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Introduction. The modern algebraic treatment of geometry in projective spaces focuses
attention on the properties of homogeneous ideals in polynomial and power-series rings. This
inevitably raises questions concerning how far ordinary ideal theory needs to be modified if
only homogeneous ideals are to be regarded as significant. In practice, one can usually answer
any particular question of this type without undue difficulty when it arises but, it seems to
the author, the topic has enough intrinsic interest to merit a connected discussion by itself.

In the present paper the concept of a graduated ring makes it possible to treat, in a more
abstract way than usual, this notion of homogeneous elements and homogeneous ideals.
This brings out the way in which the concept of homogeneity combines with the concepts of
general ideal theory without disturbing the familiar pattern of results. Thus, to give one
example, it is shown (Theorem 14) that if a homogeneous ideal can be represented as an
intersection of primary ideals, then it can also be represented as an intersection of homogeneous
primary ideals. I t is hoped that this account includes proofs of most of the results of this
kind which are needed in applications.

1. Graduated rings. Let H be a commutative ring with a unit element. In addition,
suppose that with each non-negative integer n there is associated a subset Hl(n) of K and
that these subsets 111(n) have the following properties.
(a) 111<n) is a subgroup of the additive group of 2\.
(b) If X e m(r> and Ye 11T<*> then XYe111<r+s>.
(c) Each clementre'$.canbetvrittenasafinitesumr = Xif>) + Xt>1) + ... +X(l),where X{i~> e UX^'K
(d) If A ' C ' + I O +.. . + X«> = 7<°> + 7<D +.. . + 7<m>, whereX«>e m<'>, 7«><= m^andl^m, then

X<*>= 7«>/or l < i < I , and 7<» = 0 for j>l.

We shall describe this situation by saving that K is a graduated ring. The elements of 111'"'
will be referred to as homogeneous elements of degree n and we shall normally use X<"> or y<n>
to denote such elements. The assumptions (c) and (d) can now be summed up briefly by
saying that every element of H is uniquely expressible as a finite sum of homogeneous elements
of different degrees. The expression homogeneous element will be used to mean an element
belonging to at least one of the sets 111(n). I t follows from (d) that a non-zero homogeneous
element has a definite degree. We shall normally use X and 7 to denote homogeneous

n
elements. If r = EX{i\ where XU) e 111'0, then the terms in this sum will be referred to as the

o
homogeneous constituents of r.

An example of a graduated ring can be obtained as follows. Let R be a commutative
ring with a unit element and let H be the polynomial ring R[Xlt X2, ..., XnJ. Then X is a
graduated ring if we take for 111(n) the set of all forms of degree n.

In what follows, we suppose that H is a fixed (but arbitrary) graduated ring.
Theorem 1. The unit element of H is homogeneous and of degree zero.

m n
Proof. Let 1 = 2XM, and let r = EY^ be an arbitrary element of X. We have

o o
7(") + X( 1 )7( ' ' ) + ... +XMY<-ti),

CM.A.
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whence, comparing terms of degree /x, Y^ = X(0) Y((i). It follows that X(0V —r ; consequently,
since r was arbitrary, X(0) = l.

2. Homogeneous ideals. As before, H is a given graduated ring. An ideal a of K will
be said to be homogeneous if it has a base (possibly infinite) which is composed entirely of
homogeneous elements.

Theorem 2. Let a be a homogeneous ideal and let r t H . Then r belongs to a if and only if nil
the homogeneous constituents of r are in a.

Proof. Suppose, first, that r e a. We then have

r = r1Z1(
mi) + r2X2K> +.. . + r,X,(m>\

where r, e H, X,(™<> e a and X/mi) is homogeneous of degree m(. Let r= E YM, r( = E }',•<"':
0

then
0

Comparing terms of degree v we see that

« 1

= E Y (f)X '"

where, if v<mt, Yi
<-"-m^Xi

<-mi) must be omitted from the sum on the right-hand side. This
shows that Y(v) e a. Thus half the theorem is proved and the other half is, in this case, trivial.

Theorem 3. Let a be an ideal with the property that "ifr belongs to a then all the homogeneous
constituents of r are in a" ; then a is homogeneous.

Proof. Let a0 be the ideal generated by all the homogeneous elements that belong to a ;

then a0 is homogeneous and a0 £ a. If now r = EX^ belongs to a, then, by hypothesis, A'*"' € a
o

and so X^ e a0. I t follows that r e a0. This proves that aQa0 and establishes the theorem.
Theorem 4. If a and b are homogeneous ideals, then so are a + b, ab, ar\b, a : b and Rad a.
Proof. That a+b and ab are homogeneous follows immediately from the definition.

n
Assume now that r = EXM belongs to ar\b. If we show that, for each v, Z( v ) e ar\b, then it

o
n

will follow, by Theorem 3, that ar\b is homogeneous. But EX^ e a and so (Theorem 2)
o

X^ e a, while a precisely similar argument yields X^ e b.
n

To prove tha t a : b is homogeneous, assume tha t EX^ belongs to a : b and let (..., }' ; , ...)
o

n
be a (possibly infinite) homogeneous base for b. Then EX^Y, e a, whence (Theorem 2)

v=0

XMYj e a for all v andj . We therefore have X^b Q a and so X(v> e a : b. The homogeneity of
a : b follows by Theorem 3.

Finally, suppose that r = Z( s ) + Z( s + 1 ) + ... +Z ( m ) belongs to Rad a. Then rt = [XM]i + ...
belongs to a for a suitable value of t. Accordingly, by Theorem 2, [Z(s)]e € a and so Z( s ) e Rad a ;
consequently r-X<5)=X(s+1> + X(<!+2> +. . . +X( m ) is in Rad a. We can now repeat the argu-
ment and show that Z( s + 1 ) e Rad a and, proceeding in this way, we finally see that all the
homogeneous constituents of r are in the radical of a. This proves the theorem.

Proposition 1. Let a be a homogeneous ideal with the property that " if X, Y are homo-
geneous and XY e a, then either X e a or Y e a ". In these circumstances, a is a prime ideal.

m n
Proof. Assume that rp e a, where r = EX^ and p = EY^. We wish to show that either

o o
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r e a or p e a. Assume that neither of these is true ; then there will be a first X^\ say
and a first Y(>>), say y(s), which are not in a. Since

is the homogeneous constituent of rp of degree r + s and since a is homogeneous, this sum is
in a. The construction now shows that X( r )7 ( s ) e a ; consequently, by our hypothesis, either
X^ e a or y( s ) e a. This, however, is a contradiction.

Proposition 2. Let a be a homogeneous ideal with the property that " if X, Y are homo-
geneous, XY e a and X 4 a, then some power ofYis in a ". In these circumstances, a is a primary
ideal.

m
Proof. Let r = EX^\ p = y <s> + Y<*+» + ... + Y™ and assume that rPea,r4a. We wish

0
to show that p e Rad a. Let JT(r) be the first of the X^ which is not in a ; then

belongs to a and therefore, since a is homogeneous, X( r )y( s ) e a. Again, since X(r), y(s) are
homogeneous and X(r ) 4 a> & follows by hypothesis that y(s) e Rad a. There exists, therefore,
an integer t, which may be zero, such that

r[Y^Y4a, c[r( ')] t+1
fa.

Put rx =r[ Y(s )] ' ; then rxp e a because rp e a. But

rlP=r[YM]' [y(«)+ y<s+1) + ... + yW]sr1[y('+1) + ... + y<">] (mod a),

which shows that
r1[y<J+1) + ... + yW]ea and ^4^

We now have a situation similar to that with which we started and so we can repeat the
argument and show that yt'+i) e Rad a. In this way, it is seen that all the homogeneous
constituents of p belong to Rad a and so p itself belongs to Rad a.

3. The primary decomposition. Still supposing that H is a given graduated ring we shall
now establish the important result that, when H is Noetherian, every homogeneous ideal can
be expressed as a finite intersection of homogeneous primary ideals. It will be convenient,
however, not to assume the Noetherian condition in its ordinary form but to postulate it jonly
for homogeneous ideals. More precisely, it is a simple matter to verify that the following
assertions are equivalent :

(a) Every strictly increasing sequence of homogeneous ideals is finite.
(b) Every non-empty set of homogeneous ideals contains one that is maximal for the set.
(c) Every homogeneous ideal can be generated by a finite number of homogeneous elements.

We shall therefore say that a graduated ring H, which has these properties, is H-Noetherian.
Theorem 5. Let H be H-Noetherian and let a be a homogeneous ideal; then a can be

expressed as a finite intersection of homogeneous primary ideals.
The proof proceeds on familiar lines but, since there are some new considerations, we

shall go over the steps briefly. Let us call a homogeneous ideal H-reducible if it is the inter-
section of two homogeneous ideals both of which strictly contain it. A homogeneous ideal
which is not ^-reducible will then be said to be H-irreducible. It is a straightforward
matter to show that, when H is //-Noetherian, every homogeneous ideal is a finite intersection
of homogeneous ^-irreducible ideals. Now suppose that a is homogeneous and //-irreducible ;
then, to complete the proof, it will be enough to show that a is primary. Assume that X, Y
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are homogeneous, that XY e a and X 4 a. If we can deduce from this that some power of Y is in
a, the required result will follow by Proposition 2. By Theorem 4,

a c a:(7) £ a : (7 2 ) Q a:(Y3) Q ...

is a chain of homogeneous ideals. Consequently we can choose m so that a : (Yn) = a : (Ym)
for n~^m. If this is done then

and both a : (Ym) and a + (Ym) are homogeneous. Accordingly, since a is //-irreducible and
a c [a: (Ym)], we have a = a + (Ym) and therefore Ym e a.

An immediate and important consequence of Theorem 5 is
Theorem 6. Let H be H-Noetherian and let a be a homogeneous ideal. Then all the prime

ideals which belong to a are homogeneous and all the isolated components of a are homogeneous.
Theorem 7. Let 21 be H-Noetherian, let q be a homogeneous primary ideal and let p be the

prime ideal (necessarily homogeneous) to which q belongs. Then there exist homogeneous
p-primary ideals q0, qlt ..., q3 which satisfy

q = q0 <= qt c ... c qs = p

and are such that there is no p-primary ideal, homogeneous or non-homogeneous, between qtand c\i+1.
This theorem shows that, when H is //-Noetherian, every homogeneous primary ideal

has a definite length and, moreover, that composition series exist in which every term is
homogeneous. The proof, after our previous results, presents no difficulty, but we shall give
details for the reader's convenience.

Proof. Let us suppose that q is strictly contained in p ; then q c q: p ^ p and q: p is
homogeneous. We can therefore choose a homogeneous element X e q : p so that X 4 q. The
ideal q + (X) is homogeneous and has p as a minimal prime ideal; consequently the p-primary
component qt of q + (X) is homogeneous (Theorem 6). By construction, q c qx. Now suppose
that q' is a p-primary (but not necessarily homogeneous) ideal which satisfies q c q' £ qt.
Choose r e q' so that r 4 q. Since r e qx, we can find c 4 p so that cr e q + (X), say cr = q + pX,
where q e q. Now p 4 p, for otherwise we should have pX e pX £ q and therefore cr e q which would
imply req, contrary to hypothesis. Accordingly, pX=cr-qeq' and p4V'> consequently
X e q'. This shows that q + (X) Q q' which, when combined with q' C q1; yields q' = qv I t has
now been proved that there is no p-primary ideal between q and qv We next construct q2

from q1 in the same way that q1 was constructed from q. Proceeding in this way the whole
chain is constructed because, since H is ^-Noetherian, the process must eventually stop.

Another result which is .sometimes needed in applications is
Theorem 8. Let H be H-Noetherian, let p be a homogeneous prime ideal, and let q, q1 be

homogeneous p-primary ideals. If now q C qx and there are no homogeneous p-primary ideals
betiveen q and qx, then there are no non-homogeneous p-primary ideals between q and qx.

Proof, (q : p)^qj is homogeneous and p-primary and it satisfies q £ (qipjnq! C q i ;

consequently either (q : p)^>qi = qi, that is, q!C(q:p) or (q :p )^q x =q . We assert that
qxC(q ; p). For suppose the contrary ; then (q : p)/-^q1 = q, whence, dividing by p and then
intersecting with qv we find

(q:p 2 )^q 1 = (q:p)r>q1 = q.

Repeating this device we obtain (q :pB)r>,q1 = q for all n, which, on taking n very large,
becomes qj = q. This is a contradiction. We have now established that qx£(q : p). Choose
a homogeneous element X e q1 so that X 4 q ; then qx will be the p-primary component of q + (X)
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and Z will belong to q : p. The proof that there are no p-primary ideals between q and <\t

now proceeds exactly as in the proof of Theorem 7.
4. Graduated series-rings. Let R be a graduated ring. We shall denote by R* the set

00

of all formal series 2X^'\ where Z(l>) e V(lM for each v. Let

p* = y(o) + y (D + y (2) + _

be two elements of R* ; then we can define r* + p* and r*p* by

r* +P* = [Z<°> + 7<°>] + [Z<1> + yd)] + [Z<2> +

and this will turn R* into a commutative ring. Clearly R is a subring of R* and it is easily
seen, by using Theorem 1, that the unit element of R is also the unit element of H*.

The ring R* will be called the graduated series-ring derived from R. As an example, let
us note that if R is the polynomial ring R[Xlt X2, ..., Xn] considered in § 1, then R* is the
power-series ring B[[Xt, Z2, ..., Xn]].

The theory of homogeneous ideals in a general graduated series-ring has some rather
disagreeable complications. We shall, however, assume throughout § 4 that the original graduated
ring R is H-Noetherian. This, as we shall see, causes the complications to disappear and our
results will still be sufficiently general for the more frequent applications. As before we
make the

Definition. An ideal a* of R* will be said to be " homogeneous " if it has a base composed
entirely of homogeneous elements.

According to this definition, an ideal a* in R* is homogeneous if and only if it is the
extension of a homogeneous ideal a of 21. But H is #-Noetherian and so a, and therefore a*,
can be generated by a finite number of homogeneous elements. I t follows that every ascend-
ing chain of homogeneous ideals in R* terminates and, also, that the maximal condition holds
for homogeneous ideals. In other words, our assumption that R is .ff-Noetherian implies
that R* is /7-Noetherian as well.

The ring R* is, of course, not a graduated ring in the sense of § 1, because an element of
H* need not be a finite sum of homogeneous elements. There is, however, no great danger
of confusion because all our results, namely Theorems 2-8 and Propositions 1-2, do in fact
hold in R*. The necessary demonstrations of this will be given very briefly at suitable places
in the subsequent discussion, but our main concern will be to examine the relations which
hold between the homogeneous ideals of R and those of R*. For convenience, we shall denote
by Theorem 2*, to give one example, the original Theorem 2 with such minor modifications
as are necessary to make it applicable to R*.

I t has been stated that the assumption that R is H-Noetherian is used to avoid certain
new complications. The nature of these complications is revealed in the proof of

Theorem 2*. Let a* be a homogeneous ideal and let r* e R*. Then r* belongs to a* if and
only if all the homogeneous constituents of r* are in a*.

Proof. If r* e a* then the argument used in Theorem 2 can be employed, with trivial
alterations, to show that the homogeneous constituents of r* are in a*. I t is the converse that

GO

presents a new problem. Assume then that r* = ZY("> and that YM e a* for each v. Since
o

R* is .ff-Noetherian, a* can be generated by a finite number of homogeneous elements, say
a* = (Z1

(mi), Z2
(m«), ..., Z,*"1*') where Z/™*' is homogeneous and of degree m,-. Put
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m=max (mv m2, ..., ms)
and suppose that v^m ; then, since F("} e a*, we have

00

where y/""™*'is homogeneous and of degree v-m,-. Thusifr i*= Z1 y ,.(•—"•»), then

y <«0 + y (m+i) + y (m+a) + . . . = r ^ K ) + r2*X2<™.> +. . . + rs*Zs<
m»>,

which belongs to a*. But, by hypothesis, F(o), 7(1), ..., y'"1-1) are in a* ; consequently
r* e a* as required.

I t will now be found that, with the aid of Theorem 2*, the arguments used to prove
Theorems 3, 4 and Propositions 1, 2 work equally well for Theorems 3*, 4* and Propositions
1*, 2*.

Theorem 9. There is a 1-1 correspondence between the homogeneous ideals a of K and the
homogeneous ideals a* of K* such that, if a and a* correspond, then a* =H*a and a =H^a* .

Proof. After what has already been said, it will be enough to show that if a is homo-
geneous and a* = K*a, then a = a*^H. Let a = (Z1<

mi>, X2<-m>\ ..., Xs<"•«>), whereX,-<m<> e m<m<>,

and assume that r*=2Y^ belongs to a*. Since a* =H*X1 <"•»> + H*X2<
m>> + ... +K*X3(

m«>,
o

and since 7<"> € a*, we have y(">= T^—"h>X1<
mi>+ 72<"-"•• >X2<

m»> + ... + r3<"-ra»>Xs<
m»>, where

y t̂v-mf) is homogeneous, and this shows that y(v> e a. In particular, if r* is in H then, since
r*isa^?iiiesumof the y(v), we must haver* e a. In other words, we have shown that a* rs'RQ a,
and from this the theorem follows.

Note that the argument yields rather more, for it establishes the

Corollary. Suppose that a and a* are corresponding homogeneous ideals; then
o

belongs to a* if and only if X'") e a for every v.
Theorem 10. Let a and b be homogeneous ideals in H and let a* and b* be the corresponding

homogeneous ideals in K*. Then toa + b, ab, ar\b and a : b correspond a* + b*, a*b*, a*r\b* and
a* : b*.

Proof. The relations

establish the truth of the first three assertions. Let c0 = a : b, c0* = K*c0 and c* = a* : b* ; then
from cob £ a we obtain cQ*b* Q a*, which shows that c0* Q c*. Let b = HZX + HX2 +. . . + HXS,

where the X, are homogeneous; then b* = H*X1 + K*X2 + ...+K*XS. If now r* =
o

00
belongs to c*, then ZT(">X,- e a*, whence, by Theorem 9, Corollary, y<v)X,- e a. This shows

o
that Y^bQa, so that YM e co£co* and therefore r* e c0*. We now have c*Qc0* and, as the
opposite inclusion has already been established, this implies that c* = c0* = H*c0. The proof
is now complete.

Theorem 11. Let a and a* be corresponding homogeneous ideals. Then if one is prime so
is the other or if one is primary so is the other.

Proof. We shall establish the second assertion. The first can be proved in almost the
same way but the details are slightly simpler.
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If a* is primary then so is a because a is the projection of a*. Suppose then that a is
primar}'. Assume that X, Y are homogeneous, that XY e a* and that X 4 a*. Then XY e a
and X 4 a and so, for a suitable integer s, we have Ys e aQa*. That a* is primary now follows
from Proposition 2*.

Corollary. Let q and q* be corresponding homogeneous primary ideals ; then the prime
•ideals to which they belong are corresponding ideals.

Proof. Let q be p-primary and let q* be p*-primary ; then p and p* are homogeneous
by Theorems 4 and 4*. Since q* is p*-primary, q*^H =q is (p*oH)-primary ; consequently

By combining Theorems 10 and 11 we obtain
Theorem 12. Let a = q1r\q2r\...r\qs, where q{ is a homogeneous primary ideal in K, and

let a* =K*a and q(* = K*q,-. Then a* = qx* r^q2* r\... r^qs*, and this is a primary decomposition.
Further, if one decomposition is irrediindant {normal), so is the other.

Theorem 12 shows, in passing, that Theorem 5* is true and this implies immediately the
validity of Theorem 6*. Theorems 7* and 8* can now be proved by using the arguments
that were employed in the discussion of Theorems 7 and 8. I t should be noted that, in the
formal statements of Theorems 5*-8*, it is not necessary to assume explicitly that H* is
/7-Noetherian. This is because the original assumptions, which apply to the whole of § 4>
ensure this anyway.

The next result is included because it is useful in the theory of the Hilbert function.
Theorem 13. Let q and, q* be corresponding homogeneous primary ideals ; then

length q = length q*.

Proof. Let q be p-primary, let q* be p*-primary and let q*=qo*Cq1*C.. .Cqs*=p* be
a composition series of p*-primary ideals in which all the qt* are homogeneous (see Theorem
7*). Put q,- = KrM]i* ; then qt- is p-primary and q = q o c q 1 C .. .Cq, = p. Now q{ and q,+1

are homogeneous and there is no homogeneous p-primary ideal between them (otherwise
there would be a p*-primary ideal between q,* and q*i+1); consequently, by Theorem 8,
q = q0 C q1 C ... C qs = p is a composition series. It follows that length q = length q*.

o. Further remarks. If we abandon the condition that K and H* shall be .ff-Noetherian
we can pose a number of basic questions about homogeneous ideals to which the foregoing
discussion provides no answer. The following theorem, however, answers one of these questions
and is sufficiently simple and interesting to seem worth including.

Theorem 14. Let H be a graduated ring (not necessarily H-Noetherian) and let a be a
homogeneous ideal which can be represented as a finite intersection of primary (but not necessarily
homogeneous) ideals. Then a can be expressed as a finite intersection of homogeneous primary
ideals.

Proof. Let a = q1r\q2r->.../~\q3, where the qt- are primary, but not necessarily homo-
geneous ideals. Denote by q,- the homogeneous ideal generated by all the homogeneous
elements in q,-; then a£q(^q,- and so a = q1r\q2r^...r\qs. The proof will therefore be com-
plete if we show that q̂  is primary. Assume that X, Y are homogeneous, that XY e q{ and
that X 4~qt. Then XY e qt and X 4 q(; consequently Ys e qt for a suitable integer s. But,
since )'s e a,, it follows that Y' e q( and now the primary character of q4 is seen by applying
Proposition 2.
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