain parametrised by (h,D). For every x in G and y, t in

(Q,bx) we have:

( 2 \

UK

4 /"6* i s - ^ - s 4 4-27 i 3~2i
= - sup / ;—d* = - - [ j / " 3 " - y 3 & ]

J

Therefore if 7 = 2, we have d{h,ui\u}^,... ,wn) ^ 4. By Lemma 1.1, we have (10). In

the case of (ii), by calculation, for any y in (0,bx) we have

4 r 4-2-v 1 3-211 4-27

27-3

Using Lemma 1.1 again, we have the proof. |

Remark 1.2. Galdi and Rionero showed that (10) is the best estimate (see [15, p.16]).

Our method is also applicable to other cases in [26].

Using the foregoing results, we define a class of domains in Rn, which is useful in

the third section. Let fi be a domain in Rn . For any positive real number 8 we put

fls = {y £ n I d(y, dil) > 8}, where d(y, dQ.) is the distance from y to dCl.

DEFINITION 1.3: Let it be a domain in Rn , and 7 , e be nonnegative real numbers.

We put u> = d(-,dil) 7 and wj = • • • = urn = 1. We say

(i) n is a C(j,e)-domain, if, for any e' > e there exists a positive real

number 8 and an open subset Q.'g of n , such that fi^ C fl«, dil's is of

class C2 , tt\£l's is a flow-domain parametrised by a family {(hj, DJ)}J^J

and dy\hjf,<jj; Wj , . . . , wn) ^ e ;

(ii) H is a C(f)-domain, if it is a C(j, e0) -domain for some e0 ;

(iii) f2 is a Ct,(-y)-domain, if it is a C(7)-domain and C(j', 0)-domain for

any 7' in the interval (0,7).

We have the following example:

LEMMA 1.4. Let fi be a bounded domain in R" , such that dfl is of class C2 .

Then fi is a C*(2) -domain.

PROOF: Since dQ. is compact and of class C 2 , there is a finite family

{(Fj, Gj, 4>j, kj)}j£j, such that for any j-in J, x in G and sufficiently small posi-

tive real number S, we have: Tj is open in dfi.; U Tj = dil; Gj is a bounded open
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[9] Elliptic operators 185

subset of R""1 ; <f>j is a C2 function from Gj to R; ||V</>_,(x)|| > c > 0; T} = *j(Gj)

and

{(zi,...,Zn) | 2/ = \Zl, • • • , Zkj-l, Zkj + l, • • • ,

where c is a positive constant, and ^j(x) = ( x j , . . . , Xki-i,4>j(x), Xkj+i, • •., xn ) , for

any x = ( z i , . . . , a^ - i . z j^+ i , . . . ,xnj in G.

We can now suppose that \Pi(z) = («! , . . . , .rn_i, (̂ >i(a;)) for any x — ( .r j , . . . ,xn_i)

in (?i . We put D\ = G\ x (0,8). For any x in <?i , any y in R , we put $(x,y) =

V- <t>i(x)

We know that — . , _ , ' , is nothing but the outward normal vector

u(x,(j)i(x)) of 5f2, at (x,<f>i(x)). By calculation, we have

(12)

I A . - \

(13)

dtr(M)
2

Arguing as in [5, 23], we can find a sufficiently small positive real number So , such

that, for any 6 in the interval (O,5o], the set f̂  is a region with a boundary dils of

class C2 .

Moreover, for each a; in c?Q there exists a unique point x$ in Oils) such that

xg — x — 6u(x), where v(x) is the outward normal vector of dil at x. The map

I H I J is one-to-one, and there exists a positive constant 7 , such that , for any 8 in

(O,8o],

(14) j^dix^dil) < \\xt -x\\ = 8 ̂ jd(x6,d0.) Vx e dtt.

Therefore S7\fi« is a flow-domain for any sufficiently small 8. Furthermore by

(12), (13), (14) and the proof of Lemma 1.3, we have the lemma. I

Remark 1.3. The boundary of a C*(2)-domain may not be in C2 . For example, let

fi = (0,1) x (0,1) . Let F be the union of diagonals in ft . Then O\-F is a flow-domain,

and the distance function d(-,d£l) is of class C°°(Q\F). It is easy to see that S~i is a

C* (2) -domain.
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186 D.M. Due [10]

2. ( « i , . . .,u>n)-ELLIPTIC EQUATIONS

Let aij, bj and c be measurable complex functions on SI. Suppose that for
every i, j in {1 , . . . ,n} we have aij = a,ji. Consider the following partial differential
operator,

Au — — i(aijDju) + T^ bjDjU + cu.

In this section we assume that there exist a constant B, and nonnegative measure-
able functions « ! , . . . , « „ , defined on SI , such that for every x in SI and £ = ( £ i , . . . , £n)

in R n ,

(15)

We say A is an (wj,. . . ,u)n)-elliptic operator. Hereafter we consider A as a linear
operator defined on a linear subspace D(A) of I/2(Sl) as follows: Au = f if and only if

(16) / { V aij + + cm;}dz = / 6 5
00.

DEFINITION 2.1: Let w be a nonnegative real number defined on SI; we write

{ d({hj},to;wJ,... ,wn) if SI is as in Lemma 1.1,

C(u>;u>i,... ,u>n) if SI is as in Lemma 1.2.

Then we have the following estimates.

LEMMA 2.1. Let SI be as in Lemma. 1.1 or Lemma 1.2. For any u in Wo and any
v in W we have:

(17)

(18)

(19)

n r
\\u\\* ^ /_] I QijDiuDjudx,

*.;=iJa

f \cuv\dx ^ffolMUMI,,
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[11] Elliptic operators 187

where

(21)

(22)

Ki = {n sup Kf|6j|2wJ•
1;u1,... ,un)}

2,

Ko = K{\c\;w1,...,u>n).

PROOF: From (15) we have (17). Let u and v be in 5 . By the condition on il,

the Cauchy-Schwarz's inequality for a nonnegative definite hermitian sesquilinear form
[16, Section 36, no. 10] and by (15) we have:

f " f
I y aijDiiiDjudx j y aijDivDj

On the other hand we have by Lemma 1.1 and Lemma 1.2

{ f J2\bj\2 u

{nsup K(\bj 2 uj1

Therefore we obtain (19). Analogously we have (20). I

We put

(u,v) = I u(x)v(x)dx.
Jn

By Lemma 1.1, 1.2 and 2.1 we have the following Garding inequality:

LEMMA 2.2. Let fi be as in Lemma 1.1 or Lemma. 1.2. Let A, Ko and K\ be
defined as in (16), (21) and (22). If Kx + KQ < 1, we have

(Au,u) > (1 - h\ - Ko) \\u\\l Wo.

Using Garding's inequality for strongly elliptic operators [25, p.209], we get esti-
mates in the interior part of fi. By Lemmas 1.1 and 1.2 we obtain estimates near the
boundary of fi. Then we have another Garding inequality as follows:
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LEMMA 2.3. Let O and {hj}j be as in Lemma 1.2, and A be defined as in (16).
Assume

where

'1 = \n sup d({hj},\bj\
2u>J1;u1,...,o}n)\

Then there exist a positive constant C and a real number Ao, such that, for any

u in Wo and any A ̂  Ao, we have

(Au+ Xu,u) > C\\u\\l.

DEFINITION 2.2: Let u> be a positive measurable function on il such that
K(w;u>1,..., wn) is finite (see Definition 2.1). Put

L2,u(ft) = {« j w« or u g L2(0,)}.

Let ip be in W, f be in £2,u>(^) a n d A be a real number; we consider the following

boundary problems:

{ Au + Xu = / in fi,

w = y? on aoS2.

{ ylu + Xu = f in fi,

Remark 2.1. If A is not degenerate, then doil = dtt (see the definitions in Section 1),
and (P,fi,o) and (P^oo) are the same. But, in general, (Pv,o) and (P^.oo) are different
(see problem (P2) in [7]).

DEFINITION 2.3: Let A, <p, f and A be as above. Let u be in W. We say u is
a solution of (P^fl) (respectively, (P^.oo)) if w — 9? 6 Wo (respectively, w — ip G Woo )
and

Au + Xu= f in fi.

Using the Lax-Milgram theorem and Lemmas 2.2 and 2.3, we have:
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[13] Elliptic operators 189

THEOREM 2.1. Let A, Ko, Ki, K'o and K\ be as in Lemma 2.1, or Lemma 2.3.

Then we have:

(i) if 0, is as in Lemma 1.1, or Lemma 1.2, and K\ + Ko < 1, then for each
f in ir2,w(fi) , each <p in W and each nonnegative real number A, (P>p,o)
has a unique solution u, which is also the unique solution of (P^oo) i

(ii) if ft is as in Lemma 1.2, and if K'o + K\ < 1, then there exists a real
number Ao such that, for each / in £2,«(n), each ip in W and each real
number A ^ Ao , {Pv,o) has a unique solution u, which is also the unique
solution of (P^jo) i

(iii) in both cases, there exists a constant K such that

where K is independent of f and ip .

PROOF: By Lemmas 2.2 and 2.3, we have the uniqueness of the solution of (PV,Q).

If u is a solution of (P^.oo) > then it is a solution of (.P^o) • Therefore it is sufficient to
show that (P^.oo) has a solution.

By Lemmas 1.1 and 2.1, the maps v t—^ (A(p,v) and v i—> (/, v) are continuous on

Woo • We remark that the norm of the second mapping is less than min ( | | / | | , /a>~7

Using the Lax-Milgram theorem and Lemma 2.2, we can find w in Wo such that

(Lw,v) = ( / - Aip,v) W e Woo,

where M is independent of / and <p.

Therefore, we get (i) with u = w + (p. Analogously, we obtain (ii) and (iii). |

Remark 2.2. If a.ij is continuously differentiable on fl, by Lemma 2 in [7] and the
directional smoothness of 80. (see Section 1), we see that the solutions in Theorem 2.1
are the generalised solutions in the usual sense.

Remark 2.3. The foregoing theorems are applicable for an unbounded domain ft. If
A is uniformly elliptic, Maulen and Janssen [17, 18, 19, 22] have proved these results
for some special wheighted functions. If ft is a flow-domain, (i) of Theorem 2.1 is proved
in [7]. We note that our results are valid also for a degenerate or singular operator A.

Remark 2.4. If uij = • • • = wn = $ , then (wlt... ,wn)-elliptic operators are studied
in [2]. If c = 0, and if bj = 0 for any j in { 1 , . . . , n } , these operators are considered
in [1, 12, 13, 27, 33].
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Now we consider a concrete example. Let G be an open set in R™"1 and x i—» c(z)
be a mapping from G into (0, oo]. Put

Suppose a.ij = a,ji, for any i , j in { 1 , . . . , n} . Suppose that there exist a positive

continuous function <f> on D and positive real numbers C\ , C% , C3 and C4 such that,

for any (xi,..., xn) in fi and any £ = ( ^ , . . . , £n) in Rn , we have:

and

Under these conditions we have the following result:

THEOREM 2.2. Put UJJ(X) = C1(/>(xi,.. .,xn) for any x = (xi,...,xn) in fi, and
j ' ^ n . Suppose that

(23)

Put o;(a;) = xn for any x = (xi,.. .,xn) in fi. Let f be in £2,u>(fi), let f be in

W and let X be a nonnegative real number. Then there exists a unique solution v in

Wo of the problem (P^.o) •

PROOF: By Lemma 1.3, fl is a flow-domain parametrised by an (h,D), and we
get:

d(h, \bj |2 w;1; Ul,..., « „ ) ^ 4C3
2Cr2 Vj,

Therefore by applying Theorem 2.1 we have the proof. 1

Remark 2.5. In this theorem we see that c and bj may be nonsmooth and unbounded,

and J7 may also be unbounded and nonsmooth. If b = 0, Theorem 2.2 is proved in [7].

3. SINGULAR ELLIPTIC EQUATIONS

In this section we consider the case in which c and bj may be unbounded. We
need the following definition:
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DEFINITION 3.1: Let ft be a C* (2)-domain in R n , V be a subset of dft, and
Cj , C2 , fl , and 7 be positive real numbers. We say A is (V, Cj , C2,f3,7)-singular on
H if it satisfies the following conditions:

(i) For any positive real number 6 and any j in { l , . . . , n } , bj and c are

bounded on Q,g , and £\,-6j belongs to Loo(fl«).

(ii) There exists a positive real number 8 such that, for any j in {1, . . . ,n},

x in ft\ft6 we have: ^-(a:)! ^ dd(x,V)-p and |c(x)| < C2d{x, F ) ~ 7 .

We have the following result:

THEOREM 3.1. Let ft be a CA(2)-domain in R", w, = 1 for any j , and ui be

d(-,dtt). Let A be an ( w j , . . . ,u>n)-elliptic operator, defined as in (16). Assume that

A is (dil,Ci,C2,fi,7) -singular on ft and one of the following conditions is satisfied:

(i) (3 and ^ belong to the open interval (0,1);

(ii) (3 = 1, 7 is in (0,2) and Cj is sufficiently small;

(iii) /? is in (0,1), 7 = 2 and C2 is sufficiently small;

(iv) /3 = 1, 7 = 2 and C j , C2 are sufficiently small.

Then there exists a real number AQ , such tiiat tiie problem (PVIQO) has a unique
solution for any ip in W, any f in L2,u{ft) and any real number A > Ao .

PROOF: Assume (i) holds. Then by definition 1.3 we see that for any sufficiently
small 60 , we have K'o + K\ < 1, where K'o and K\ are defined in Lemma 2.3. Applying
Theorem 2.1, we get the result. Analogously, we have the theorem for the cases of (ii),
(iii) and (iv). |

Remark 3.1. If f2 is a bounded domain having a C2-boundary, |6j| and \c\ are in
L r (n ) , 2 < r ^ 00, then Theorem 3.1 is proved by Stampacchia in [30, 31]. The result
of Stampaccia is extended by Chabrowski and Thompson in [5] for an L2 -boundary
condition. Arguing as in the proof of Lemma 3 in [23], our result answers an open
problem posed by Chabrowski in [4, p.88].

If A is nonsingular, / is in L2(U) and <p is in W2'2(fi), it is well-known that
the solution u of (P^.oo) belongs to W2'2(ft) (see Theorem 8.12 in [14]). We shall
establish the regularity of solutions in Theorem 3.1 in the case in which / and <p are
in £?oc(fi) and W,2'2 respectively.

Let ft, A, (p and / be as in Theorem 3.1, such that dfl is of class C2 . Let 80

be a sufficiently small real number, such that d(-,d£l) is of class C2(fl\ft«0). For any

6 in the interval (0, -^-J , we can find a function 77 in C2(ft) , having the following

properties:

(i) (VzeftOdfio^OO);
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(Hi) (v*
(iv) (Vi
(v) (V*

2d(x,dn)) and

Let A; be in { l , . . . , n } , h be a real number and v be in C1(fi), such that the
support of v is contained in ilg and 0 < \h\ < 8. We put

Ahv{x) =
v(x + hek) - v(x)

where x E ft and ek = f 6}
k )

We have the following lemma:

LEMMA 3.1. Assume aij and bjDjdij belong to jDoo(fi) for any i, j in {1 , . . . ,n} .
Let 6, h and -q be as above. Then there exists a positive real number M, such that,
for any i, j in {1 , . . . ,n}, any u and W] in Wo , any w in W, any f in £2,ui(fi
any positive real number e , we iiave:

(i)

(H)

(iii)

(iv)

Jn6

I
/ L

1 fA-h(rj2Ahu)dx

i?jU,)A-k(,2A»«)dx Me \ls

and u: =

PROOF: By the Cauchy-Schwarz inequality, the Young inequality of Lemma 7.23
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in [14] and by the properties of A, we have:

Jn6

f
n6

frj2A-h(Ahu)da

1 / W2dx + U

<
and

/ bj(Djw)A-h(r,2Ahu)d3
Jn6

= |2 / bj(Djw)rj(A-hr])Ahudx+ f bj{Djtu)ri2A-h(Ahu)dx\,

/ |Ahu|
Jn6

dx + 8

and

cw1Ah(r}2Ahu)dx / cti;1T7A'lwdx + /

91 f \WlV-1\2dx+£- f

C\ 8 ||«|| J + e \\u\ \kS .

By Lemma 1.2, we can choose M, satisfying (i) and (ii). Now we have:

DiiaijD^A-11^2Ahu)dx

da;

/ ( )
n6

Therefore, by the conditions of a;y, by (i) and (ii), we can find M such that M

satisfies (iv) also. |
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THEOREM 3.2. Let ft, A and w be as in Theorem 3.1, such that dU is of class

C2 . Assume aij and bJ^DjCHj belong to L^ti), i and j in {l,...,n}. Then there

exists a constant C(Q.,A) such that, for any f in L2<u(£l) and any <p in W such that

l ** is finite, the solution u in Theorem 3.1 belongs to W^(il) and we have

\\u\\l < c(n, A)(\\V\\1 + IMlL + ILHI2),

where M L = {/n t IDiDj

PROOF: The proof is similar to that of Theorem 8.8 in [14] and therefore we omit
some details. Let u be the solution of (P^o)- Let S, k, r\ and h be as in the proof
of Lemma 3.1. Put v = T)2Ahu. We have (see [14, p.184]):

haijDjuDiV + gA~hv}dx,

where

9 = ~

By Lemma 3.1, for any positive real number e, there exists a constant Mi(n,A,e) such
that

V / aij(x + hek)DjA
huDiv

h( IJ + \W\L
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By (15) and the Cauchy-Schwarz inequality, we get:

rj2aij(x + hek)A
hDiuAhDjU

= ^2 OJ,(X + hek)DjAhu[DiV - 2ij[Ahu)DiT]]dx

< M1(n, A,e)(\\u\\l + Ml + Ml + II/HI2)

+ ^ NlLs + 64c-1 ] T ||oy!!„„ || Ahw||2 + e\2

Therefore, arguing as in the proof of Theorem 8.8 in [14], and using (iii) of Theorem
2.1, we get the result. |

THEOREM 3.3. Let fi be a bounded domain in Rn , whose boundary is of class C2 .

Let u>j = 1 for any j . Let A be an (wj,...,wn)-elliptic and (dU, C\,C2,/?,7)-singular

operator on fi, where /3 and — are in the intervai [0,1]. Assume aij and b~lDjdij

belong to L^il) for any i, j in { l , . . . , n } . Let 9, v be positive real numbers in

[0,2], / be in L2u>e/i(Si) and <p be in W, such that / n \DiDj(p\ w"dx < oo for any

i and j in { 1 , . . . , n } , where w = d(-, dil). Let u be a solution of (i%,o) •

Then u belongs to w£*(Sl) and

f dx

7 9 v
where a = m a x { / 3 , - , - , - } , and i, j G { l , . . . , n } .

PROOF: By Theorem 3.2, it is sufficient to estimate / n ^ n < \waDiDju\7 dx , where

6o is a small positive real number. Therefore we can apply the method in the proof

of Theorem 8.12 in [14], and we shall consider ft\fl«0 as the flow-domain studied in
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Lemma 1.3. We can also suppose that rj(x) = xn for any x = (xi , . . . ,xn) in fi\fi«0 ,
where rj — w.

For any k in { 1 , . . . , n — 1} and any sufficiently small real number h, we put Ah ,
as in Lemma 3.1. We see that AhT]2a = 0. Using rj2a instead of T]2 , by the proof of
Lemma 3.1, for any 8 in (0,S0), we get:

fA-h(V
2aAhu)dx \r,af\2 dx + C- f

2 Jn

\f\2r,edx+e-

Considering the other inequalities in Lemma 3.1 in a similar way, we get the desired
inequality for /n>n \waDiDju\ dx for any (i,j)^(n,n).

On the other hand, we have:

u}aannDnDnu

Because tjn = 1, we have ann ^ 1. Since the functions in the righthand side of
the above inequality are in .^(fl) > w e get the theorem. |

Remark 3.2. If c = 0 and bj = 0 for any j , the regularity of a degenerate
(o>i,...,wn)-elliptic operator is studied in [12, 13].

Remark 3.3. Let m be a positive integer such that m <n. Let fi be a flow-domain
parametrised by (h,D) in Rm, as in Lemma 1.1, and li be a bounded open subset of
pjn-m pu(. u — Q xU; then U is a flow-domain parametrised by (g,D x 14), where
g(x,y,t) = (h(x,t),y). It is clear that I(g) = I(h) (see Definition 1.1). In this case,
for any j > m, Wj may be identically zero. Applying the above results we get the
following theorem:

THEOREM 3.4. Let n be a C*(2)-domain in Rm, U be a bounded open subset in
Rn~m and U = fl x U. Let u>j = 1 for any j in { 1 , . . . , m}, and let Wj be a bounded
nonneg&tive function on fi for any j in {m + 1, . . . ,n} . Let A be a. (w1}.. . ,u>n)~
elliptic operator. Assume that A is ((d£l) x M, Cj, C2,l,2) -singular on li , Cj and
C'2 are sufficiently small, and \bj\ < C$w~^wJ and \Djbj\ < Czio'1 for any j in
{m + 1 , . . . , n} , where C3 is a constant, 7 £ (0, 2) and w = d(., (dSl) x U).

Then there exists a reai number Ao suci that (JP^.O) has a unique solution for any
A ^ AQ , any / in L2,u,(U) and any ip in W.
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PROOF: Let u be in Wo , and v be in W. As in the proof of Lemma 2.1, we have:

J \bjuDjv\&x^{K{\bj\
2u>j\u>1,...,u}n)yl2\\u\l\\v\l V j € { l , . . . , n } ,

| / bjuDjudx\ ^ [ \Djbjl \u\2 dx^C3 f \u\2 w-<dx Vj G {m + 1, . . . ,n}.
Ju Ju Ju

We can find a constant C4 , such that for any u and v in Wo , and any j in

{TO - f - 1 , . . . , n.} , we obtain:

I / bjvDjudx\ ^C3 f W]/2DJU\ L - S I dx
Ju Ju '

< C3{ / iDjufujdxy^i f laj-^vfdx}1'2 < C4 Hu^ ||v||t
Ju Ju

Then arguing as in Lemmas 2.2 and Theorem 2.1, we get the theorem. |

Remark 3.4. If tp = 0, Theorem 3.4 is proved in [6].

Remark 3.5. Our method in [7] is also applicable to strongly degenerate elliptic equa-

tions, studied in [1, 27, 33].

4 . ( w i , . . . , w n ) -PARABOLIC EQUATIONS

Let A be a (wj , . . . ,wn)-elliptic operator. It is well-known that — (A + XI) is the
infinitesimal generator of an analytic semigroup of contractions on L2(to), whenever
to is bounded, A is strongly elliptic, dto and the coefficient functions are sufficiently
smooth and A is a sufficiently large real number. This property is important in studying
the global existence and the uniqueness of solutions of the following nonlinear parabolic
equation:

- ^ + Av + Xv = f(v,t),

We consider the following question: when is —A the infinitesimal generator of an

analytic semigroup of contractions on Lzito)''. Actually, if A is the Laplace operator

- A , then — A is such an operator.

For an (wj , . . . ,a>n)-elliptic operator, we have the following result:

THEOREM 4.1. Let to be as in Lemma 1.1 or 1.2, let A, Ko, K'o, K^ and K[
be as in Lemmas 2.1 and 2.3. We have:

(i) if K1 + Ko < 1, then —A is the infinitesimal generator of an analytic

semigroup of contractions on Z/2(fl);

(ii) if K'o + K[ < 1, then —A is the infinitesimal generator of an analytic

semigroup of operators on L2{to).
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PROOF: Put V(A) = {u G L2(Sl) | Au G L2(Sl)}. It is clear that V(A) is dense
in £2(0) • Using Theorem 2.1, Lemmas 2.1 and 2.2, by Lumer-Phillip's theorem [25,
p.14], we see that —A is the infinitesimal generator of a Co semigroup of contractions.
Arguing as in the proof of Theorem 2.7 in [25, p.211], we see that this semigroup is
analytic. Then we get (i). Analagously we obtain (ii). |

Remark 4.1. In Theorem 4.1, A may be degenerate or singular and SI may be un-

bounded. .

Hereafter let SI and A be as in (i) of Theorem 4.1 and let X be L2(Sl) • For any

a in the interval [0,1], we define the operator Aa and the Banach space (Xa, \\'-\\a) as

in [25, p.195].

DEFINITION 4.1: Let / be a map from [0,oo)xJYa into L2(Sl). We say / satisfies
condition (F) if for every (t,x) in [0,oo) x Xa , there exists a neighbourhood V of
(t,x) in [0,oo) x Xa and constants L ^ 0, 0 in (0,1] such that

| | / (<i ,*i) - /(<2,x2)| | ^ L(\h - t2f + \\Xl - x2\\a) V(U,Xi) G V.

Applying Theorem 3.3 in [25, p.199], we have:

THEOREM 4.2. Let SI and A be as in (i) of Theorem 4.1, and let a be in [0,1].
Let f be a map from [0,00) x Xa into L2(Sl) satisfying (F). Assume there exists a
continuous nondecreasing real function k on [0,00) such that

\\f(t,x)\\ < fc(t)(l + ||*||a) V(t,x) G [0,oo) x Xa.

Put E = C([0,00): L2(Sl)) n C1 ((0,oo): L2(Sl)). Then for every v in Xa, there

exists a unique u in E such that u is the solution of the following initial value problem:

{ §£(«,*) + Au(t,x) - }{t,u{t,x)) V(t,x) G (0,oo) x n,

u(t,x) = 0 V(<,z)G (0,oo) x dSl,
u(0,-) = v.

Remark 4.2. If A is (#fl,C:i,C2,/?,7)-singular on SI, by the foregoing theorem, we
get the global existence of solutions of singular parabolic equations. Using Theorem 3.1
and (ii) of Theorem 4.1, we can get some more results.
Remark 4.3. If Wo is compactly embedded in L2(Sl), then by (iii) of Theorem 2.1,
—A is the infinitesimal genarator of an analytic semigroup of compact operators. In this
case we have the local existence of solution of (Q), when / is a continuous mapping
from [0,00) x L2(Sl) into L2(Sl). In [8] we obtained some results about the compactness
of this embedding for unbounded and nonsmooth domain SI.

Remark 4.4. Our method is also applicable to degenerate evolution equations studied
in [3]. The details will appear elsewhere.
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