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In recent years, there has been a renewed interest in the role of dietary fibre in obesity man-
agement. Much of this interest stems from animal and human studies which suggest that an
increased intake of fermentable fibre can suppress appetite and improve weight manage-
ment. A growing number of reports have demonstrated that the principal products of colonic
fermentation of dietary fibre, SCFA, contribute to energy homeostasis via effects on mul-
tiple cellular metabolic pathways and receptor-mediated mechanisms. In particular, over
the past decade it has been identified that a widespread receptor system exists for SCFA.
These G-protein-coupled receptors, free fatty acid receptor (FFAR) 2 and FFAR3 are
expressed in numerous tissue sites, including the gut epithelium and adipose tissue.
Investigations using FFAR2- or FFAR3-deficient animal models suggest that SCFA-
mediated stimulation of these receptors enhances the release of the anorectic hormones
peptide tyrosine tyrosine and glucagon-like peptide-1 from colonic L cells and leptin from
adipocytes. In addition, the SCFA acetate has recently been shown to have a direct role
in central appetite regulation. Furthermore, the SCFA propionate is a known precursor
for hepatic glucose production, which has been reported to suppress feeding behaviour in
ruminant studies through the stimulation of hepatic vagal afferents. The present review
therefore proposes that an elevated colonic production of SCFA could stimulate numerous
hormonal and neural signals at different organ and tissue sites that would cumulatively
suppress short-term appetite and energy intake.

Colonic fermentation: SCFA: Appetite: Gut hormone: Obesity

Recent longitudinal studies highlight that adults increase
bodyweight gradually throughmiddle age, with an average
annual weight gain of approximately 0·5 kg(1,2). This ac-
cumulation of body weight has resulted in an increased
prevalence of obesity and its associated co-morbidities, as
obesity incidence rates are now above 20 % in most
Western countries and represent a major public health bur-
den(3). As a result, interventions that canbe safely applied at
the population level toprevent long-termweight gainwould
have major benefits to public health. It has been suggested
that gradual adult weight gain can be the result of only a
small habitual positive energy balance of 209·2–418·4 kJ/d

(50–100 kcal/d)(4). Consequently, an improved understand-
ing of the hormonal and neuronal signals that control appe-
tite regulation may facilitate the development of novel
dietary strategies that supress energy intake and oppose a
positive energy balance and long-term weight gain.

Epidemiological and experimental studies have consist-
ently highlighted an inverse association between dietary
fibre intake and body weight gain(5–7). Furthermore, an
increased intake of dietary fibre has been associated with
improved appetite regulation(8), thus making high-fibre
diets an attractive strategy to reduce obesity levels. The cur-
rent definition of dietaryfibre(9) encompasses a diverse range
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of compounds with different chemical structures that influ-
ence their physiological effects. As a result, it has been pro-
posed that dietary fibre can increase levels of satiation (the
process that leads to the termination of eating) and satiety
(the process that leads to inhibition of further eating after
a meal has finished) by numerous mechanisms, depending
on the natural properties of the ingested fibre(10). Evidence
suggests that the fermentable component of some dietary
fibresmaybe important in promoting appetite regulatory ef-
fects and improvements in weight management(11). Current
Western diets contain energy-dense foods that are generally
low infibre (10–20 g/d) andhigh in sugars and fats(12). This is
in marked contrast to the Palaeolithic diet, which contained
>100 g/d dietary fibre, to which the human gastrointestinal
(GI) system has evolved over several millennia(13). This an-
cestral diet was rich in indigestible plant material, which
would have contained a large fermentable fibre component,
and it has been suggested that themodern low-fibre diet fails
to stimulate many satiation and satiety signals originating
from the GI tract(14). Dietary fibre passes through the
small intestine unaffected by digestive enzymes, and upon
reaching the colon, anaerobic bacteria are able to degrade
some of these dietary fibres via a fermentation process that
yields energy for the residentmicro-organisms.The ferment-
ability of dietary fibre varies, with resistant starches, NSP
andnon-digestible oligosaccharides beingprincipal fermen-
ted substrates(15). It has been estimated that the human
gut microbiota consists of 1013–1014 micro-organisms and
is composed of approximately 1000 different species of
bacteria, which belong to three principal phyla:
Bacteroidetes, Firmicutes and Actinobacteria(16,17). The
main end-products of microbial fermentation are SCFA,
heat and gases (CO2, H2 and CH4)

(18). SCFA are classified
as carboxylic acids that contain less than six carbon atoms.
The most abundant (about 95 %) SCFA present in the
human colon lumen are acetate (C2), propionate
(C3) and butyrate (C4), in the approximate molar ratio
60 : 20 : 20(19). The precise production of SCFA is diffi-
cult to measure in human subjects due to the inaccessi-
bility of the colonic lumen. Furthermore, the formation
of different SCFA can vary considerably between indivi-
duals due to large differences in gut microbial compo-
sition and activity(19). Bacterial species that belong to
the Bacteroidetes phylum mainly produce acetate and
propionate, whereas the Firmicutes phylum primarily
produces butyrate(18). An investigation that measured
SCFA directly from the human gut lumen reports that
the highest concentrations are present in the proximal
colon (about 120 mM/kg luminal contents) and these
levels decrease distally through the colon(19), revealing
that SCFA are rapidly absorbed across the apical and
basolateral membranes of colonocytes. It is estimated
that fermentation of dietary fibre can yield 400–600 mM

SCFA/d, which is equivalent to about 5–10 % of
human energy requirements(20) and, furthermore, it has
been consistently demonstrated in animals(21–24) and
human subjects(25,26) that the amount of dietary fibre
consumed has a considerable effect on the concentration
of SCFA produced in the large bowel. The aim of the
present review is to evaluate the possible mechanisms
that may explain how an elevated colonic production

of SCFA could supress short-term appetite responses
and energy intake.

Central nervous system control of appetite and
energy intake

The hypothalamus and the brainstem are the main central
nervous system regions responsible for the regulation of
appetite and energy intake. These brain areas integrate
the complex peripheral hormonal and neuronal signals
that represent the current physiological state of the
body(27,28). The arcuate nucleus (ARC) within the hypo-
thalamus senses hormones secreted into the peripheral cir-
culation through a semipermeable blood–brain barrier.
This nucleus contains two populations of neurons: (1)
the orexigenic (appetite-stimulating) neuropeptide Y and
agouti-related peptide and (2) the anorexigenic (appetite-
suppressing) pro-opiomelanocortin (POMC) and cocaine
and amphetamine-regulated transcript. Within the brain-
stem, the nucleus of the solitary tract integrates neural sig-
nals derived from stimulation of vagal afferents in the gut
and other visceral tissues in response to chemical, mechan-
ical and hormonal stimuli. There are extensive reciprocal
connections between the hypothalamus and the brainstem
and appetite responses and energy intake are coordinated
on the basis of the hormonal and neural signals received by
both brain regions(27,28).

SCFA receptors and anorectic gut hormone release

In2003, itwasdemonstrated thatSCFAactas ligands for the
previously orphaned G-protein-coupled receptors GPR41
andGPR43(29–31). These receptors have since been renamed
free fatty acid receptor (FFAR) 3 and FFAR2, respectively.
As G-protein coupled receptors, FFAR2 and FFAR3 are
linked toheterotrimericG-proteins attached to the cytoplas-
mic side of the receptor and stimulation of individual
G-proteins trigger different cellular responses through the
activation of specific secondary messenger cascades.
FFAR2 couples to both Gi/o- (pertussis toxin-sensitive)
and Gq-proteins (pertussis toxin-insensitive), whereas
FFAR3 couples only to Gi/o-proteins

(29,30). Both FFAR2
and FFAR3 are activated by physiological concentrations
of SCFA, although a preference of FFAR2 for acetate and
propionate and of FFAR3 for propionate and butyrate
has been reported(29–31). These receptors have been shown
to be expressed not only in the gut epithelium(32,33) where
SCFA are produced and are at their highest
concentrations, but also at multiple tissue sites,
including adipose tissue(34–36), immune cells(29), skeletal
muscle(31) and within the peripheral nervous system(37,38).
Apossible role for these receptors in energy intake regulation
emergedwith the identification thatFFAR2andFFAR3are
present on colonic endocrine L-cells(32,33). The L-cell is
found at its highest density in the colonic epithelium(39)

and secretes the anorexigenic hormones peptide tyrosine
tyrosine (PYY) and glucagon-like peptide (GLP)-1(27).

PYY is released into the circulation after food intake,
with levels rising to a plateau after 1–2 h and remaining
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elevated for up to 6 h(40). Intravenous infusion of PYY
to both lean and obese human subjects has been demon-
strated to reduce energy intake(41,42), and this anorexi-
genic effect is thought be exerted via neuropeptide Y
inhibition and POMC activation in the hypothalamic
ARC(41,43). Peripheral vagal afferents are also involved
in the appetite-suppressive action of PYY, as the hor-
mone has been shown to stimulate the activity of gastric
vagal nerves and vagotomy was reported to abolish the
effect of PYY on feeding responses(44,45).

GLP-1 is primarily recognised as an incretin, but it
also fulfils several criteria in order to be considered a sat-
iety signal. Circulating levels of GLP-1 rise following a
meal in proportion to energy intake and are low in
the fasted state(46). Furthermore, across a range of studies
intravenous infusion of GLP-1 has been demonstrated to
acutely reduce food intake in human subjects(47). GLP-1
receptors are expressed in many regions throughout the
hypothalamus, with high levels in the ARC(48).
Abolishing ARC neuronal signalling eliminates the in-
hibitory effect of GLP-1 on food intake and appetite(49).
Similar to PYY, the action of circulating GLP-1 on
appetite-regulatory circuits in the brain may in part be
via the stimulation of peripheral vagal afferents(44).

Due to the potent effects of PYY and GLP-1 on feed-
ing behaviour, interventions that increase the circulating
levels of these gut hormones are the target of many anti-
obesity strategies. The discovery that FFAR2 and
FFAR3 are co-localised with L-cells in the colon has
led to the suggestion that activation of these receptors
by SCFA ligands would facilitate PYY and GLP-1 re-
lease. Investigations using rodent primary colonic cul-
tures have consistently shown that SCFA stimulate the
release of PYY and GLP-1 from colonic L-cells(50–53).
Tolhurst et al.(53) observed that SCFA activation stimu-
lated GLP-1 secretion from wild-type murine L-cells
and these effects were significantly attenuated in
FFAR2 knock-out (−/−) and FFAR3−/− cells.
However, in vivo, only FFAR2−/−, but not FFAR3−/−

mice, had significantly reduced circulating levels of
GLP-1. It was found that FFAR2 enhances GLP-1 se-
cretion by triggering an intracellular calcium response
in the L-cell via the specific coupling of FFAR2 to
Gq-proteins. It was therefore suggested that the blunted
response to SCFA observed in FFAR3−/− colonic cul-
tures may be related to the reduced expression of
FFAR2 observed in FFAR3−/− mice(35). A recent inves-
tigation supports a primary role of FFAR2 in stimulat-
ing gut hormone release(54). It was found that the
SCFA propionate stimulates the secretion of both PYY
and GLP-1 from wild-type primary murine colonic
crypt cultures and this effect was significantly reduced
in FFAR2−/− mice cultures. In addition, an in vivo
model demonstrated that intra-colonic administration
of propionate stimulates the simultaneous release of
both GLP-1 and PYY in rodents and that this stimula-
tory effect was abolished in FFAR2−/− animals. These
studies would therefore suggest that increasing the intake
of fermentable dietary fibres and colonic production of
SCFA would stimulate PYY and GLP-1 release.
Indeed, a number of studies have reported that animals

fed high doses of fermentable fibres have increased en-
dogenous secretions of PYY and GLP-1(55–59), as well as
an increased number of colonic L-cells(60). In human sub-
jects, it has been shown that adding 24 g of the fermenta-
ble fibre oligofructose to a test meal significantly increased
GLP-1 levels in the postprandial period(61). This finding is
supported by an investigation that revealed that feeding
16 g oligofructose/d for 2 weeks significantly lowered sub-
jective hunger ratings, which was associated with
increased PYY and GLP-1 release during a test meal(62).
Furthermore, in a longer-term investigation, overweight
volunteers were given 21 g oligofructose/d or a placebo
for 12 weeks and the fermentable fibre intervention
group experienced significant weight loss compared with
the placebo group, which was associated with enhanced
PYY release and reduced self-reported energy intake dur-
ing the supplementation period(63). Recent reports have
suggested that the amount of fermentable fibre consumed
in the diet is critical to observe an effect on gut hormone
release, as it was found that the supplementation of 16 g
oligofructose/d, but not 10 g/d, for 13 d stimulated post-
prandial PYY and GLP-1 release(64). This would suggest
that high daily intakes of fermentable fibres may be
needed to produce the colonic concentrations of SCFA
required tomodulate PYYandGLP-1 release. This is sup-
ported by a recent dose-escalation study in healthy human
participants completing a 5-week supplementation period
where the daily intake of oligofructose increased from 15,
25, 35, 45, 55 g/d eachweek and it was found that intake of
fermentable fibre exceeding 35 g/d was needed to elevate
post-prandial PYY release(65). In summary, available evi-
dence suggests that SCFA are capable of stimulating the
anorectic gut hormones PYY and GLP-1 from colonic
L-cells, primarily via the activation of FFAR2.
Consequently, with a sufficiently high dietary intake, fer-
mentable fibres can elevate anorectic gut hormone
profiles, through an increased colonic production of
SCFA.

SCFA and digestive tract motility

The GI tract contains mechanoreceptors and chemore-
ceptors that relay information to the central nervous
system via vagal afferents, which contribute to the regu-
lation of satiation and satiety(28). It has been proposed
that slowing the rate at which ingested food passes
through the GI tract prolongs stimulation of these
chemo- and mechanoreceptors, which in turn extends
satiety following food intake(66,67). For example, numer-
ous studies have reported that delaying the gastric emp-
tying of ingested food is associated with short-term
effects on appetite and satiety measures(68,69). The direct
effect of luminal SCFA on colonic motility has been
studied using in vitro and in vivo models. Squires
et al.(70) reported that large concentrations of SCFA
decreased colonic contractile activity when infused in
an isolated rat colon. However, in vivo studies performed
in human subjects have failed to indicate that SCFA di-
rectly modulate colonic motility. Recently, it has been
reported that in twenty healthy human volunteers
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intra-colonic infusion of a SCFA mixture had no direct
effects on colonic motor activity, measured with perfused
catheters and an electronic barostat(71), supporting a pre-
vious observation involving two human subjects(72).
Nevertheless, SCFA may modulate motility of the
upper digestive tract through the release of PYY and
GLP-1. Cherbut et al.(51) observed that intraluminal in-
fusion of SCFA into the rat colon significantly slowed
gut transit rate. It was reported that the colonic infusion
of SCFA released PYY in the peripheral circulation, sug-
gesting that PYY could mediate the inhibitory effect of
SCFA on gut motility. This hypothesis was supported
by the finding that when colonic SCFA were adminis-
tered following the immunoneutralisation of circulating
PYY the effect of SCFA on gut transit rates was abol-
ished. PYY is one of the hormones considered to mediate
the ‘ileal brake reflex’, and studies have shown PYY to
inhibit gastric emptying(73,74). In addition, it has been
found that elevating circulating levels of GLP-1 can
also slow rates of gastric emptying(75,76). Consequently,
SCFA-stimulated release of PYY and GLP-1 from co-
lonic L-cells may be capable of modifying appetite
responses by delaying the gastric emptying of ingested
foods and prolonging the stimulation of mechanorecep-
tors and chemoreceptors in the GI tract.

Hepatic metabolism of propionate

As previously mentioned, the largest concentrations of
SCFA are found in the proximal colon, where SCFA
are rapidly absorbed by colonocytes. Measurements in
isolated colonocytes have shown that the majority of
the energy demands of colonocytes (about 70 %) are de-
rived from oxidation of SCFA(77). SCFA that are not
metabolised by colonocytes are released from the gut
via the hepatic and portal vein system and measurements
in human subjects have found that the molar fractions of
acetate, propionate and butyrate change from approxi-
mately 60 : 20 : 20 in the colonic lumen to 70 : 20 : 10 in
the portal vein(19), indicative of the preferential use of
butyrate by mammalian colonocytes as an energy
source(77,78). SCFA that are not metabolised by the
liver then enter the peripheral circulation, where the ap-
proximate molar fraction is changed to 90 : 5 : 5 for acet-
ate, propionate and butyrate, respectively(19). This
demonstrates that the liver takes up a considerable
amount of propionate from the circulation. Indeed, it
has been estimated that about 90% of propionate in the
portal vein is extracted by the liver(79). Propionate is a
known precursor for hepatic gluconeogenesis(80), where
propionate is rapidly converted to propionyl-CoA and
enters the TCA-cycle at the level of succinyl-CoA. This
leads to an elevation in the levels of oxaloacetate,
which is converted to glucose. Data obtained from an-
imal models suggest that elevating hepatic energy status
can modulate appetite and feeding behaviour through
the stimulation of hepatic vagal afferents that signal to
the nucleus of the solitary tract within the brainstem(81).
Evidence for a role of hepatic propionate metabolism as
a satiety signal comes primarily from ruminant studies,

as it has been extensively reported that portal infusions
of propionate depress energy intake in sheep and
cows(82–84). Furthermore, these hypophagic effects of ele-
vating exogenous propionate in the portal vein are
abolished with hepatic vagotomy or total liver denerva-
tion(85,86). However, caution must be taken when con-
sidering ruminants as models to study appetite
regulation in human subjects, as marked differences in
energy utilisation exist between species. Ruminants
must synthesise their entire glucose requirements via hep-
atic gluconeogenesis and exogenous propionate accounts
for approximately 80 % of endogenous glucose pro-
duction(87). It is therefore unsurprising that, as a major
energy substrate, propionate availability provides such
a potent satiety signal in ruminant species. While much
less is known about the effect of propionate on glucose
production in man, the vast majority of exogenous propi-
onate is metabolised by the liver and a recent investi-
gation using an innovative labelling strategy, in
combination with localised in vivo 13C magnetic reson-
ance spectroscopy, reported that elevating exogenous
propionate supply to the human liver increased hepatic
glucose production by 30 %(88). As a key anabolic
organ, which is estimated to contribute 20 % of resting
energy expenditure in human subjects(89), it is plausible
that substantial changes in hepatic glucose production
and storage could be sensed centrally to regulate feeding
behaviour. An interesting area of future research would
determine how increasing the concentrations of propi-
onate produced in the human colon would alter hepatic
intracellular signalling pathways related to energy status,
and whether these changes to hepatic metabolic processes
provide an anorectic neural signal to appetite-regulatory
regions of the brain.

SCFA and leptin secretion

SCFA that do not undergo hepatic metabolism enter the
peripheral circulation, and concentrations in human per-
ipheral blood of 170, 4 and 8 μmol/l have been reported
for acetate, propionate and butyrate, respectively(90).
Furthermore, it has been demonstrated in human studies
that elevating the fermentable fibre component of the
diet raises SCFA levels in the peripheral blood(61,91–93),
particularly concentrations of acetate. Circulating SCFA
have been shown to interact with different peripheral
organ and tissue sites. In particular, it has been demonstrated
thatSCFAhaveamajor regulatory role inadipocyte function
and metabolism(34,36,94) and are reported to stimulate
leptin secretion(35,95). Circulating levels of leptin are pro-
portional to fatmass and can cross the blood–brain barrier
to induce an anorectic effect via the ARC, where
both neuropeptide Y/agouti-related peptide and POMC/
cocaine and amphetamine-regulated transcript neurons
express leptin receptors(96). Leptin inhibits neuropeptide
Y/agouti-related peptide neurons and activates
POMC/cocaine and amphetamine-regulated transcript
neurons(97), resulting in reduced energy intake.
Leptin-deficient mice have been shown to exhibit hyper-
phagia and obesity, which can be reversed by leptin
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administration(98). In 2004, Xiong et al.95 reported that
FFAR3 was expressed in adipocytes and that SCFA
could stimulate leptin expression in both a mouse adipo-
cyte cell line and mouse adipose tissue in primary culture.
Furthermore, it was found in vivo that elevating

circulating levels of propionate increased leptin levels
in mice. Nevertheless, not all researchers have been
able to detect FFAR3 in different adipose tissue
sites(34,36,37), thus the role of FFAR3 in adipose tissue
function is currently a contentious topic. It has been

Fig. 1. Increasing the colonic production of SCFA stimulates multiple hormonal and neural
mechanisms that suppress appetite and energy intake. (1) Increasing the intake of dietary
fibre increases the amount of fermentable substrate reaching the colon, which is fermented
by resident microbiota elevating the production of SCFA. (2) SCFA stimulate the release of
peptide tyrosine tyrosine (PYY) and glucagon-like-peptide-1 (GLP-1) via the activation of free
fatty acid receptor 2 (FFAR2) on colonic L-cells. (3) Within the hypothalamic arcuate nucleus,
peripheral PYY and GLP-1 increases the activity of the appetite-suppressing pro-
opiomelanocortin (POMC)/ cocaine and amphetamine-regulated transcript (CART) neurons
and inhibits appetite-stimulating neuropeptide Y (NPY)/agouti-related peoptide (AgRP)
neurons. (4) Increased circulatory PYY and GLP-1 would modulate central appetite regulation
via the stimulation of peripheral vagal afferents that are integrated in the nucleus of the
solitary tract (NTS) of the brainstem. (5) PYY and GLP-1 have also been shown to inhibit the
motility of the upper gastrointestinal (GI) tract. This slows the gastric emptying of ingested
foods and prolongs the stimulation of mechanoreceptors and chemoreceptors in the GI tract
that signal centrally via vagal afferents. (6) Increased concentrations of propionate in the
portal vein would be taken up by the liver and stimulate hepatic gluconeogenesis. An
increased hepatic energy status can modulate feeding behaviour via the stimulation of
hepatic vagal nerve afferents. (7) Increasing acetate and propionate in the peripheral
circulation stimulates leptin release from adipocytes via activation of FFAR2. Leptin inhibits
NPY/AgRP neurons and activates POMC/CART neurons. (8) Acetate can cross the blood–
brain barrier and increase POMC and reduce AgRP expression.
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consistently reported that FFAR2 is abundantly
expressed in white adipose tissue(34–36) and suggested
that FFAR2 may be responsible for stimulating leptin re-
lease from adipocytes. It was found that leptin secretion
from wild-type adipocytes was increased by acetate, yet
butyrate had no significant effect(35). Owing to the differ-
ent activation potencies of FFAR2 and FFAR3 to acet-
ate(29,30), this would imply that FFAR2 is responsible for
triggering leptin secretion. Furthermore, leptin secretion
from FFAR2−/− mice adipocytes was lower compared
with wild-types. While acetate was also found not to se-
crete leptin from FFAR3−/− mice adipocytes, this was
suggested to be due to a reduced expression of FFAR2
in these cells rather than the abolishment of FFAR3 sig-
nalling. Finally, it has been demonstrated that the effects
of FFAR2 on leptin release are due to Gi/o-protein sig-
nalling, rather than a Gq-protein-mediated mechanism,
as leptin secretion by SCFA is prevented in the presence
of pertussis-toxin, which inactivates Gi/o signal transduc-
tion(35,99). In summary, studies indicate that circulating
SCFA, particularly acetate and propionate, can promote
leptin secretion from adipocytes via activation of
FFAR2, thus providing an anorectic signal to
appetite-regulatory neurons in the hypothalamic ARC.

Direct central effects of acetate on hypothalamic
control of appetite

As previously stated, acetate is the most abundant end
product of colonic fermentation of dietary fibre and cir-
culates at considerably greater concentration compared
with propionate and butyrate. There is evidence to sug-
gest that acetate can travel across the blood–brain barrier
into the central nervous system(100), raising the possibility
that SCFA may have a direct effect on central appetite
regulation. Using an intravenous and colonic infusion
of 11C-acetate in mice and in vivo positron emission
tomography-computed tomography scanning it was
recently shown that up to 3 % of exogenous acetate
was taken up by the brain in both the fed and fasted
states(101). In particular, peripheral acetate was taken
up by the hypothalamus in greater amounts than other
brain tissues and it was found that within the hypothala-
mus acetate promotes an anorectic signal in the ARC,
leading to increased POMC and reduced agouti-related
peptide neuron expression. This investigation therefore
provides a novel insight into the mechanism through
which elevations in acetate production in the colon
may mediate appetite suppression.

Conclusions

SCFA produced through the fermentation of dietary
fibre in the colon have been shown to exert multiple ef-
fects on various organ and tissue sites. The present re-
view has proposed that SCFA could stimulate
numerous hormonal and neural signals that would cumu-
latively exert a potent anorectic effect. Many of these
possible mechanisms (summarised in Fig. 1) would be

strengthened with additional data from human studies,
as the majority of the current available evidence to sup-
port a role of SCFA in appetite-regulation has been
obtained from animal models, where direct translation
into human subjects may be limited. Nevertheless, target-
ing the mechanisms through which SCFA suppress
appetite through the development of novel dietary inter-
ventions that augment colonic SCFA production may be
an effective strategy to improve appetite regulation and
long-term weight management.
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