GENERIC MATRIX SIGN-STABILITY

ΒY

TAKEO YAMADA

ABSTRACT. A new concept of generic sign-stability is proposed, and a necessary and sufficient condition for this property is given. This result shows that the condition proposed by Quirk and Ruppert [12] is correct almost everywhere, and helps to clarify the counterexample presented by Jeffries [4].

1. **Introduction**. In qualitative matrix analysis, a set of equations is analysed based solely on the qualitative information, i.e., the signs, +, -, or 0, of the related elements (coefficients, partial derivatives, etc.) of that system. In this paper, we are concerned with the problem of qualitative stability (or, equivalently, sign-stability) of the following linear system.

(1) $\dot{x} = Ax$

Throughout this paper, a matrix A is said, following Jeffries et al. [5], to be *stable* (*semistable*, resp.)¹, if $\text{Re}[\sigma(A)] < 0$ ($\text{Re}[\sigma(A)] \le 0$, resp.), where $\sigma(A)$ denotes the set of all eigenvalues of A, $\text{Re}[\cdot]$ stands for the real part of a complex number, and the last inequality should be interpreted as a requirement for each element of $\sigma(A)$.

The system (1) is said to be a *qualitative system* if each entry of A is specified only up to its signs, +, -, or, 0. Such a matrix is referred to as a *sign matrix*. A qualitative system (or, the sign matrix A itself) is *sign-stable* (*sign-semistable*, resp.) if it is stable (semistable, resp.) for all numerical matrices $\overline{A} \in Q_A$. Here, Q_A denotes the set of all matrices of the sign pattern A, i.e.,

$$Q_A = \{ \overline{A} \in \mathbb{R}^{n \times n} | \operatorname{sgn}(\overline{A}) = A \}$$

where $sgn(\cdot)$ is an (element-wise) sign operator defined by

$$sgn(a) = \begin{cases} + & \text{if } a > 0 \\ - & \text{if } a < 0 \\ 0 & \text{if } a = 0 \end{cases}$$

Received by the editors April 13, 1986, and, in revised form, December 26, 1986.

AMS Subject Classification (1980): 05C50, 93D20.

[©] Canadian Mathematical Society 1986.

¹This definition of stability and semistability is not standard in control literature. The dynamical system (1) is *asymptotically stable iff A* is stable in this sense. However, (1) may be *marginally stable* or *unstable* if A has pure imaginary eigen-values. See, e.g., Luenberger [8] for more details.

The purpose of this paper is to reexamine the conditions under which a qualitative matrix A is sign-stable. A necessary and sufficient condition for sign-stability was first presented by Quirk and Ruppert [12], but later this proved incorrect by the counter-example of Jeffries [4]. We prove in this paper that the condition proposed by Quirk and Ruppert is necessary and sufficient for the system to be *generically sign-stable*, which is a slightly weaker requirement than sign-stability.

Before concluding this section, let us introduce some terminology and notation. Let n stand for $\{1, 2, ..., n\}$. The graph G_A of an $n \times n$ sign matrix A consists of a set of nodes $V = \{1, 2, ..., n\}$ and a set of directed arcs $E = \{(i, j) \in V \times V | a_{ij} \neq 0\}$. An elementary cycle of G_A is a set of arcs of the form $(i_1, i_2), (i_2, i_3), ..., (i_k, i_1)$ with $\{i_1, i_2, ..., i_k\}$ being a set of k distinct nodes. The length of this cycle is k. An elementary cycle of length k is also referred to as a k-cycle.

2. **Statement of the problem**. A criterion for sign-semistability can be stated as the following theorem.

THEOREM 1 (Quirk-Ruppert-Maybee)²: A sign matrix $A = (a_{ij})$ is sign-semistable iff the following conditions are all satisfied.

(i) $a_{ii} \leq 0$ for all $i \in \mathbf{n}$

(ii) $a_{ii}a_{ji} \leq 0$ for all $i, j \in \mathbf{n}, i \neq j$

(iii) there exists no k-cycle of length $k \ge 3$ in G_A .

It is also known that, if all diagonal elements are strictly negative, i.e., (i)' $a_{ii} < 0$ for all $i \in n$ holds, then (ii) and (iii) are necessary and sufficient for A to be sign-stable (See Theorem 3 of [12]).

Quirk and Ruppert [12] further claimed that (i)–(iii) plus the following (iv) and (v) are both necessary and sufficient for A to be sign-stable.

(iv) $a_{ii} < 0$ for some $i \in \mathbf{n}$ (v) det(A) $\neq 0$

Indeed, the necessity of these two additional conditions is quite obvious. However, these conditions are not sufficient for A to be sign-stable, as was shown by the counterexample of Jeffries [4]. Although a complete characterization of sign-stability has been obtained by Jeffries et al. [5] using the notion of R_A -coloring, this paper intends to clarify the above counterexample by showing that the conditions (i)-(v) are necessary and sufficient for (1) to be generically sign-stable (but not necessarily to be sign-stable).

For more rigorous arguments, let us introduce some concepts and terminology of elementary algebraic geometry [6]. Consider an $n \times n$ sign matrix A with $\mu(A)$ non-zero indeterminate entries (and $n^2 - \mu(A)$ fixed zeros). We can identify each $\overline{A} \in Q_A$ with a point in the positive orthant

$$R^{\mu(A)^{+}} = \{\xi = (\xi_1, \xi_2, \dots, \xi_{\mu(A)}) | \xi_i > 0, i = 1, 2, \dots, \mu(A) \}.$$

²This is Theorem 1 of [5], which is credited to Quirk-Ruppert-Maybee. See also [9] and [12].

T. YAMADA

Thus, we write $\overline{A} = \overline{A}(\xi)$, and $Q_A = {\overline{A}(\xi) | \xi \in R^{\mu(A)+}}$. A subset *V* of $R^{\mu(A)+}$ is said to be an *algebraic variety* if for some real-coefficient polynomials $p_1(\cdot), p_2(\cdot), \ldots, p_m(\cdot)$ defined over $R^{\mu(A)+}$, *V* can be written as

$$V = \{\xi \in R^{\mu(A)^+} | p_i(\xi) = 0, \quad i = 1, 2, \dots, m\}$$

An algebraic variety V is proper if $\phi \neq V \neq R^{\mu(A)+}$. It is well known that for a proper algebraic variety V, $R^{\mu(A)+} \setminus V$ is open and dense in $R^{\mu(A)+}$, and furthermore the Lebesgue measure of V is zero [13].

A {0, 1}-valued function π defined over $R^{\mu(A)+}$, $\pi: R^{\mu(A)} \rightarrow \{0, 1\}$, is said to be a *property* of A. Here, $\pi(\xi) = 1$ (0, resp.) means that the property holds (fails) at the parameter point $\xi \in R^{\mu(A)+}$. π is said to be a *generic property* [13] if there exists a proper algebraic variety V such that $\pi(\xi) = 1$ holds for all $\xi \in R^{\mu(A)+} \setminus V$. Since the Lebesgue measure of a proper algebraic variety is zero, a generic property can be regarded as a property that holds almost everywhere in the defining parameter space, or equivalently, for almost all \overline{A} in Q_A .

3. Generic sign-stability. Consider an $n \times n$ sign matrix A. A is said to be *reducible* if there exists a permutation matrix P such that

$$\boldsymbol{P'AP} = \begin{bmatrix} A & 0 \\ 11 & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

with square matrices A_{11} and A_{22} . A is *irreducible* if it is not reducible. This is equivalent to the requirement that G_A is strongly connected [1].

If A is reducible, it can be put into block lower triangular form with diagonal blocks being irreducible by an appropriate permutation of columns and rows. Since the stability of A is completely determined by the stability of each diagonal block, we can restrict ourselves to the irreducible case. Thus, without loss of generality, we can assume that A is irreducible. The main result of this paper is the following theorem.

THEOREM 2. An irreducible sign-matrix $A = (a_{ij})$ is generically sign-stable iff the conditions (i)-(v) are all satisfied.

To prove the necessity of (i)-(iii), let us introduce the notion of the restriction of a sign matrix $A = (a_{ij})$ to a set of indices $S \subseteq \mathbf{n} \times \mathbf{n}$ by $A|_S = (a_{ij|S})$, where

$$a_{ij|S} = \begin{cases} a_{ij} & \text{if } (i,j) \in S \\ 0 & \text{otherwise} \end{cases}$$

Then, we obtain the following lemma.

LEMMA. Let A be an $n \times n$ sign matrix. A is not generically sign-semistable, if for some subset $S \subseteq n \times n$ and a (numerical) matrix \overline{A} ,

(a) \overline{A} has a simple eigenvalue with strictly positive real part; and

(b) $\operatorname{sgn}(\overline{A}) = A|_{s}$ are both satisfied.

This lemma is proved in the Appendix. We are now ready to prove the necessity part of Theorem 2.

PROOF OF THEOREM 2 (Necessity). If either one of (i)–(iii) is violated, we have, after appropriate renumbering of the columns and rows of A, (α) $a_{11} > 0$, (β) $a_{12}a_{21} > 0$, or (γ) $a_{12}a_{23}...a_{k-1k}a_{k1} \neq 0$ ($k \geq 3$). Let S be either {(1, 1)}, {(1, 2), (2, 1)}, or {(1, 2), (2, 3), ..., (k, 1)}, depending on the cases (α)–(γ), and define $\overline{A} = (\overline{a}_{ij})$ by

$$\bar{a}_{ij} = \begin{cases} 1 & \text{if } (i,j) \in S \\ 0 & \text{otherwise} \end{cases}$$

Then, \overline{A} has a simple eigenvalue $\overline{\lambda}$ with strictly positive real part, which $\overline{\lambda} = 1$ in case of (α) and (β), and exp($2\pi i/k$) in case of (γ). This is a contradiction, due to the above lemma.

The necessity of (iv) and (v) is obvious. \Box

To prove the sufficiency part of Theorem 2, we need to use some results from graph and control theories. First, without loss of generality, we can assume that A is of the form

$$A = \begin{bmatrix} A_{11} & A_{12} \\ & & \\ A_{21} & & A_{22} \end{bmatrix}$$

with A_{11} being a $p \times p$ matrix with diag $(A_{11}) < 0$, and A_{22} being an $(n - p) \times (n - p)$ matrix with diag $(A_{22}) = 0$ (0 . Correspondingly, the set of nodes <math>V of G_A is divided into $V_1 = \{1, 2, ..., p\}$ and $V_2 = \{p + 1, ..., n\}$. Removing from G_A the set of all arcs terminating in V_1 defines the graph $G(A_{12}/A_{22})$. That is,

$$G(A_{12}/A_{22}) = (V, E^*), \text{ where } E^* = E \setminus \{(i, j) \in E | j \in V_1\}.$$

Now, conditions (i)–(iii) imply that there can be only 1- and 2-cycles in G_A , and by definition, only 2-cycles are possible in $G(A_{12}/A_{22})$. Moreover, irreducibility of A implies that each node of $G(A_{12}/A_{22})$ is accessible from V_1 . Condition (v) implies, under conditions (ii) and (iii), that G_A is covered by a set of disjoint 1- or 2-cycles. Then, V_2 is covered with a set of disjoint 2-cycles and V_1 -rooted arcs in $G(A_{12}/A_{22})$. This and the accessibility of $G(A_{12}/A_{22})$ from V_1 implies that $G(A_{12}/A_{22})$ is spanned by a *cacti* [7], [10]. The following example explains the above arguments.

EXAMPLE 1. Fig. 1 is the graph G_A corresponding to a sign matrix A which satisfies conditions (i)-(v). A complete matching [11] is shown by thick lines. Here, $V_1 = \{1, 2\}$ and $V_2 = \{3, 4, ..., 11\}$. Fig. 2 depicts $G(A_{12}/A_{22})$, with thick lines indicating a covering of V_2 . Fig. 3 shows a cacti which spans $G(A_{12}/A_{22})$. This is immediately obtained from the covering of Fig. 2 by adding some connecting stems.

373

1987]

FIG. 1. Graph G_A (undirected arcs represent 2-cycles).

FIG. 2. Graph $G(A_{12}/A_{22})$.

FIG. 3. A cacti spanning $G(A_{12}/A_{22})$.

By virtue of the well-known duality of controllability and observability in dynamical systems theory [8], the above result is exactly the condition for the pair (A_{22}, A_{12}) to be generically observable.³

³Using the notation of this paper, the structural controllability theorem says: (A, C) is generically observable *iff* G(C'/A') is spanned by a cacti. See Lin [7] or Mayeda [10].

MATRIX SIGN-STABILITY

PROOF OF THEOREM 2 (Sufficiency part). Since (A_{22}, A_{12}) is generically observable, there exists a proper algebraic variety in $R^{\mu(A)}$ such that $(\overline{A}_{22}(\xi), \overline{A}_{12}(\xi))$ is observable for any $\xi \in R^{\mu(A)+} \setminus V$. Fix such a point $\xi \in R^{\mu(A)+} \setminus V$ and take a corresponding matrix $\overline{A} = \overline{A}(\xi)$. By (ii), (iii) and irreducibility of A, it is possible to choose $\nu_1, \nu_2, \ldots, \nu_n$,

such that $v_i a_{ij} = -v_j a_{ji}$, $i, j \in \mathbf{n}$, $i \neq j$, and $v_i > 0$, $i \in \mathbf{n}$. Define a quadratic function V(x) by

$$V(x) = \sum_{i=1}^{n} v_i x_i^2$$

The derivative of V(x(t)) along the trajectory of (1) is given by

$$dV(x(t))/dt = 2 \sum_{i \in n} v_i x_i \dot{x}_i = 2 \sum_{i,j \in n} v_i x_i a_{ij} x_j = 2 \sum_{i \in n} v_i a_{ii} x_i^2 = 2 \sum_{i=1}^p v_i a_{ii} x_i^2 \le 0.$$

Therefore, V(x(t)) does not increase with the evolution of (1). Assume that this does not decrease along the path of (1). Then, we must have

$$x(t) \in \theta_p \stackrel{\bigtriangleup}{=} \{x \in R^n | x_1 = x_2 = \dots x_p = 0\}$$

However, since $(\overline{A}_{22}, \overline{A}_{12})$ is observable, this implies that

$$x_{p+1}(t) = x_{p+2}(t) = \ldots = x_n(t) = 0$$

and therefore x(t) = 0. Thus, $V(\cdot)$ is a Lyapunov function for (1), and therefore \overline{A} is stable. This argument holds true for any $\xi \in R^{\mu(A)^+} \setminus V$, which completes the proof of sufficiency.⁴

EXAMPLE 2. Consider the following sign matrix. Note that the counterexample of Jeffries [4] had this sign pattern.

	0	-a	0	0	0
	b	0	- <i>c</i>	0	0
A =	0	d	-e	-f	0
	0	0	g	0	-h
	_0	0	0	j	0

By Theorem 1, we know that the real part of any eigenvalue of A is non-positive for any choice of parameters = $(a, b, ..., j) \in \mathbb{R}^{8^+}$. Therefore, a non-negative real part for an eigenvalue of A can occur only when A has a pure imaginary eigenvalue. By appropriate scaling, we can assume that this is *i*. Therefore, if A has such an eigenvalue, we must have det(iI - A) = 0, or, equivalently,

$$e(1 - ab)(1 - hj) + i\{1 - (ab + cd + fg + hj) + abfg + abjh + cdjk\} = 0$$

It can be easily seen that the above equality holds *iff* ab = 1 and hj = 1. Therefore, $\overline{A} = \overline{A}(\xi)$ is stable, unless $\xi \in V = \{\xi = (a, b, \dots, j) | ab = 1, hj = 1\}$.

1987]

⁴This part of proof is essentially the same to the proof in [3], where Ishida et al. proved that (i)–(iii) plus *sign-observability* of (A_{22}, A_{12}) are both necessary and sufficient for A to be sign-stable. However, they did not give any structural characterization for (A_{22}, A_{12}) to be sign observable.

T. YAMADA

ACKNOWLEDGEMENT. The author wishes to thank an anonymous referee for helpful suggestions, which helped in improving the quality of this paper.

Appendix

PROOF OF LEMMA. Suppose that such an S and $\overline{A} = (\overline{a}_{ij})$ exist. Let $\overline{A}[\epsilon] = (\overline{a}_{ij}[\epsilon]) \in Q_A$ be defined by

$$\bar{a}_{ij}[\boldsymbol{\epsilon}] = \begin{cases} \bar{a}_{ij} & \text{if } (i,j) \in S \\ \boldsymbol{\epsilon}\bar{a}_{ij} & \text{otherwise} \end{cases}$$

and let $f(\lambda, \epsilon) = \det(\lambda I - \overline{A}[\epsilon])$. Then, for $\overline{\epsilon} = 0$, $\overline{\lambda}$ is a non-repeated solution to $f(\lambda, \overline{\epsilon}) = 0$. By the Implicit Function Theorem (See, e.g., 10.2.2 of [2]), there exists a continuous function $\overline{\lambda}(\cdot)$ defined on a neighborhood U of $\overline{\epsilon} = 0$, such that $\overline{\lambda} = \overline{\lambda}(0)$ and $f(\overline{\lambda}(\epsilon), \epsilon) = 0$ for $\epsilon \in U$. By continuity of $\overline{\lambda}(\cdot)$, we have $\operatorname{Re}[\overline{\lambda}(\epsilon^*)] > 0$ for sufficiently small $\epsilon^* > 0$, since $\operatorname{Re}[\overline{\lambda}(0)] > 0$.

Let $\xi^* \in R^{\mu(A)^+}$ be the point corresponding to $\overline{A}[\epsilon^*]$, i.e., $\overline{A}(\xi^*) = \overline{A}[\epsilon^*]$ and consider a sufficiently small neighborhood U^* of ξ^* . Again, by continuity of nonrepeated eigenvalues to the change of matrix entries, we obtain $\operatorname{Re}[\overline{\lambda}(\xi)] > 0$ for all $\xi \in U^*$. This implies that A is not generically sign-semistable. \Box

REFERENCES

1. R. G. Busucker and T. L. Saaty, *Finite Graphs and Networks: An Introduction with Applications*, McGraw-Hill, New York, 1965.

2. J. Dieudonné, Foundements de l'analyse moderne, Gauthier-Villars, Paris, 1960.

3. Y. Ishida, N. Adachi and H. Tokumaru, *Some results on the quantitative theory of matrix*, Trans. of the Society of Instrument and Control Engineers, Japan, **17** (1981), pp. 49-55.

4. C. Jeffries, Qualitative stability and digraphs in model ecosystems, Ecology, 55 (1974), pp. 1415-1419.

5. C. Jeffries, V. Klee and P. Van den Driessche, *When is a matrix sign stable?* Canadian J. of Mathematics **29** (1977), pp. 315–326.

6. K. Kendig, Elementary Algebraic Geometry, Springer, New York, 1977.

7. C. T. Lin, Structural Controllability, IEEE Trans. Automat. Contr. AC-19 (1974), pp. 201-208.

8. D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models and Applications, John Wiley and Sons, New York, 1979.

9. J. Maybee and J. Quirk, *Qualitative problems in matrix theory*, SIAM Review 11 (1969), pp. 30-51. 10. H. Mayeda, *On structural controllability theorem*, IEEE Trans. Automat. Contr. AC-26 (1981), pp. 795-798.

11. O. Ore, Theory of Graphs, American Math. Society, Providence, 1962.

12. J. Quirk and R. Ruppert, *Qualitative economics and stability of equilibrium*, Review of Economic Studies **32** (1965), pp. 311-326.

13. W. M. Wonham, *Linear Multivariable Control: A Geometric Approach*, Springer-Verlag, New York, 1974.

DEPARTMENT OF SOCIAL SCIENCES NATIONAL DEFENSE ACADEMY YOKOSUKA, KANAGAWA 239 JAPAN

376