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1. Introduction. The following is a well-known limerick.

A mathematician called Klein
thought that the Möbius band was divine,
said he “if you glue
the edges of two,
you’ll get a weird bottle like mine”.

This is saying that a Klein bottle is an example of a double of a Möbius band.
Historical note. A non-orientable surface of genus 2 (meaning 2 cross-caps) is

popularly known as the Klein bottle. However, the term Klein surface comes from
Felix Klein’s book “On Riemann’s Theory of Algebraic Functions and their Integrals”
(1882) where he introduced such surfaces in the final chapter.

A Klein surface is a surface with a dianalytic structure and we are mainly
concerned here with compact surfaces. (For dianalytic structure see [1] or [3]).
Topologically compact Klein surfaces are surfaces which might be non-orientable
and might have boundary. We are interested in this paper in studying the doubles of
Klein surfaces. For example, a Klein bottle turns out to be a double of a Möbius
band. By a double here we mean a smooth double although we do allow folding.
The folding map φ : � −→ U where U is the upper-half complex plane, is defined
by φ(x + iy) = x + i|y|, and a smooth morphism of Klein surfaces is a map which is
locally smooth or locally the folding map, the latter occurring over the boundary
of the image. For the precise definition see [1]. Three types of doubles turn out
to be particularly interesting; the complex double, the Schottky double and the
orienting double. These doubles are defined in [1] in terms of equivalence classes of
dianalytic atlases. One of the aims of this paper is to describe these simply using index
two subgroups of uniformization crystallographic groups and also with topological
descriptions.
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2. Klein surfaces and NEC groups. Every Klein surface can be represented as
U/� where U is a simply connected Riemann surface and � is a crystallographic group
without elliptic elements. (It might have reflections though). If the algebraic genus of
the surface is greater than 1, thenU = H, the upper half-plane and � is a non-Euclidean
crystallographic (NEC) group. If the algebraic genus is equal to 1, (for example the
Möbius band) then U = � and � is a Euclidean group. These groups can be assigned
a signature of the form

(g; ±; [ ]; {( )k}). (1)

Here, ( )k means k empty period cycles. If this occurs U/� is a compact surface of
genus g with k boundary components; it is orientable when the + sign occurs and
non-orientable when the − sign occurs. If the + sign occurs then the fundamental
region for the group is a hyperbolic polygon with surface symbol

α1β1α
′
1β

′
1 . . . , αgβgα

′
gβ

′
gε1γ1ε

′
1 . . . , εkγkε

′
k (2)

If the − sign occurs then the fundamental polygon has surface symbol

α1α
∗
1 . . . αgα

∗
gε1γ1ε

′
1 . . . εkγkε

′
k (3)

The group has two possible presentations; if the + sign occurs the presentation is

〈a1, b1, . . . , ag, bg, e1, . . . , ek, c1, . . . , ck |
�

g
i=1[a1, bi]e1 · · · ek = 1, c2

i = 1, eicie−1
i = ci (i = 1, . . . , k)〉

Here ai, bi are hyperbolic, ci are reflections and ei are orientation-preserving though
usually hyperbolic. Here ai(α

′
i) = αi, bi(β

′
i ) = βi, ei(ε

′
i) = εi and ci fixes the edge γi.

If the − sign occurs the presentation is

〈d1 . . . , dg, e1, . . . , ek, c1, . . . , ck |
d2

1 · · · d2
g e1 · · · ek = 1, c2

i = 1, eicie−1
i = ci (i = 1, . . . , k)〉

Now the di are glide-reflections and di(α∗
i ) = αi

For this type of presentations of NEC groups a generator will be called a canonical
generator and in both presentations the first relation is called the long relation.

3. Double covers of Klein surfaces. A double cover of a Klein surfaceU/� has the
form U/� where � is a subgroup of index 2 in �. There is then a natural epimorphism
θ : � −→ C2 = 〈t | t2 = 1〉, with ker θ = �, called the monodromy epimorphism.

THEOREM 1. Let X be a compact Klein surface of genus g with k > 0 boundary
components. Then there are 2λ − 1 double covers of X where

λ =
{

2g + 2k − 1 if X is orientable
g + 2k − 1 if X is non-orientable

Proof. We just need to find the number of index 2 subgroups of NEC surface
groups. Let X = U/�, where � is an NEC group with signature (1). Thus when there
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is a + sign in the signature � has generators

ai, bi, (i = 1, . . . , g), ei(i = 1, . . . , k), ci(i = 1, . . . , k)

and relations as listed above. We wish to find all epimorphisms θ : � −→ C2. All the
relations for � that we listed above will hold in C2 as long as θ (e1)θ (e2) · · · θ (ek) = 1.
Thus θ (ai), θ (bi) can be chosen in two ways and the same is true of the θ (ci). We can
choose θ (e1), . . . , θ (ek−1) in each of two ways and then θ (ek) is uniquely determined
by the long relation. As we cannot have every generator mapping to the identity we
find 22g+2k−1 − 1 epimorphisms θ : � −→ C2 as required. The proof for groups with
a minus sign in the signature is exactly the same, except we only have g generators
d1, . . . , dg. �

The same result appears in [1]. We wish to study double covers of surfaces by
studying all the epimorphisms θ : � −→ C2. Let � be the kernel of θ . The question we
are interested in is to determine the topological nature of U/�.

THEOREM 2. [4] Define a map τθ : {c1, ..., ck} −→ {0, 1, 2} by

τθ (ci) =
⎧⎨
⎩

2 for θ (ci) = θ (ei) = 1
1 for θ (ci) = 1, θ (ei) = t
0 for θ (ci) �= 1

then the number of boundary components of U/� is

s =
k∑

i=1

τθ (ci).

Proof. Let � be the kernel of θ that we need to show that s is the number of
conjugacy classes of reflections in �. Write � as a disjoint union of two cosets � and
h�, h ∈ � \ �.

Now it is known that the centralizer of c in � is in the group 〈e, c〉, the group
generated by c and e [6]. If θ (c) = θ (e) = 1, then e, c ∈ �, so that if hch−1 = kck−1

then h−1k centralizes c and so h−1k ∈ � or �h = �k. Thus, each coset corresponds to
a different conjugacy class of � in � which is two in this case.

If θ (e) = t, then e ∈ � \ �. If h ∈ � \ �, then he ∈ � and hch−1 = hece−1h−1 which
is conjugate to c in �, and so there is only one conjugacy class of reflections in �.

If θ (c) �= 1 then c /∈ � and so there are no conjugacy classes of reflections
in �. �

THEOREM 3. (i) If � has orientable quotient space then � has non-orientable quotient
space if and only if � \ � contains both orientation-preserving and orientation-reversing
canonical generators of �.

(ii) If � has non-orientable quotient space then � has non-orientable quotient space if
and only if � \ � contains both orientation preserving and orientation-reversing canonical
generators of � or � contains any of the glide reflections that are canonical generators
of �.

Proof. The proof follows from the techniques in [5]. (Alternatively, we could
use Theorem 2.1.3 of [3].) Basically, U/� is non-orientable if and only if the coset
graph C(�,�) with reflection loops deleted, contains orientation-reversing loops.
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Table 1.

Orientability of double

Standard epimorphism B U/� non-orientable U/� orientable

1. E → 1 C → t A → t 0 + −
2. E → 1 C → 1 A → t 2k + +
3. E → 1 C → t A → 1 0 − +
4. E → t C → 1 A → 1 k − +
5. E → t C → 1 A → t k − +
6. E → t C → t A → 1 0 − −
7. E → t C → t A → t 0 − −

In (i) all generators are orientation-preserving (hyperbolic) or orientation-reversing
(reflections). The coset graph only has two points, corresponding to the two cosets. If
� \ � has hyperbolic and reflection generators then one followed by the other gives
an orientation-reversing loop in C(�,�), and all orientation-reversing loops have this
form.

(ii) follows in the same way. Now � contains glide-refections and if any of these lie
in � then they give an orientation-reversing loop in C(�,�). �

4. Standard homomorphisms and doubles. In Theorem 1 we saw that a Klein
surface could have a large number of doubles. For this reason we highlight doubles
which are easier to study, and we find these include the most important doubles
mentioned in the Introduction.

First, we assume that � has a negative sign in its signature so that X = U/� is
non-orientable. We consider only the epimorphisms θ : � −→ C2 for which all the ei

generators have the same image, all the reflection generators have the same image and all
the glide-reflection generators have the same image. We let E denote the set {e1, . . . , ek},
C = {c1, . . . , ck}, A = {d1, . . . , dg}. Let C2 = 〈t | t2 = 1〉. If we write θ (E) = t we mean
θ (ei) = t for i = 1, . . . , k, etc. For groups with orientable quotient space we follow a
similar idea except that now the set A = {a1, b1, . . . , ag, bg}.

THEOREM 4. If k is even then there are 7 standard epimorphisms θ : � −→ C2, while
if k is odd there are only 3 standard homomorphisms.

Proof. We must have θ (A) = 1 or t, θ (E) = 1 or t and θ (C) = 1 or t. As we have
an epimorphism they cannot all map to 1 so we have 23 − 1 standard epimorphisms.
If k is odd then because of the long relation we cannot have θ (ei) = t for i = 1, . . . , k
so that θ (E) = 1 and so we only have 22 − 1 = 3 standard homomorphisms. �

If � is the kernel of a standard epimorphism then we call U/� a standard double
of U/�.

In Table 1 we list the standard epimorphisms and for each one we give the
topological type of the standard double, which we have obtained by Theorems 2 and 3.
We distinguish between the cases where � has orientable or non-orientable quotient
space. Here, k is the number of boundary components of U/�, B is the number of
boundary components of the standard double and the orientability of the doubles are
denoted by + or −.

EXAMPLE. We consider the doubles of the Möbius band. The Möbius band is a non-
orientable surface of genus 1 with one boundary component and is represented by a
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Figure 1

group �1 of signature (1; −; {()}), and presentation

〈d, e, c | d2e = c2 = ece−1c = 1〉. (4)

For any epimorphism θ : �1 −→ C2, because d2e = 1 we must have θ (e) = 1, and
so there are only three such epimorphisms and they are all standard epimorphisms,
namely 1,2,3 above. If, for example, we consider the epimorphism 3, we see from Table 1
that the double is non-orientable without boundary. The Riemann-Hurwitz formula
tells us that this double has non-orientable genus 2 and so is a Klein bottle; compare
the limerick at the beginning of this paper. We shall find all the doubles of the Möbius
band (note that for the Möbius band all the doubles are standard doubles). As we shall
see, these three doubles are part of general families of doubles.

The doubles have the form �/� where � has index two in �. Write � = � + �q
where � has index two in � and q is a canonical generator of �, q /∈ �. If F� is
a fundamental region for � then F� = F� ∪ qF� is a fundamental region for �. As
shown in [5] the sides of F� are paired by the Schreier generators of � in �. These
Schreier generators have the form gvh−1 where g, h are coset representatives (in this
case only 1 and q) and v is one of the canonical generators of � which pair sides of F�.
If v(s′) = s, where s, s′ are sides of F� then gvh−1 pairs the sides h(s′) and g(s) of F�.

It is instructive to see these epimorphisms geometrically. The sides of F� are
ε′, ε, cε, cα∗, cα, cε′. In epimorphism 1 of Table 1 the Schreier generators and the side
pairings are 1e1−1 : ε′ −→ ε, cec−1 : cε′ −→ cε, 1dc−1 : c(α∗) −→ α, cd1−1 : α∗ −→
c(α). This is pictured in Figure 1. This epimorphism maps every orientation preserving
element of �1 to 1, and every orientation reversing element to t. If �1 is the kernel
then �/�1 is known as the complex double XC of X = �/�1. We will see more about
complex doubles later.

Figure 1 gives a picture of F� with the side identifications. We find that the surface
obtained carries a map with three vertices A, B, C. There are four edges, (ε, ε′), (cε, cε′),
(α, α∗) and (cα, cα∗) and one face. Thus the Euler characteristic is 0, and as the sides
are all paired orientably we get a torus as expected.

Now consider the epimorphism 2. Now a coset representative is d. We take F� ∪
dF� as fundamental region of �. The Schreier generators and side pairings are 1e1−1 :
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F

dF

A A

B B

D D

C C

*

d( )

d( *)

d( )

d(  ) d( )

Figure 2

Figure 3

ε′ −→ ε, ded−1 : d(ε′) −→ d(ε), 1c1−1 fixes γ , dcd−1 fixes d(γ ), dd1−1 : α −→ d(α∗)(=
d(d(α))). The diagram is as in Figure 2.

We see that the quotient space has two boundary components corresponding to γ

and d(γ ). All side pairings are orientable and again the Euler characteristic is 0 and so
we get a cylinder. This is an example of an orienting double; again more of this later.

We now consider the epimorphism 3. As c −→ t we take c as the coset
representative. The Schreier coset representatives and the side pairings are 1e1−1 :
ε′ −→ ε, cec−1 : c(ε′) −→ c(ε), 1d1−1 : α −→ α∗, cdc−1 : c(α) −→ c(α∗). As d reverses
orientation the quotient surface is non-orientable and so we get a Klein bottle as a
double of a Möbius band. See the limerick at the beginning. The diagram is in Figure 3.
Note that γ projects to a simple closed curve on X which separates X into two Möbius
bands. This is an example of a Schottky double, and again we discuss these later.

5. The most natural doubles. In section 4 we found three doubles of the Möbius
band. We can study these three doubles for any Klein surface. These three doubles have
been considered in [1].
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1. The complex double
If X is a Klein surface then its complex double is the unique double which is a

Riemann surface without boundary. If X = U/�, where � is an NEC surface group
then its complex double is U/�+ where �+ is the canonical fuchsian group of �

that is the index two subgroup of � consisting of those transformations that preserve
orientation. If U/� is non-orientable then the generators of A are glide reflections
and so the epimorphism 1 gives the complex double. If U/� is orientable then the
generators in A are hyperbolic and so the epimorphism 3 gives the complex double.
Finally, if X is an orientable surface without boundary the complex double consists
of two connected components X1, X2 each one homeomorphic to X , the epimorphism
is the trivial one. The important point is that, in general, each connected component
has a different analytic structure and there is an anticonformal isomorphism from X1

to X2.
2. The orienting double.
Let X be a Klein surface and suppose that ∂X has k components. For i = 1, . . . , k

fill in each boundary component with a disc Di with centre pi (so that pi /∈ ∂X .) We
get a surface X̂ without boundary, of the same orientability as X . Now consider the
complex double of X̂ . (Recall that X̂ has two components if X is orientable.) Each
pi lifts to two points p1

i and p2
i in X̂ . Let D1

i and D2
i be small discs centred at p1

i and
p2

i in X̂ . If we remove these discs from X̂ we end up with an orientable surface Y
which has 2k boundary components and clearly Y is a two-sheeted cover of X . We call
Y the orienting double of X . Note that if X is orientable then Y has two connected
components.

If we consider the epimorphisms of Section 2 we see that only for epimorphism
2 do we have a covering with twice as many boundary components as the
original surface so this epimorphism correspond to the orienting double of
a non-orientable Klein surface. In the case of orientable Klein surfaces the
epimorphism is the trivial one.

3. The Schottky double
Let X̃ be a double cover of the Klein surface X . Then X̃ admits an involution

h ∈ � such that X̃/〈h〉 = X. As we are considering unbranched but possibly folded
coverings, the fixed-point set of h will include a collection of simple closed curves. (This
is well known when X is a Riemann surface and h is a symmetry, i.e. an anticonformal
involution.) An analogous thing happens for Klein surfaces [2]. We define the Schottky
double of X to be a Klein surface X̃ without boundary of the same orientability as X
admitting a dianalytic involution h whose fixed curves separate X̃ and such that X̃/〈h〉
=X .

THEOREM 5. Let X = U/� be a Klein surface with boundary and X̃ = U/�

its Schottky double. (�,� surface groups). Let θ : � −→ �/� ∼= C2 be the natural
epimorphism. Then θ is the epimorphism 3 of Table 1.

Proof. As h has fixed curves, � must have some reflection canonical generator c1

and we can write � = � + �c1. Let F be a fundamental region for �. Then F ∪ c1F
is a fundamental region for �. Suppose, for example, that θ (ei) = t. Then a Schreier
generator would be 1eic−1

1 . This pairs the side c1(ε′
i ) with εi. Thus if π : U −→ U/� is

the natural projection and z is a point in the interior of F , then we can join z to c1z
by a path which goes from z to the edge ε′

i , which is identified with cεi and then to
c1z without passing through π (∪γi). The projection of this path is then a path in U/�

https://doi.org/10.1017/S0017089512000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000109


514 ANTONIO F. COSTA, WENDY HALL AND DAVID SINGERMAN

which does not pass through the fixed curves of h and we do not then have the Schottky
double. Thus to have the Schottky double we must have θ (E) = 1. Similarly, we must
have θ (A) = 1. As the Schottky double has no boundary we must have θ (C) = t. We
thus have the epimorphism 3. �

Note that if X = U/� is orientable then A = {a1, b1, . . . , ag, bg} consists of
hyperbolic elements as does the set E = {e1, . . . , ek} and these preserve orientation.
Thus in this case, the Schottky double coincides with the complex double.

To sum up, the cases 1,2,3 correspond to the complex, orienting and Schottky
doubles, respectively.

6. The other standard doubles. We have examined the three standard doubles for
which E −→ 1 and found them to be geometrically interesting. We now briefly look
at the four standard doubles for which E −→ t. We will now assume that X is non-
orientable. The orientable case is similar. We first note that because of the long relation
we must have s, even, where s is the number of boundary components of the double X̃ .

4. E −→ t, C −→ 1, A −→ 1.
Note that by Table 1 or Theorem 2, the number of the boundary components of

X̃ is equal to s. Also because A −→ 1, X̃ is non-orientable. We can use the Riemann-
Hurwitz formula to compute the genus h of X̃ . This gives h = 2g − 2 + s.

To construct the covering fill in the s boundary curves with discs D1, . . . , Ds and
let pi be the centre of Di. Let S be the resulting surface. Build a 2-sheeted cover S∗ of
S with simple branch points of order 2 at the points pi. Let p̃i be the lift of pi to S∗ and
let D̃i be the lifts of Di to S∗. Finally, remove the D̃i from S∗ to construct X̃ . Using the
Riemann-Hurwitz formula for branched coverings of Riemann surfaces we see that
the genus of X̃ is as above.

5. E −→ t, C −→ 1, A −→ t.
This is almost like 4 above. The only difference concerns the closed curves αi on X

which have neighbourhoods homeomorphic to Möbius bands, (orientation-reversing
loops.) These correspond to the glide reflection generators in A. In 4 these also lie in
� which means that these loops lift to orientation-reversing loops in X̃ . In 5 this does
not occur; now α2

i lifts to an orientation-preserving loop.
6. E −→ t, C −→ t, A −→ 1. Now, by Table 1 we have that X̃ is non-orientable

without boundary. Note that as ei commutes with ci ei maps γi to itself. As e2
i ∈ �, ei

induces an automorphism of order two which rotates through 180◦ the closed curve
in X̃ where γi projects. The map X̃ → X performs the antipodal identification on the
curve that is the projection of γi in X̃ and then each boundary component of X lifts to
a curve in X̃ with a Möbius band as neighbourhood.

7. E −→ t, C −→ t, A −→ t. This is like 6, except we have the same remark as in
4 concerning orientation-reversing loops.
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