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OBITUARY

IRVINE NOEL BAKER 1932–2001

1. Life

Noel Baker was born on 10 August 1932 and died, of a heart attack, on 20 May
2001. He was the only child of a farming family living near the township of Virginia
north of Adelaide in South Australia, and a fourth-generation Australian. From
1938 to 1944 he attended the local school, winning a scholarship to King’s College,
Adelaide, and from there another scholarship to Prince Alfred College, Adelaide.
Here he was inspired by an enthusiastic mathematics teacher, Mr Williams, who
expected pupils to practise mathematics assiduously, even on Saturday mornings.
Prince Alfred College still aims to foster a love of mathematics today, and
it has recently launched a centre for excellence in mathematics, named after
Noel.

In 1948, Noel won the top leaving honours award in South Australia’s public
examinations. He studied Mathematics, Physics and Chemistry at the University
of Adelaide, and was awarded a BSc in 1952. Noel then took an MSc by thesis;
this was awarded in 1954. At this time he became a student of George Szekeres,
later professor of mathematics at the University of New South Wales, Sydney.
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The mathematical influence of Szekeres was profound, influencing much of Noel’s
subsequent research in the theory of iteration. They also became close friends, with
a shared love of chamber music as well as mathematics. Noel had taken piano lessons
at school, inspired by trying his grandfather’s piano, and he developed his talent
further by studying at the University of Adelaide’s Elder Conservatorium. Szekeres
was a violinist, and they often played together.

Noel’s musical and mathematical interests encouraged him to learn German, and
in 1955 he won a German government scholarship to the University of Tübingen,
where he worked under Hellmuth Kneser and obtained his doctorate in 1957.
Tübingen was then a sleepy, romantic university town on the banks of the Neckar,
where the mathematics department included three well-known K’s: Kneser, Knopp
and Kamke. As an Australian, Noel was regarded as slightly unusual. Indeed,
several years later at Oberwolfach the elderly H. Cremer, when thanking Noel for
a talk, spoke of him as a remarkable young mathematician from far-off Australia
who must be an Autodidakt.

In Tübingen, Noel met Gillian Hawkins, a language student from London and
another classical pianist. They married in 1958, and their marriage was
enduring and happy. They shared a deep love of music, attending many concerts and
playing piano, both together vierhändig (a repertoire in which the works of Schubert
were of supreme importance), and also with family and friends. Their other
interests included walking, bird-watching and visiting historic places. They always
maintained contacts in Australia, and used to offer Australian red wines to visitors
to the family house in South London long before these wines became well known.
Noel and Gillian’s two sons Stephen and Michael both inherited a love of music,
one a pianist and the other a violinist, as well as many of Noel’s character traits,
his love of the outdoors and his delight in the changing seasons.

From 1957 to 1959, Noel taught mathematics at the University of Alberta in
Edmonton, Canada. In 1958, he spoke at the ICM in Edinburgh, where he was
spotted by Walter Hayman, professor of pure mathematics at Imperial College,
London. Hayman was founding what was to become a major international group
in complex analysis, and Noel moved to London in 1959. He spent more than
forty years in the Department of Mathematics at Imperial College, and made huge
contributions to the College, both academically and socially. His colleagues
remember him as reserved but warm, with a quiet yet incisive sense of humour
(‘blink and you’ll miss it’), and he had a formal but popular lecturing style. His
research was profound, though its significance was not fully appreciated in the
early years, and as a research supervisor he was effective and approachable. Noel
was also an efficient administrator, acting as Assistant Director of the Department
for many years, dealing with the organisation of lectures and examinations, and as
a joint organiser of several major conferences. A more lighthearted contribution to
departmental life was playing the piano, often with Gillian, at occasional ‘Musical
Evenings’. Later, he was for over fifteen years the organiser of the Imperial College
‘Lunch Hour Concerts’, held every Thursday in the winter terms and featuring
professional chamber musicians. Outside the Department, he played a leading role
in the LMS publications, as a member of the Editorial Board (1973–86) and as
Joint Editor-in-Chief of the LMS Journal (1989–94).

In his research, Noel worked on many problems in complex analysis, and had a
wide range of collaborators, but iteration theory, his great love, was for many years
a lone interest. However, when the subject was reborn around 1980, partly as a
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result of the advent of accessible computer graphics, it became clear to the new
adherents that Noel had for many years been quietly and carefully completing the
foundations begun earlier in the century by the French mathematicians Pierre Fatou
and Gaston Julia. He had also pointed the way towards many future developments,
both by proving new results, and by posing challenging problems. In the explosion
of research on iteration theory that took place in the subsequent twenty years, very
many of the papers published on iteration made reference to Noel’s work, and he
received a great many invitations to speak at international conferences on iteration.
At these he would often appear reserved, much preferring to let others speak about
the latest work, even though he was the acknowledged authority on very many
matters, and the person whose judgement about the validity of a new proof was
always sought. He became a reader in 1968 and then a professor in 1990, retiring
from Imperial College in 1997. During that time he had supervised two students
doing an MSc by research thesis, Joyce Whittington and Valerie Eke, and nine
PhD students, Prodipeswar Bhattacharyya, Robert Goldstein, Lennox Liverpool,
Jim Langley, Jonathan Weinreich, Gwyneth Stallard, Ramez Maalouf, Matthew
Herring and Patricia Domı́nguez.

Noel continued to work vigorously on iteration in his semi-retirement, and
became more relaxed, particularly enjoying the freedom to travel at any time,
both for research visits and for leisure. One of his last papers was dedicated to
George Szekeres, on the occasion of the latter’s 90th birthday, and at the time of
Noel’s death other papers were in preparation; these have appeared posthumously.
In May 2002, a memorial Lunch Hour Concert was given at Imperial College by the
Maggini Quartet. They concluded with the slow movement of Haydn’s Opus 33,
No. 6.

2. Functional equations and iteration of entire functions

For his MSc at the University of Adelaide, Baker was encouraged by Szekeres to
work on the functional equation

f(f(z))= F (z), (2.1)

where f and F are analytic functions. In 1950, Kneser had shown that the equation
f(f(x))= ex has a solution f that is real-analytic on the whole real line. In
his first mathematical paper [1], Baker attacked the complex analytic version of
this problem using the theory of iteration of analytic functions, which had been
developed principally by Fatou and Julia, and which was not well known at that
time. He used this theory to show, amongst other things, that if F belongs to
a certain class of entire functions, which includes the exponential function, then
equation (2.1) has no entire solution. This first paper also draws on Wiman’s result,
often used later, that an entire function of order less than 1

2 must tend to ∞ along
a sequence of expanding circles. Then, in order to construct examples, he used the
sophisticated Wiman–Valiron method, which relates the maximum modulus of an
entire function to the maximum term of its Taylor series. Throughout his career,
Baker was to find ever more techniques from classical complex analysis that can
usefully be applied to iteration theory.

Baker’s doctoral thesis, published in [2], continued his study of functional
equations. He first showed that if f and g are both transcendental entire functions
with order less than 1

2 , then there is an expanding sequence of Jordan curves Γn
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such that
|f(g(z))|> exp(max{|z| : z ∈ Γn}), for z ∈ Γn,

and that this result is best possible. He then considered the problem of determining,
for a given transcendental entire function f , the set P (f) of transcendental entire
functions g such that the equation

f(g(z))= g(f(z)), (2.2)
holds; that is, f and g commute, or are permutable. He showed that if g is a non-
constant polynomial in P (f), then g(z)= ze2πim/n + b, where m and n are positive
integers, and he gave a complete description of P (f) for functions of the form
f(z)= aebz + c. Finally, he returned to the functional equation (2.1) and showed,
amongst other things, that if F (z)= ez − 1, then there are no solutions f analytic
at 0.

This work led Baker to consider problems about periodic points. Let f be a
rational or entire function. The sequence of iterates fn is defined by

f1(z) = f(z),
fn+1(z) = f(fn(z)), n= 1, 2, . . . .

A fixed point ζ of f is a solution of the equation f(z)= z, and ζ is classified
as attracting, indifferent or repelling according to whether the multiplier f ′(ζ)
satisfies |f ′(ζ)|< 1, |f ′(ζ)|= 1 or |f ′(ζ)|> 1. More generally, ζ is a periodic point
of f of period p if ζ is a fixed point of fp, and a similar classification of such ζ is
made. The exact period p is the smallest period. Periodic points play a great role in
the theory, both in relation to the local behaviour of iterates near periodic points
of the various types, and in relation to the global behaviour of iterates, described
later.

It was already known that for an entire function there must be infinitely many
periodic points of period p, for all p� 2, but Baker considered the unsolved problem
of the existence of periodic points of a given exact period. After obtaining partial
results in [3] and [5], he showed in [6] that for all non-linear entire functions there
exist periodic points of exact period p, for all p with at most one exception; for
example, f(z)= z + ez has no fixed points. In a later paper [13], Baker showed
that for a polynomial the only possible exceptional value in this result is p = 2,
the corresponding exceptional functions being f(z)= z2 − z and other quadratics
‘similar’ to this one. He also conjectured that for a transcendental entire function
the only possible exceptional value is p = 1, and this was shown to be true by
Bergweiler 〈3〉.

Baker studied the case p = 2 in greater detail in [16]. Here, he conjectured that if
f is a transcendental entire function and � is a line in C, then there exist solutions of
f2(z)= z not contained in �. He proved that this is the case for functions f of order
less than 1

2 , and the full conjecture was shown to be true by Bergweiler, Clunie and
Langley in 〈5〉.

Baker also built on his work in [2] to make a major study [8] of solutions of
the functional equation (2.2) in the case when f has a fixed point of multiplier 1.
Following Hadamard and Szekeres, he considered f and g as formal power series:

f(z)= z + am+1z
m+1 + . . . , am+1 �= 0,

and
g(z)= b1z + b2z

2 + . . . .
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He showed that it is sufficient to take b1 = 1, and that in this case (2.2) has a
family of formal power series solutions g = fλ, λ ∈ C, of the form

fλ(z)= z + λam+1z
m+1 +

∞∑
n = m+2

bn(λ)zn,

where bn(λ) is a polynomial of degree at most n − m. For a given power series f ,
the family fλ, λ �= 0, may or may not include solutions that are convergent near 0.
Baker established the striking result that the set

R(f)= {λ : fλ(z) is convergent near 0}

must have one of the following simple forms:

(a) {0};
(b) {nλ0 : n ∈ Z}, where λ0 �= 0;
(c) {mλ0 + nλ1 : m,n ∈ Z}, where λ0, λ1 �= 0 and λ1/λ0 is not real;
(d) C.

Baker gave examples of cases (a), (b) and (d), and it was later shown by Écalle
〈9〉, and independently by Baker’s student Liverpool 〈25〉, that case (c) cannot
occur. In case (d), the function f is said to be embeddable in a continuous group
of analytic iterates, and Baker showed in [20] (see also [58]) that many functions,
including most algebraic functions, are not embeddable in this sense.

It was also shown in [8] that the values of λ in R(f) for which fλ is entire, form a
discrete and hence countable set. This result was used by Baker to show that if f is
a transcendental entire function, exactly one of whose fixed points has multiplier 1,
then the set P (f) of entire functions that commute with f forms a countable set.
In [7] he generalised this somewhat, but a completely general result was to follow
eight years later. To describe this and much other work, we need to set out the
basic elements of the global theory of iteration, or ‘complex dynamics’ as it has
become known, as developed by Fatou and Julia. We use notation and language
in common current use, but the reader is warned that there have been significant
changes in these over the years.

Let f be a rational function of degree at least 2, or a transcendental entire
function. The set of points near which the sequence of iterates fn forms a normal
family is called the Fatou set F (f), and its complement is called the Julia set J(f).
The sets F (f) and J(f) have the following fundamental properties, first established
for rational functions in 〈20〉 and 〈14〉, and for transcendental entire functions in
〈15〉. (A good modern source is 〈4〉.)

(a) F (f) and J(f) are both completely invariant sets; that is, z ∈ F (f) if and
only if f(z) ∈ F (f).

(b) For n� 2, we have F (fn)= F (f) and J(fn)= J(f).
(c) J(f) is a non-empty perfect set.
(d) There are at most two exceptional points α with the property that the set

{z : fn(z)= α, for some n} is finite.
(e) Given any open disc D that meets J(f), and any compact set K that contains

no exceptional points, we have fn(D) ⊃ K, for all sufficiently large n.

In 〈15〉, Fatou studied the iteration of transcendental entire functions in some
detail, giving several examples that pointed to significant differences from the theory

https://doi.org/10.1112/S0024609304004199 Published online by Cambridge University Press

https://doi.org/10.1112/S0024609304004199


306 irvine noel baker 1932–2001

that had been developed for rational functions. He was led to ask the following
fundamental questions about a general transcendental entire function f .

1. Are the repelling periodic points of f dense in J(f)?
2. Are there examples where J(f)= C? In particular, is this true for f(z)= ez?
3. Can J(f) be totally disconnected?
4. Must J(f) contain infinitely many analytic curves, at each point of which

fn →∞?

Question 1 is of great theoretical importance, and it had been answered in the
affirmative for rational functions by both Fatou and Julia. Fatou had also given an
example of a rational function f for which J(f) is totally disconnected, and Lattès
〈23〉 had provided an example for which J(f)= C. Most of Fatou’s questions were
answered by Baker during the decade 1965–1975, as we now indicate.

The first question was answered in the affirmative in the paper [22], which is of
fundamental importance in complex dynamics, and is appropriately dedicated to
Hellmuth Kneser. Here, Baker called on a deep covering theorem due to Ahlfors;
see 〈18, p. 148〉. He used this theorem to prove that arbitrarily close to each point
of J(f), there is an open disc D that is mapped univalently by some iterate of f
onto a superset of D. Thus D contains a repelling periodic point of f , as required.
From this, Baker deduced the general result, mentioned earlier, that if f is any
non-linear entire function, then the set of entire functions that commute with f
is countable. Many authors have tried to simplify the proof given in [22] that the
repelling periodic points are dense in J(f), in order to avoid the deep theorem of
Ahlfors. Eventually, elementary proofs based on a renormalisation technique were
given by Bargmann 〈2〉, and by Berteloot and Duval 〈6〉.

Two years later [25], Baker answered the first part of Fatou’s second question
by showing that there is a function of the form f(z)= kzez, where k > 0, such that
J(f)= C. To do this, he established a beautiful connection between the limiting
behaviour of the iterates of a transcendental entire function f in components of F (f)
and the set S(f) of inverse function singularities of f , which consists of the critical
values and the asymptotic values of f . Taking P (f)=

⋃∞
n = 0 fn(S(f)) to be the

post-singular set of f , Baker proved that if P (f) has empty interior and connected
complement, then any limit function of a subsequence of fn in a component of F (f)
must be a constant lying in P (f) ∪ {∞}. He then chose k > 0 in such a way that
for f(z)= kzez, the set P (f) is rather simple and it is possible to exclude all such
constant limit functions. A proof was given ten years later by Misiurewicz 〈27〉 that
if f(z)= ez, then we have J(f)= C.

Baker answered Fatou’s third question in the negative in [32]. If J(f) is
totally disconnected, then F (f) must have a single unbounded multiply connected
component. Baker had already constructed in [9] an example of a transcendental
entire function for which F (f) has at least one multiply connected component. This
function was of the form

f(z)= Cz2
∞∏

n=1

(
1 +

z

rn

)
, (2.3)

in which the positive constants r1 <r2 < . . . have the property that

f(An) ⊂ An+1, where An =
{
z : r2

n < |z|< r
1/2
n+1

}
.
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However, [9] did not determine whether F (f) has a single unbounded multiply
connected component or a sequence of bounded multiply connected components.
In [33], Baker used Schottky’s theorem 〈18, p. 169〉, yet another result from classical
complex analysis, to show that the latter must be the case. This solved another
important problem in complex dynamics, open since the work of Fatou and Julia,
by showing that the function (2.3) has a sequence of wandering domains – that
is, distinct components Un of F (f) such that f(Un) ⊂ Un+1, for n= 1, 2, . . . .
In contrast, Sullivan 〈34〉 showed that rational functions do not have wandering
domains. The paper [32], written later but published earlier than [33], used
Schottky’s theorem once again to show that a transcendental entire function
cannot have an unbounded multiply connected component of F (f), thus proving
that J(f) can never be totally disconnected.

The results in [32] and [33] led to much further work. In [53], Baker showed
that wandering domains for transcendental entire functions may be infinitely
connected, and it has recently been shown by Kisaka and Shishikura that they
can have any given finite connectivity. The result in [32] shows that if f is
a transcendental entire function, then J(f) must contain a continuum, so its
Hausdorff dimension dimHJ(f) is at least 1. Later, McMullen 〈26〉 gave examples
for which dimH J(f)= 2, and Baker’s student Stallard 〈33〉 proved that dimH J(f)
can take any value between 1 and 2. It remains an open question whether
dimH J(f)= 1 is possible.

Fatou’s fourth question was not stated quite precisely. He had observed that for
the examples f(z)= z + 1 + e−z and f(z)= h sin(z), 0< h < 1, there exist infinitely
many analytic curves in J(f) on which fn →∞, and he asked if this property
holds more generally. In Baker’s example (2.3), there are certainly no curves in
J(f) tending to infinity on which fn →∞. A related question is: ‘Does the set
I(f)= {z : fn(z)→∞} contain curves tending to ∞, or more generally unbounded
continua?’ The first detailed study of I(f) was made by Eremenko 〈10〉, who showed
that I(f) �= ∅, ∂I(f)= J(f) and I(f) has no bounded components, and it was shown
in 〈29〉 that I(f) must always have at least one unbounded component. However,
the properties of I(f) are still not completely understood in general; for example,
it remains an open question whether all components of I(f) are unbounded.

Sullivan’s remarkable result 〈34〉, that rational functions do not have wandering
domains, was proved using new techniques based on quasiconformal conjugacy, and
led to many major developments. Baker quickly saw that these new techniques
would also apply to various families of transcendental entire functions, and a proof
that exponential functions of the form fc(z)= ecz, c ∈ C, have no wandering
domains appeared in [49]. This was one of a number of papers at that time
which established many of the basic dynamical properties of the exponential family
and began the description of the corresponding parameter space, the ‘exponential
Mandelbrot set’, which has since been the subject of much study. In [50], Baker
went further by showing that entire functions in a certain much larger family,
including those of the form

f(z)=
∫z

P (t)eQ(t)dt and f(z)= P (ez),

where P and Q are polynomials, do not have wandering domains. He also con-
structed various examples of transcendental entire functions with simply connected
wandering domains, including examples of such functions of all orders ρ� 1.
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In [41], Baker initiated another major development by showing that if a
transcendental entire function f has order of growth at most 1

2 , minimal type,
then F (f) has no unbounded invariant components, and he also gave a more
restrictive condition on the maximum modulus of f , which forces every component
of F (f) to be bounded. The question of whether the latter conclusion follows from
order at most 1

2 , minimal type, remains open; see 〈32〉 and 〈1〉 for results in this
direction. A key step in Baker’s proof is to exclude unbounded invariant components
of F (f) in which fn →∞. (An example of a transcendental entire function with
such a component had been given by Fatou in 〈15〉.) By using Schottky’s theorem
again, he was able to show that in any such component there is a path Γ which
tends to ∞, and on which |f(z)|= O(|z|k), for some k > 0, and this contradicts the
given hypotheses on f . In a later paper [57], Baker used properties of the hyperbolic
metric to improve this bound along a path to |f(z)|= O(|z|) in the case of a simply
connected domain. In recognition of his work, Eremenko and Lyubich used the
name Baker domain in 〈13〉 for an unbounded invariant component of F (f) in
which fn →∞. Baker himself had called such a component essentially parabolic or
a domain at ∞, but the new name found instant favour with the complex dynamics
community, and eventually Baker himself began reluctantly to use it. In their
fundamental paper 〈13〉, Eremenko and Lyubich showed that if the set S(f) of
inverse function singularities of a transcendental entire function f is finite, then f
has no wandering domains (see also 〈16〉 for this result), and if S(f) is bounded,
then f has no Baker domains.

Yet another fundamental contribution to the iteration of transcendental entire
functions came in the papers [65], [73] and [74]. Once again, an unbounded
invariant component U of F (f) was considered, but now the aim was to describe
the nature of the boundary of U . Some special cases had been investigated by other
authors, following the appearance of computer pictures of Julia sets, but Baker and
his students Weinreich and Domı́nguez attacked the general case. In [65], it was
shown that:

(a) if U is not a Baker domain (that is, if U is an attracting basin, parabolic
basin, or a Siegel disc), then ∂U is sufficiently complicated that ∞ belongs
to the impression of every prime end of U ; and

(b) if ∂U is a Jordan curve in the extended complex plane Ĉ (and such U do
exist), then not only must U be a Baker domain, but f must be univalent
in U .

The key tool introduced in this work arises from the fact that if Ψ is a conformal
map from the unit disc D onto U , then Ψ−1 ◦f ◦Ψ is an inner function – that is, an
analytic self-map of D whose angular limits have modulus 1 almost everywhere on
∂D. The paper [65] initiated a version of the Fatou–Julia theory for inner functions,
a topic now of interest in its own right, and this theory was taken further in [73].
Here, more precise information about such unbounded invariant components U was
obtained, by studying the set

Θ = {eiθ : Ψ(reiθ)→∞ as r→ 1}.

Generalising work of Kisaka 〈21〉, Baker and Domı́nguez proved in [73] that:
(a) if U is not a Baker domain and ∞ is accessible in U , then Θ̄ = ∂D; and
(b) if U is a Baker domain and f is not univalent in U , then Θ̄ contains a perfect

set.
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It had been shown in [41] that ∞ is accessible in any Baker domain of a
transcendental entire function f , but it is an open question as to whether this is
true in other types of unbounded invariant components of F (f). In both the above
cases, it follows that ∂U and J(f) are disconnected, and in [74] it was further
deduced that in these cases J(f) has uncountably many components. The latter
paper also considered the situation where f is a transcendental entire function with
a completely invariant component U of F (f); that is, z ∈ U if and only if f(z) ∈ U .
(Baker had proved in [24] that there can be at most one such completely invariant
component.) In [74] it was shown that in this case J(f) is so ‘hairy’ that it is locally
connected at no point, once again establishing in general what had previously only
been known to be true for special cases.

3. Iteration of meromorphic functions

The iteration of transcendental meromorphic functions is a natural object of
study because such iterations arise, for example, in the Newton–Raphson method.
Baker played a key role in extending the Fatou–Julia theory to these functions, and
to even more general classes of functions.

If f is a transcendental meromorphic function, then the iterates fn, n= 1, 2, . . . ,
are defined only on the complement of the set B =

⋃∞
n = 0 f−n(A), where A is the

set of poles of f . By Picard’s theorem, B is infinite except in the special case
when A is a singleton {α} and f is a self-map of the punctured plane C \ {α}.
The basic Fatou–Julia theory of this special case was established by R̊adström
〈28〉 and Baker’s student Bhattacharyya 〈7〉. In [54], Baker showed that for an
analytic self-map f of the punctured plane, at most one component of the Fatou
set F (f) is multiply connected, and if such a component occurs, then it must be
doubly connected and invariant. Thus any wandering domains are simply connected,
and Baker showed that such wandering domains can indeed occur. In [72], Baker
and Domı́nguez studied the Julia sets of such functions, and established many
of their connectedness properties, which are somewhat different from those of
transcendental entire functions.

The Fatou–Julia theory of the iteration of general transcendental meromorphic
functions was established in the fundamental papers [62], [63], [64] and [66]
by Baker, Kotus and Lü. The Fatou set F (f) is here taken to be the set of
points near which the iterates fn are defined and form a normal family, and then
J(f)= Ĉ\F (f). Many of the basic results turn out to be similar to those for rational
and entire functions, but there are some striking differences. For example, in [62]
the authors showed that J(f) is once again the closure of the repelling periodic
points of f , and this fact is used to give a complete classification of those
transcendental meromorphic functions, such as f(z)= tan z, for which J(f) is a
subset of the real line. Then, in [63], they used techniques from approximation
theory, pioneered by Eremenko and Lyubich 〈12〉, to construct transcendental
meromorphic functions with wandering domains of all possible connectivities. The
question of non-wandering components was taken up in [64], where they showed
that precisely five possible types can arise for a transcendental meromorphic
function, namely, attracting basins, parabolic basins, Siegel discs, Herman rings
and Baker domains. Moreover, any invariant components of F (f) must be simply
connected, doubly connected, or infinitely connected. But perhaps the most striking
result here was the construction, using the technique of quasiconformal surgery
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introduced by Shishikura 〈31〉, of a transcendental meromorphic function f with a
preperiodic component of F (f) of any given finite connectivity. This is in sharp
contrast to a transcendental entire function, for which any multiply connected
component of F (f) must be wandering [50]. Finally, in [66], Sullivan’s method of
quasiconformal conjugacy was adapted to show that a transcendental meromorphic
function with only finitely many inverse function singularities has no wandering
domains. These four papers opened a new and fruitful area of research, made even
more accessible by the excellent survey article 〈4〉, which appeared soon after.

However, it turns out that Fatou–Julia theory can be developed in a yet more
general, and also more natural, context. For a transcendental meromorphic function
f , the iterates fn need not be meromorphic. It is desirable, however, to have a closed
system of iterates, so that we can consider, for example, the Fatou set of fn, for
n� 2. To obtain such a system, Baker’s student Herring 〈19〉, and independently
Bolsch 〈8〉, developed Fatou–Julia theory for functions such as f(z)= etan z, which
are meromorphic outside certain compact totally disconnected subsets of Ĉ. Much
of this theory, and its subsequent developments, is expounded in the last papers
[75], [77], [78] and [79]. This elegant general theory builds on many of the ideas and
techniques that Baker introduced to complex dynamics, and which will continue to
be used by all those who work in this field.

4. Other topics in complex analysis

Baker worked on many problems outside iteration theory, some of which we
describe here.

Edrei asked under which circumstances an entire function can have all but a finite
number of the roots of the equation f(z)= a on a line. There are many examples
of such f with all their zeros on a line, and the function f(z)= ez has all solutions
of f(z)= a distributed on lines. However, Baker proved [14] that:

(a) if f has order less than 1, and two values have their solutions distributed on
lines, then they must lie on the same line, and the set of such values of a
forms a line segment; and

(b) if f has all values linearly distributed, then f is either a polynomial of degree
at most 2 or f(z)= c + debz.

As described in Section 2, Baker had already worked on functional equations in
his thesis [2], and he kept this interest throughout his career; see [4, 17, 21, 23,
31, 34, 35, 47, 71]. For example, [17] is related to Fermat’s theorem. Here the
aim is to find non-constant functions F and G such that

Fn(z) + Gn(z) = 1, where n� 2.

This can never happen for polynomials, but for n= 2 we can have rational, entire
and meromorphic solutions, and these had already been classified by Gross 〈17〉. For
n= 3 there are no entire or rational solutions, but there are meromorphic solutions,
and Baker showed in [17] that these solutions can all be expressed in a particular
form, in terms of elliptic functions, thus verifying a conjecture of Gross. Another
example is the paper [71], in which he studied the functional equation

f(p(z))= f(q(z)),

where f is a transcendental meromorphic function and p and q are polynomials.
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Baker gave a complete description of all solutions of this equation, thus completing
earlier work with Gross [21] for the case when f is entire.

A Picard set is a set outside which every transcendental entire function takes all
finite values with at most one exception infinitely often. In [27] and [28], Baker
and his student Liverpool proved several results about these. For example, suppose
that a complex sequence an and a positive sequence ρn satisfy∣∣∣∣an+1

an

∣∣∣∣ > q > 1, for n= 1, 2, . . . ,

and

log
1
ρn

>K (log |an|)2 , for n= 1, 2, . . . .

They showed that if

K = 4(q + 1)/((q − 1) log q),

then the union of the discs {z : |z − an|< ρn} forms a Picard set, but this is not
necessarily the case if

K < 1/(2 log q).

In [29], Baker considered the question of whether a positive sequence an such that
an+1 � (1+1/n)λan, for n > n0, where λ > 0, must form a Picard set. The answer
is ‘no’ if λ = 2, by an elementary example, and Baker showed by a more complicated
example that it is ‘no’ for all λ > 2. In [42], the authors found analogues of Picard
sets for the equation fk(z)f ′(z)= a, and their results were strengthened by Baker’s
student Langley in 〈22〉.

Finally, in [70] Baker and Stallard made a substantial advance in a difficult
problem of Littlewood. Let f be a polynomial of degree N . What is the growth of

φ(N)= sup
f

∫
{z:|z|<1}

ρf (z) dx dy,

where

ρf (z)=
|f ′(z)|

1 + |f(z)|2

is the spherical derivative of f? Lewis and Wu 〈24〉 proved that

φ(N)< CN1/2−ε, where ε = 2−264.

In the other direction, Eremenko 〈11〉 showed that there exist positive constants c
and α such that φ(N)> cNα, and Baker and Stallard obtained this lower bound
with the constant α = 1.11 × 10−6. Eremenko’s proof developed an argument of
Ruelle 〈30〉 concerning an estimate for the Hausdorff dimension of the Julia sets
of functions of the form f(z)= zq + λ, where q � 2, and the paper [70] made this
difficult estimate explicit, a nice illustration of the way in which complex dynamics
can repay some of its debt to complex analysis.

Acknowledgements. I am grateful to Gillian Baker for her assistance with
personal details, and to Walter Bergweiler, Alex Eremenko, Walter Hayman, Aimo
Hinkkanen and Jim Langley for a number of helpful mathematical comments.
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