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WEAK NORMALIZATION OF POWER SERIES RINGS 

DAVID E. DOBBS AND MOSHE ROITMAN 

ABSTRACT. It is proved that if R* is the weak normalization of an integral do
main R, then the weak normalization of the power series ring ^[ [^j , . . . ,X„]] is con
tained in #*[[Xi, Xn]]. Consequently, ifR is a weakly normal integral domain, then 
R[[X\, A',,]] is also weakly normal. 

Let A Ç B be (commutative) integral domains. We let A% and AB denote the seminor-
malization of A and the weak normalization of A, respectively, in the integral closure of 
A in 2?, in the sense of [6] and [1] (see also [7]). As usual, we say that A is seminormal 
(resp., weakly normal) in B in case A+

B = A (resp., A*B = A). When B is the quotient 
field of A, we use the notations A+ and ,4* instead of A+

B a n d ^ . The domain^ is called 
seminormal (resp., weakly normal) if it is so in its quotient field. These concepts are 
related by the following criterion [7, Theorem 1]: A is weakly normal in B if and only 
if A is seminormal in B and, whenever an element u in B satisfies if,pu e A for some 
prime/?, then u € A. 

We denote by X a finite nonempty set of indeterminates. It is known that if R is a 
seminormal integral domain, then the polynomial ring R[X] and the power series ring 
i?[[X]] are seminormal (cf. [4, Theorem 1.6] and [3]). In this note, we use the criterion 
from [7] to establish the analogue of these results for weak normality. 

We collect in Lemma 1 some basic properties of weak normalization. 

LEMMA 1. (i) For any integral domains A Ç B, we have (AB)B = AB. 
(ii) For any integral domains A Ç B and C Ç D such that A Ç C and B Ç D, we 

haveA\ Ç C*D. 
Hi) For any integral domains A Ç B Ç C, we have AB=A*cnB. 
iv) The weak normalization of an integral domain A in a given extension domain B 

is the smallest ring S such that A Ç S Ç B and S is weakly normal in B. 

PROOF, (i) This assertion (that is, A*B is weakly normal in B) is obtained in [8, p. 91 ]. 
(ii) This follows from [8, Theorem 2]; AB (resp., C*D) is the filtered union of all subrings 

of B (resp., D) obtained from A (resp., C) by finitely many elementary subintegral or 
elementary weakly subintegral extensions. 

(iii) The inclusion AB Ç A*CC\B follows from (ii). On the other hand, A*c H B is a 
weakly subintegral extension of A and so A*c H B is contained in A B, which is the largest 
weakly subintegral extension of A contained in B [8, p. 90]. 
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(iv) By (i), A *B is weakly normal in B. If S is a domain such that A Ç S C B and S is 
weakly normal in B, then, by (ii), ̂  Ç S*B = S. • 

The analogue of Lemma 1 for seminormalization can be established by appealing to 
[5]. Moreover, if A Ç B are integral domains, t h e n ^ = A+HB. Indeed, the construction 
of seminormalization in [5, Theorem 2.8] implies that A+

B is contained in the quotient 
field of A and also in A+ HB; and the reverse inclusion holds since A+ DB is a subintegral 
extension of A. 

LEMMA 2. Let A Q B be integral domains such that A is seminormal in B. Let m>2 
be an integer. Suppose that a £ A and b G B satisfy ab, abm G A. Then abl G A for all 
\<i<m. 

PROOF. Fix / such that 1 < i < m. Since A is seminormal in B, it suffices to show 
(abl)N G A for all sufficiently large integers N(cf. [2]). For any positive integer N, the 
division algorithm gives iN = qm + r for suitable integers q, r such that q > 0 and 
0<r<m- 1. 

We have 
(atif = (abmf(ab)raN-^r G A 

if N > q + r = ^ + r; that is, ifN > * ^ . Since (m - l)2 > r(m - 1) > ^ ^ , this 
— -* m 7 — m—i v ' — v ' — m—i 

holds for all N > (m - l)2. • 

THEOREM 3. (i) LetR ÇTbe integral domains. Then R[[X]]*T[[X]] Ç /^[[X]]. 
(ii) IfR Ç T are integral domains such that R is weakly normal in T, then R[[X]] is 

weakly normal in T[[X]]. 

PROOF. We first prove (ii). By induction, we may assume that the set X contains just 
one indeterminate X. 

We shall apply the criterion in [7, Theorem 1]. First, since R is weakly normal in T, 
R is seminormal in T. Thus, R = R+

T = R+ H T. By [3], 

* [[X]]+
r[[X]] = * t f x ] ] + n T[[X]] ç R+[[X]] n r[[X]] = (R+ n r»[[X]] = R[[X]]. 

Thus, #[[X]] is seminormal in T[[X]]. Next suppose that an element/ of T[[X]] satisfies 
P,pf € R[[X]] for some prime p. Write f(X) = E^0

 b ^ £ TUX]l lt suffices to prove 
that bj G R for each i. 

The conditions o n / lead to b^^pbo G R, and so bo G R since /? is weakly normal in 
T. Setg=f-b0. Thenpg = pf-pb0 G R[[X]]. It suffices to showthatg^ G R[[X\\; for 
then, by replacing/ with (g/X) in the above argument, we have b\ G R, and the proof 
concludes by induction. 

Since/7,pf G R[[X\], applying Lemma 2 with A = R[[X\] and 5 = T[[X]], we obtain 
/? / G #[|X|] for all 1 <i<p- 1. Moreover, 
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As (fy is an integral multiple ofp for 1 < i < p and/77 G #[|X|], we conclude that 
ff € ^IPQL and the proof of (ii) is completed. 

To prove (i), note that by (ii), R*T[[X]] is weakly normal in T[[X]]. Since R[[X]] C 
R*T[\X]]9 we have #[[X]]^[X]] Ç R*T[[X]] by Lemma l(iv). • 

For a domain R, we let Rf and Rc denote the integral closure and the complete integral 
closure, respectively, ofR in its quotient field. 

COROLLARY 4. (i) R[[X]]* CR*[[X]] for each integral domain R. 
(ii) IfR is a weakly normal integral domain, then R[[X]] is also weakly normal. 

PROOF. Let K be the quotient field ofR. Since K[[X]] is normal, we have R[[X]]f Ç 
K[[X]]. By Lemma l(ii), 

* [ [ X ] r = * [ [ X ] ] ^ C J ? [ [ X ] ] ^ ] . 

Thus, the assertions follow by taking T = K in Theorem 3. • 

REMARK 5. In Corollary 4(i), we generally do not have equality: R[[X]]* and R*[[X]] 
may not even have the same quotient field. Moreover, even if these domains have the 
same quotient field, the equality might fail. All this is possible even if R* = Rc is a 
factorial domain (and so completely integrally closed) and#[[X]]* = /?[[X]]+ = i?[[X]]'. 

For example, let A be a factorial domain containing a field of characteristic zero and 
let/? be either 0 or a prime element of A. Let Y = (Yn \ n > l) be an infinite sequence of 
indeterminates over ,4. Let/be the ideal ofy4[Y] generated by {pYn, Y2

n, Y\ \ n > 1}. Set 

R=A+I. 

We claim the following. 
(i) R*=R+=R' = RC= A[Y] is a factorial domain, 

(ii) R[[X]Y = R[[X]]+ = R[[X]]f = U% R[YU..., Yn][[X]l 
(iii) R*[[X]] and R[[X]]* have the same quotient field &p?0. 
(iv) For X € X, we have E~ , YJP E R*[{X]] \ R[[X]]\ 

PROOF, (i) This is straightforward. 

setr=u^i*m,...,i;][[x]]. 
(ii) Since Yi

n G R for all n > 1 and i > 2, we have r Ç #[[X]]+. Since /?[[X]] Ç T Ç 
/?[[X]]+, it is enough to show that T is normal. Let F be an element in the quotient field 
of T which is integral over T: 

where m > 1 andfo, • • •, tm-\ are elements of T. Since A is factorial, the domain^[Y][[X]] 
is completely integrally closed; so, F G ^[Y][[X]]. Assume that F £ T and we will get a 
contradiction. Set B = A/Ap and let/be the canonical image of Fin #[Y][[X]]. We may 
assume that no Yi

lc occurs in/with i > 2. Since there are just finitely many l^'s dividing 
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/ in 2?[Y][[X]], we see that for infinitely many positive integers k9 the element/ is of the 
form/ = Ykgk + hk, where gk and hk are elements in #[Y][[X]] not involving Yk. Since 
^[[Y]][[X]] G R for all k > 1 and i > 2, we obtain that for k as above and tm = 1, 
the element Yk Y%=x iUgkh

[^x is in the ring 7b, which is defined analogously to T, with A 
replaced by B and/? replaced by 0. It follows that E^J1 itth'f1 = 0. Since char T = 0, 
we obtain that all such hk are roots of the same nonzero (monic) polynomial over 7b. It 
follows that there is an element h € #[Y][[X]] such that hk = h for infinitely many &'s as 
above. Hence/— h is divisible in #[Y][[X]] by infinitely many Yk% a contradiction. 

(iii) =>: Assume that/7 = 0, but t := Y%LX YJF belongs to the quotient field of R[[X]] 
for some X G X. Thus, there is a nonzero element g G ^[[X]] such that gt G #[[X]]. 
There is an integer k such that Yk does not divide g in ̂ 4[Y][[X]]. Since gt G i?[[X]], we 
obtain that the only powers of Yk that can occur in gt are > 2, a contradiction. 

<=: Indeed,/?i?*[[X]] Ç R[[X]] sincepA[Y] Ç R. 
(iv) Replacing^ by A /Ap, we may assume that/7 = 0, since the assertion was already 

proved above in this case without using the assumption that A is factorial. 
This finishes the proof of our claims. 
Explicitly, let A: be a field of characteristic zero; and set 

Rx = k + ({Y2
n, Yl\n> \})k[Y] if/? = 0 and 

R2 = k[Z] + ({Zr„, Yl Y\ | n > 1 })k[Z, Y] if/? i 0 
(Here, c = Z is an indeterminate over £[Y].) 

Note that in the proof of Remark 5, since y^4[[Y]] Ç R for all n > 1 and / > 2, we 
have 

oo 

^[[X]]* = U RiYu • • •, r«][[X]] = /?[[X]][Y]. 
n=\ 

COROLLARY 6. (i) LetR Ç T be integral domains. Then R[X]*T[X] = R*T[X]. 
(ii) IfR Ç T are integral domains such that R is weakly normal in T, then R[X] is 

weakly normal in T[X]. 
(iii) R[X]* = R*[X]for each integral domain R. 
(iv) IfR is a weakly normal integral domain, then R[X] is weakly normal. 

PROOF, (i) By Lemma 1 and Theorem 3, 

*[X]*[X] = *[X]*r[[X]] n T[X] ç *[[X]]*n[x]] n r[X] ç R*T[[X]] n r[X] = **[X]. 

Thus R[X]*T[X] Ç R*r[X]. By Lemma l(ii), R*T Ç fl[X]*r[X], so (i) holds. 
Part (ii) follows from (i). 
For (iii), note that if K denotes the quotient field of R, then R[X]* = #[X]£[X] since 

K[X] is normal. Finally, (iv) follows from (iii). • 
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