
Canad. Math. Bull. Vol. 30 (3), 1987 

GENERIC MATRIX SIGN-STABILITY 

BY 

TAKEO YAMADA 

ABSTRACT. A new concept of generic sign-stability is proposed, and a 
necessary and sufficient condition for this property is given. This result 
shows that the condition proposed by Quirk and Ruppert [12] is correct 
almost everywhere, and helps to clarify the counterexample presented by 
Jeffries [4]. 

1. Introduction. In qualitative matrix analysis, a set of equations is analysed based 
solely on the qualitative information, i.e., the signs, +, - , or 0, of the related elements 
(coefficients, partial derivatives, etc.) of that system. In this paper, we are concerned 
with the problem of qualitative stability (or, equivalently, sign-stability) of the 
following linear system. 

(1) x = Ax 

Throughout this paper, a matrix A is said, following Jeffries et al. [5], to be stable 
{semistable, resp.)1, if Re[cr(A)] < 0 (Re[cr(A)] < 0, resp.), where cr(A) denotes the 
set of all eigenvalues of A, Re[ • ] stands for the real part of a complex number, and the 
last inequality should be interpreted as a requirement for each element of v(A). 

The system (1) is said to be a qualitative system if each entry of A is specified only 
up to its signs, +, —, or, 0. Such a matrix is referred to as a sign matrix. A qualitative 
system (or, the sign matrix A itself) is sign-stable (sign-semistable, resp.) if it is stable 
(semistable, resp.) for all numerical matrices A E QA. Here, QA denotes the set of all 
matrices of the sign pattern A, i.e., 

QA = {ÂER"x"\sgn(Â) =A} 

where sgn(-) is an (element-wise) sign operator defined by 

sgn(a) 

- if a > 0 

- if a < 0 

10 if a = 0 
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'This definition of stability and semistability is not standard in control literature. The dynamical system 

(1) is asymptotically stable iff A is stable in this sense. However, (1) may be marginally stable or unstable 
ïf A has pure imaginary eigen-values. See, e.g., Luenberger [8] for more details. 
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The purpose of this paper is to reexamine the conditions under which a qualitative 
matrix A is sign-stable. A necessary and sufficient condition for sign-stability was first 
presented by Quirk and Ruppert [12], but later this proved incorrect by the counter
example of Jeffries [4]. We prove in this paper that the condition proposed by Quirk 
and Ruppert is necessary and sufficient for the system to be generically sign-stable, 
which is a slightly weaker requirement than sign-stability. 

Before concluding this section, let us introduce some terminology and notation. Let 
n stand for {1, 2, . . . , n}. The graph GAofannXn sign matrix A consists of a set of 
nodes V = {1, 2, . . . , n} and a set of directed arcs E = {(/, j) E V X V\a(j i= 0}. An 
elementary cycle of GA is a set of arcs of the form (iÏ9 i2), (*2> h), • • • > 0*, h) with 
{/],/2, • • •, h} being a set of k distinct nodes. The length of this cycle is k. An 
elementary cycle of length k is also referred to as a k-cycle. 

2. Statement of the problem. A criterion for sign-semistability can be stated as the 
following theorem. 

THEOREM 1 (Quirk—Ruppert—Maybee)2: A sign matrix A — {a^ is sign-semistable 
iff the following conditions are all satisfied. 

(i) au < Ofor all i E n 
(ii) aiflji < Ofor all iJE n, i ± j 
(iii) there exists no k-cycle of length k > 3 in GA. 
It is also known that, if all diagonal elements are strictly negative, i.e., (i)' ati < 0 

for all i E n holds, then (ii) and (iii) are necessary and sufficient for A to be sign-stable 
(See Theorem 3 of [12]). 

Quirk and Ruppert [12] further claimed that (i)-(iii) plus the following (iv) and (v) 
are both necessary and sufficient for A to be sign-stable. 

(iv) au < Ofor some i E n 
(v) det(A) ± 0 

Indeed, the necessity of these two additional conditions is quite obvious. However, 
these conditions are not sufficient for A to be sign-stable, as was shown by the 
counterexample of Jeffries [4]. Although a complete characterization of sign-stability 
has been obtained by Jeffries et al. [5] using the notion of /^-coloring, this paper 
intends to clarify the above counterexample by showing that the conditions (i)-(v) are 
necessary and sufficient for ( 1 ) to be generically sign-stable (but not necessarily to be 
sign-stable). 

For more rigorous arguments, let us introduce some concepts and terminology of 
elementary algebraic geometry [6]. Consider an n x n sign matrix A with |x(A) 
non-zero indeterminate entries (and n2 - |x(A) fixed zeros). We can identify each 
A E: QA with a point in the positive orthant 

R*AH = {i: = ( € | ^ 2 > m m m9^A))\^ > 0, i = 1,2,. . . , |x(A)}. 

2This is Theorem 1 of [5], which is credited to Quirk-Ruppert-Maybee. See also [9] and [12]. 
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Thus, we write A = A(£), and QA = {A(^)|ê ^ R*A)+}. A subset V of R»iAn is said 
to be an algebraic variety if for some real-coefficient polynomials pl(• ),p2( * ) , • • • , 
/?,„(•) defined over R^{A)+, V can be written as 

V = Ue^ ( A ) + | p f - (Ç) = 0, i = l , 2 , . . . , m } 

An algebraic variety V is proper if <j> =̂= V =̂= /?M,M)+. It is well known that for a proper 
algebraic variety V, R^W+w is open and dense in Rrt*)+ ? an (j furthermore the 
Lebesgue measure of V is zero [13]. 

A {0, l}-valued function TT defined over RMA)+
9 >n:RMA) -> {0, 1}, is said to be a 

property of A. Here, TT(£) = 1 (0, resp.) means that the property holds (fails) at the 
parameter point £ E R^{AH. TT is said to be a generic property [13] if there exists a 
proper algebraic variety V such that TT(£) = 1 holds for all £ E / ^ M ) + W . Since the 
Lebesgue measure of a proper algebraic variety is zero, a generic property can be 
regarded as a property that holds almost everywhere in the defining parameter space, 
or equivalently, for almost all A in QA. 

3. Generic sign-stability. Consider an n x n sign matrix A. A is said to be reducible 
if there exists a permutation matrix P such that 

[A 0 1 

P'A/> = " 
LA21 A 22 J 

with square matrices A,, and A22. A is irreducible if it is not reducible. This is 
equivalent to the requirement that GA is strongly connected [1]. 

If A is reducible, it can be put into block lower triangular form with diagonal blocks 
being irreducible by an appropriate permutation of columns and rows. Since the 
stability of A is completely determined by the stability of each diagonal block, we can 
restrict ourselves to the irreducible case. Thus, without loss of generality, we can 
assume that A is irreducible. The main result of this paper is the following theorem. 

THEOREM 2. An irreducible sign-matrix A = (au) is generically sign-stable iff the 
conditions (i) — (v) are all satisfied. 

To prove the necessity of (i)—(iii), let us introduce the notion of the restriction of a 
sign matrix A = (Û#) to a set of indices S C n x n by A\s = (a^s), where 

atj if (iJ)ES 

0 otherwise 

Then, we obtain the following lemma. 

LEMMA. Let A be an n x n sign matrix. A is not generically sign-semistable, if for 
some subset S C n x n and a (numerical) matrix A, 

(a) A has a simple eigenvalue with strictly positive real part; and 

2U\s 
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(b) sgn(A) = A\s 

are both satisfied. 

This lemma is proved in the Appendix. We are now ready to prove the necessity part 
of Theorem 2. 

PROOF OF THEOREM 2 (Necessity). If either one of (i)—(iii) is violated, we have, after 
appropriate renumbering of the columns and rows of A, (a) au > 0, (P) a]2a2] > 0, 
or (7) 0,2023- • -a*-i*0*i ï 0 (k > 3). Let S be either {(1, 1)}, {(1,2),(2, 1)}, or 
{(1, 2), ( 2 , 3 ) , . . . , (k, 1)}, depending on the cases (a)-(y), and define A = (<2/y) by 

H if ( U ) e s 
au = | 

lo otherwise 

Then, A has a simple eigenvalue Â. with strictly positive real part, which X = 1 in case 
of (a) and ((3), and exp(2îr i/k) in case of (7). This is a contradiction, due to the above 
lemma. 

The necessity of (iv) and (v) is obvious. • 
To prove the sufficiency part of Theorem 2, we need to use some results from graph 

and control theories. First, without loss of generality, we can assume that A is of the 
form 

U2 , A: 

with Au being a p x p matrix with diag04n) < 0, and A22 being an (n — p) x 
(n - p) matrix with diag(A22) = 0 (0 < p < n). Correspondingly, the set of nodes 
V of GA is divided into V\ ={1 ,2 , . . . , / ?} and V2 = {p + 1,. . . , n}. Removing from 
GA the set of all arcs terminating in V\ defines the graph G(A]2/A22). That is, 

G(A,2/^22) = (V,E*)9 where E* = E\{(iJ) E E\j E V,}. 

Now, conditions (i)—(iii) imply that there can be only 1- and 2-cycles in GA, and by 
definition, only 2-cycles are possible in G(Al2/A22). Moreover, irreducibility of A 
implies that each node of G{An/A22) is accessible from Vx. Condition (v) implies, 
under conditions (ii) and (iii), that GA is covered by a set of disjoint 1- or 2-cycles. 
Then, V2 is covered with a set of disjoint 2-cycles and Vx-rooted arcs in G(A]2/A22). 
This and the accessibility of G(Al2/A22) from V, implies that G(An/A22) is spanned by 
a cacti [7], [10]. The following example explains the above arguments. 

EXAMPLE 1. Fig. 1 is the graph GA corresponding to a sign matrix A which satisfies 
conditions (i) — (v). A complete matching [11] is shown by thick lines. Here, V\ ={1,2} 
and V2 = {3,4,. . . , 11}. Fig. 2 depicts G(Al2/A22), with thick lines indicating a 
covering of V2. Fig. 3 shows a cacti which spans G(A]2/A22). This is immediately 
obtained from the covering of Fig. 2 by adding some connecting stems. 
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FIG. 1. Graph GA (undirected arcs represent 2-cycles). 

FIG. 2. Graph G(Ai2/A22). 

FIG. 3. A cacti spanning G(A\2/A22). 

By virtue of the well-known duality of controllability and observability in dynamical 
systems theory [8], the above result is exactly the condition for the pair (A22,A12) to 
be generically observable.3 

3Using the notation of this paper, the structural controllability theorem says: (A,C) is generically 
observable iffG(C/A') is spanned by a cacti. See Lin [7] or Mayeda [10]. 
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PROOF OF THEOREM 2 (Sufficiency part). Since (A22,A12) is generically observable, 
there exists a proper algebraic variety in RMA) such that (Â22(£), A ]2(^)) is observable 
for any £ E R*iAH \ V. Fix such a point £ E R*iA)+ \ y and take a corresponding matrix 
A = A(£). By (ii), (iii) and irreducibility of A, it is possible to choose vx, v2,. . . , v„, 
such that v/û/y- = —v}a]h i,j G n, i =f= j , and v, > 0, i E K. Define a quadratic function 
V(x) by 

V(JC) = S v*? 
/ = 1 

The derivative of V(x(t)) along the trajectory of (1) is given by 

p 

dV(x{t))/dt — 2 2J VjXjXi = 2 Z V/JC/Û̂ A:,- = 2 Z v;-a/7Jt,
2 = 2 2 v^ux] ^ 0. 

/ E n /,v En / '£« / = 1 

Therefore, V(JC(0) does not increase with the evolution of (1). Assume that this does 
not decrease along the path of (1). Then, we must have 

x{t) E Qp = {x E Rn\x] = x2 = . . .xp = 0} 

However, since (A22,A,2) is observable, this implies that 

xp+\(t) = xp + 2(t) = . . . = x„(f) = 0, 

and therefore x(t) = 0. Thus, V(-) is a Lyapunov function for (1), and therefore A is 
stable. This argument holds true for any £ E /?^M)+\ V, which completes the proof of 
sufficiency.4 • 

EXAMPLE 2. Consider the following sign matrix. Note that the counterexample of 
Jeffries [4] had this sign pattern. 

0 

b 

0 

0 

0 

—a 

0 

d 

0 

0 

0 

—c 

—e 

8 
0 

0 

0 

- / 
0 

j 

0 

0 

0 

-h 

0 

By Theorem 1, we know that the real part of any eigenvalue of A is non-positive for 
any choice of parameters = (a,b,... J) E Rs+. Therefore, a non-negative real part 
for an eigenvalue of A can occur only when A has a pure imaginary eigenvalue. By 
appropriate scaling, we can assume that this is /. Therefore, if A has such an eigenvalue, 
we must have det(// — A) = 0, or, equivalently, 

e(\ - ab){\ - hj) + I{1 - (ab + cd + fg + hj) + abfg + abjh + cdjk} = 0 

It can be easily seen that the above equality holds iff ab = 1 and hj = 1. Therefore, 
Â = A(0 is stable, unless £ E V = {£ = (a,b,... ,./)|aft = 1,/y = 1}. 

4This part of proof is essentially the same to the proof in [3], where Ishida et al. proved that (i)-(iii) 
plus sign-observability of (A22, Al2) are both necessary and sufficient for A to be sign-stable. However, they 
did not give any structural characterization for (A22, ^12) to be sign observable. 
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Appendix 
PROOF OF LEMMA. Suppose that such an S and A = (â/;) exist. Let A[e] = 

(âjj[e\) E QA be defined by 

(âjj if (ij) G S 

letf/y otherwise 

and let/(X,e) — det(X/ — A[e]). Then, for ê = 0, X is a non-repeated solution to 
/(X, ë) = 0. By the Implicit Function Theorem (See, e.g., 10.2.2 of [2]), there exists 
a continuous function X( • ) defined on a neighborhood U of ë = 0, such that X = X(0) 
and/(X(e),e) = 0 for e G U. By continuity of X(-), we have Re[X(e*)] > 0 for 
sufficiently small e* > 0, since Re[X(0)] > 0. 

Let %* E RMA)+ be the point corresponding to A[e*], i.e., Â(£*) = Â[e*] and 
consider a sufficiently small neighborhood U* of £*. Again, by continuity of non-
repeated eigenvalues to the change of matrix entries, we obtain Re[X(£)] > 0 for all 
£ E £/*. This implies that A is not generically sign-semistable. • 
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