Proceedings of the Edinburgh Mathematical Society (2002) 45, 43–48 ©

SOME BASIC RESULTS FOR PROPER FREE G-MANIFOLDS, WHERE G IS A DISCRETE GROUP

MARJA KANKAANRINTA

Department of Mathematics, PO Box 4 (Yliopistonkatu 5), FIN-00014, University of Helsinki, Finland (mkankaan@cc.helsinki.fi)

(Received 15 May 2000)

Abstract Let G be a countable discrete group and let M be a proper free C^r G-manifold and N a C^r G-manifold, where $1 \leq r \leq \omega$. We prove that if G acts properly and freely also on N and if $\dim(N) \ge 2\dim(M)$, then equivariant immersions form an open dense subset in the space $C^r_G(M, N)$ of all equivariant C^r maps from M to N. The space $C^r_G(M, N)$ is equipped with a topology, which coincides with the Whitney C^r topology if G is finite and is suited to studying equivariant maps. We also prove an equivariant version of Thom's transversality theorem and show that $C^{\omega}_G(M, N)$ is dense in $C^r_G(M, N)$, for $1 \leq r \leq \infty$.

Keywords: immersion; transverse; real analytic; dense; equivariant

AMS 2000 Mathematics subject classification: Primary 57S20

1. Introduction

Let G be a Lie group and let M and N be proper C^r G-manifolds, $1 \leq r \leq \omega$ (as usual, C^{ω} denotes real analytic). We denote the space of all C^r G-maps from M to N by $C^r_G(M, N)$ and equip it with the strong-weak C^r topology defined in [5], which is well suited to studying group actions. For compact G, this topology coincides with the Whitney C^r topology.

Let $\operatorname{Imm}_{G}^{r}(M, N)$ and $\operatorname{Prop}_{G}^{r}(M, N)$ denote the sets of C^{r} G-equivariant immersions and C^{r} G-equivariant proper maps from M to N, respectively. We prove the following equivariant version of Whitney's immersion theorem.

Theorem 1.1. Let G be a countable discrete group and let M and N be proper free C^r G-manifolds, where $1 \leq r \leq \omega$ and $\dim(N) \geq 2\dim(M)$. Then

- (1) $\operatorname{Imm}_{G}^{r}(M, N)$ is open and dense in $C_{G}^{r}(M, N)$, and
- (2) $\operatorname{Imm}_{G}^{r}(M, N) \cap \operatorname{Prop}_{G}^{r}(M, N)$ is open and dense in $\operatorname{Prop}_{G}^{r}(M, N)$.

We also prove an equivariant version of Thom's transversality theorem.

Theorem 1.2. Let G be a countable discrete group and let M be a proper free C^r G-manifold and N a C^r G-manifold, where $1 \leq r \leq \omega$. Let N' be a closed C^r G-submanifold

M. Kankaanrinta

of N, and L a closed G-invariant subset of M. Then the set of C^r G-maps from M to N which are transverse to N' along L is open and dense in $C^r_G(M, N)$.

Theorem 1.2 does not always hold if the action of G on M is not free (see $[1, \S 2]$ or $[2, \S 2]$). In both cases, easy counterexamples are constructed, where a finite group acts non-freely.

Finally, we obtain the following density result for real analytic G-equivariant maps.

Theorem 1.3. Let G be a countable discrete group and let M be a proper free C^{ω} G-manifold and N a C^{ω} G-manifold. Then $C^{\omega}_{G}(M, N)$ is dense in $C^{r}_{G}(M, N)$, where $1 \leq r \leq \infty$.

Since the set of all G-equivariant diffeomorphisms is open in $C_G^r(M, N)$ [5, Theorem 7.5], we obtain the following corollary.

Corollary 1.4. Let G be a countable discrete group and let M and N be proper free C^{ω} G-manifolds. If M and N are C^{r} G-diffeomorphic, where $1 \leq r \leq \infty$, then they are C^{ω} G-diffeomorphic.

In [6, Theorem II] it was proved that $C_G^{\omega}(M, N)$ is dense in $C_G^r(M, N)$, where $1 \leq r \leq \infty$, if G is a closed subgroup of a virtually connected Lie group and M and N are proper C^{ω} G-manifolds. Using the same simple idea as in the proofs of Theorems 1.2 and 1.3, one can also drop the assumption there that the action on N is proper.

2. Proofs of the theorems

Throughout the paper, let G be a countable discrete group. We call M a proper free C^r G-manifold, where $1 \leq r \leq \omega$, if the action $G \times M \to M$ is properly discontinuous, free and C^r differentiable. Then the map $G \times M \to M \times M$, $(g, x) \mapsto (x, gx)$, is a proper map, i.e. the inverse image of every compact set is compact for it. By [9, Corollary I 3.24], the orbit map $\pi_M \colon M \to M/G$ is a covering, i.e. a locally trivial map with fibre G. Unless otherwise stated, M and N will be proper free C^r G-manifolds, where $1 \leq r \leq \omega$. All manifolds are assumed to be finite dimensional, second countable and without boundary.

As mentioned in §1, the topology in the set $C_G^r(M, N)$, $1 \leq r \leq \omega$, of all C^r *G*-maps from *M* to *N* is the strong-weak C^r topology defined in [5, §§ 1, 4]. This topology depends on the action of *G* and coincides with the Whitney C^r topology (see, for example, [4, Chapter 2]) if *G* is finite. In particular, whenever we consider spaces of maps between manifolds without a group action, the topology will be the Whitney C^r topology. In the strong-weak C^r topology the basic neighbourhoods can be defined in the same way as in the Whitney C^r topology, but by using only families of charts in *M* whose images in the orbit space M/G form a locally finite family. For the notation of basic neighbourhoods etc., see [5].

Lemma 2.1. Let N' be a closed C^r G-submanifold of N and let $x \in M$. Let $f: M \to N$ be a G-equivariant map and $\tilde{f}: M/G \to N/G$ the map induced by f. Then

(1) f is C^k differentiable, if and only if \tilde{f} is C^k differentiable, $1 \leq k \leq r$;

44

- (2) f is an immersion, if and only if \tilde{f} is an immersion;
- (3) f is a submersion, if and only if \tilde{f} is a submersion;
- (4) f is proper, if and only if \tilde{f} is proper;
- (5) f is transverse to N' at x, if and only if \tilde{f} is transverse to N'/G at $\pi_M(x)$;
- (6) f is a (closed) C^k embedding, if and only if \tilde{f} is a (closed) C^k embedding; and
- (7) f is a C^k diffeomorphism, if and only if \tilde{f} is a C^k diffeomorphism.

Proof. The first three claims follow at once from the fact that the orbit maps are coverings. The fourth claim follows from [5, Lemmas 3.7 and 3.9]. The last three claims are easy to verify. \Box

Let $f_0, f_1: M \to N$ be C^r maps. By a C^r homotopy between f_0 and f_1 we mean a homotopy $M \times I \to N$ between f_0 and f_1 which can be extended to be C^r on $M \times J$, where J is some open interval containing the unit interval I.

The following version of the covering homotopy theorem of Palais (see [7, Theorem 2.4.1]) holds for properly discontinuous free C^r actions. Although first proved for actions of compact groups, the covering homotopy theorem holds for proper actions as well, as pointed out by Palais in [8, § 4.5]. The lift is of class C^k by part (1) of Lemma 2.1.

Theorem 2.2. Let G be a countable discrete group and let M and N be proper free C^r G-manifolds, $1 \leq r \leq \omega$. Let $f: M \to N$ be a C^k G-map, $0 \leq k \leq r$. If $\tilde{H}: M/G \times I \to N/G$ is any C^k homotopy of the induced map \tilde{f} , then there exists a C^k G-homotopy $H: M \times I \to N$ of f with induced map \tilde{H} .

Lemma 2.3. Let M and N be C^r manifolds, $1 \leq r \leq \omega$. Let $f: M \to N$ be a C^r map and let \mathcal{N} be a neighbourhood of f in $C^r(M, N)$. Then f has a neighbourhood \mathcal{M} in $C^r(M, N)$ such that every $h \in \mathcal{M}$ is homotopic to f by some C^r homotopy $H: M \times I \to N$ and $H_t \in \mathcal{N}$ for every $t \in I$.

Proof. We can assume that \mathcal{N} is a basic neighbourhood, i.e. of form

$$\bigcap_{i \in \Lambda} \mathcal{N}^r(f; K_i, (U_i, \varphi_i), (V_i, \psi_i), \varepsilon_i)$$

(see [5]). Let J be some bounded open interval containing I and let $H_f: M \times J \to N$ be the constant extension of the constant homotopy induced by f. Then

$$\tilde{\mathcal{N}} = \bigcap_{i \in \Lambda} \mathcal{N}^r(H_f; K_i \times I, (U_i \times J, \varphi_i \times \mathrm{id}), (V_i, \psi_i), \varepsilon_i)$$

is a neighbourhood of H_f . By the embedding theorems of Whitney $(1 \leq r \leq \infty)$ and Grauert $(r = \omega)$, there exists a closed C^r embedding $e: N \to \mathbb{R}^p$, for some p. Let $r: W \to e(N)$ be a C^r tubular neighbourhood of e(N). Let $\mathcal{W} \subset C^r(M, N)$ be a neighbourhood of f such that if $h \in \mathcal{W}$, then

$$te \circ f(x) + (1-t)e \circ h(x) \in W,$$

M. Kankaanrinta

for every $t \in J$ and for every $x \in M$. Then the mapping

$$\begin{split} A\colon \ \mathcal{W} \to C^r(M\times J,N),\\ A(h)(x,t) &= e^{-1}\circ r \circ (te\circ f(x) + (1-t)e\circ h(x)), \end{split}$$

is continuous in the Whitney C^r topology and $A(f) = H_f$. Thus f has a neighbourhood \mathcal{M} such that $A(\mathcal{M}) \subset \tilde{\mathcal{N}}$. Therefore $A(h)_t \in \mathcal{N}$, for every $h \in \mathcal{M}$ and for every $t \in I$. \Box

The following theorem will be crucial in proving Theorems 1.1, 1.2 and 1.3.

Theorem 2.4. The map

$$\tau \colon C^r_G(M,N) \to C^r(M/G,N/G),$$

taking f to the induced map \tilde{f} , is open and continuous.

Proof. We begin by proving the continuity. Let $f \in C^r_G(M, N)$ and let

$$\tilde{\mathcal{N}} = \bigcap_{i \in \Lambda} \mathcal{N}^r(\tilde{f}; \tilde{K}_i, (\tilde{U}_i, \tilde{\varphi}_i), (\tilde{V}_i, \tilde{\psi}_i), \varepsilon_i)$$

be a basic neighbourhood of \tilde{f} such that \tilde{K}_i is connected and the diagrams

$$\begin{array}{cccc} \tilde{U}_i \times G & \xrightarrow{\approx} & \pi_M^{-1}(\tilde{U}_i) & & \tilde{V}_i \times G & \xrightarrow{\approx} & \pi_N^{-1}(\tilde{V}_i) \\ & & & & & \\ \hline & & & & & \\ \mu_i & & & & \\ \tilde{U}_i & & & & & \\ & & & & & \\ \tilde{V}_i & & & & \\ \end{array}$$

are commutative for every *i*. The restrictions $\pi_M : U_i \to \tilde{U}_i$ and $\pi_N : V_i \to \tilde{V}_i$ are diffeomorphisms, for some charts U_i of M and V_i of N, respectively, where $GU_i = \pi_M^{-1}(\tilde{U}_i)$, $GV_i = \pi_N^{-1}(\tilde{V}_i)$ and $f(\pi_M^{-1}(\tilde{K}_i) \cap U_i) \subset V_i$. Then

$$\mathcal{N} = \bigcap_{i \in \Lambda} \mathcal{N}^r(f; \pi_M^{-1}(\tilde{K}_i) \cap U_i, (U_i, \tilde{\varphi}_i \circ \pi_M |), (V_i, \tilde{\psi}_i \circ \pi_N |), \varepsilon_i)$$

is a basic neighbourhood of f in $C^r_G(M, N)$ and $\tau(\mathcal{N}) \subset \tilde{\mathcal{N}}$. Consequently, τ is continuous at f. Since f was arbitrary, it follows that τ is continuous.

It remains to prove that τ is open. It suffices to show that τ maps every basic neighbourhood onto an open set in $C^r(M/G, N/G)$. Let $f, \tilde{f}, \mathcal{N}$ and $\tilde{\mathcal{N}}$ be as above. By Lemma 2.3, \hat{f} has a neighbourhood $\hat{\mathcal{M}}$ such that every $\hat{h} \in \hat{\mathcal{M}}$ is homotopic to \hat{f} by some C^r homotopy $\tilde{H}: M/G \times I \to N/G$ and $\tilde{H}_t \in \tilde{\mathcal{N}}$ for every $t \in I$. Since the sets of form $\mathcal{N} \cap \tau^{-1}(\tilde{\mathcal{M}})$ form a neighbourhood basis at f, it is enough to show that τ maps $\mathcal{N} \cap \tau^{-1}(\tilde{\mathcal{M}})$ onto an open set in $C^r(M/G, N/G)$. We will show that $\tau(\mathcal{N} \cap \tau^{-1}(\tilde{\mathcal{M}})) = \tilde{\mathcal{M}}$.

Assume $\tilde{h} \in \tilde{\mathcal{M}}$ and let \tilde{H} be a C^r homotopy between \tilde{f} and \tilde{h} with $\tilde{H}_t \in \tilde{\mathcal{N}}$ for every $t \in I$. By Theorem 2.2, \tilde{H} has a C^r G-equivariant lift $H: M \times I \to N$ such that $H_0 = f$. It suffices to show that $H_1 \in \mathcal{N}$. Let $x \in \pi_M^{-1}(\tilde{K}_i) \cap U_i$, for some $i \in \Lambda$. Then $H_t(x) \in GV_i$, for every $t \in I$. Since $f(x) \in V_i$ and $V_i \cap gV_i = \emptyset$ unless g equals the identity element,

46

it follows that $H({x} \times I) \subset V_i$. In particular, $H_1(x) \in V_i$. Since this holds for every $x \in \pi_M^{-1}(\tilde{K}_i) \cap U_i$ and for every $i \in \Lambda$ and also the required inequalities for the norms of the differences of the partial derivatives of f and H_1 clearly hold, it follows that $H_1 \in \mathcal{N}$.

Proof of Theorem 1.1. By [4, Theorems 2.1.1 and 2.1.5], $\operatorname{Imm}^r(M/G, N/G)$ and $\operatorname{Prop}^r(M/G, N/G)$ are open in $C^r(M/G, N/G)$. Thus the openness claims follow by using parts (2) and (4) of Lemma 2.1 and the fact that τ is continuous. By [4, Theorem 2.2.12], $\operatorname{Imm}^r(M/G, N/G)$ is dense in $C^r(M/G, N/G)$. The density claims follow by using parts (2) and (4) of Lemma 2.1 and the fact that τ is open.

Notice that for the openness results one in fact does not need to assume that G is a discrete group acting freely and properly discontinuously. The strong-weak topology for $C^r_G(M, N)$ is defined when G is any Lie group and, by [5, Propositions 6.1 and 6.4], the sets $\operatorname{Imm}^r_G(M, N)$ and $\operatorname{Prop}^r_G(M, N)$ are open in $C^r_G(M, N)$, assuming that G acts properly on M and N.

Proof of Theorem 1.2. If the action of G on N is free and properly discontinuous, then the claim follows from Thom's transversality theorem (see, for example, [4, Theorem 3.2.1]), part (5) of Lemma 2.1 and Theorem 2.4. The proof is similar to that of Theorem 1.1.

Assume then that the C^r action of G on N is arbitrary. This case can be reduced to the case of a proper free action. Namely, the diagonal action of G on $M \times N$ is proper and free and of class C^r . Moreover, a C^r G-map $f: M \to N$ is transverse to N' along L, if and only if for every $h \in C^r_G(M, M)$, $(h, f): M \to M \times N$ is transverse to $M \times N'$ along L. Both the density and openness results follow easily by using Proposition 4.6 in [5], according to which there is a canonical homeomorphism

$$C_G^r(M, M \times N) \approx C_G^r(M, M) \times C_G^r(M, N).$$

Proof of Theorem 1.3. If G acts freely and properly on N, then the claim follows as the proofs of Theorems 1.1 and 1.2, by using Whitney's approximation theorem, which implies that $C^{\omega}(M/G, N/G)$ is dense in $C^{r}(M/G, N/G)$, and part (1) of Lemma 2.1. The proof of the case of an arbitrary C^{ω} action of G on N can be reduced to the case of a proper free action, as in the proof of Theorem 1.2.

Remark 2.5. In [4], Whitney's immersion theorem and Thom's transversality theorem are only stated for the cases $1 \leq r \leq \infty$. However, the C^{ω} case follows easily from Whitney's approximation theorem, according to which C^{ω} maps form a dense set in $C^{\infty}(M, N)$ when M and N are C^{ω} manifolds.

Remark 2.6. Studying ordinary transversality in the equivariant case only makes sense because the action of G on M is free and properly discontinuous. For smooth actions of a compact Lie group there exist the notions of general position (see [1]) and

M. Kankaanrinta

G-transversality (see [2]). These concepts are equivalent by [3] and agree with ordinary transversality if *G* is a finite group acting freely. Notice that if one tries to generalize the results in [1] and [2] to the case of proper actions of non-compact Lie groups, one should not work with the Whitney C^r topology in $C^r_G(M, N)$, which is discrete [5, Proposition 4.7], but with the strong-weak C^r topology.

Acknowledgements. The author was supported by the Jenny and Antti Wihuri foundation.

References

- 1. E. BIERSTONE, General position of equivariant maps, *Trans. Am. Math. Soc.* **234** (1977), 447–466.
- 2. M. FIELD, Transversality in G-manifolds, Trans. Am. Math. Soc. 231 (1977), 429–450.
- M. FIELD, Stratifications of equivariant varieties, Bull. Aust. Math. Soc. 16 (1977), 279– 295.
- 4. M. HIRSCH, Differential topology (Springer, 1976).
- 5. S. ILLMAN AND M. KANKAANRINTA, A new topology for the set $C^{\infty,G}(M,N)$ of *G*-equivariant smooth maps, *Math. Annln* **316** (2000), 139–168.
- S. ILLMAN AND M. KANKAANRINTA, Some basic results for real analytic proper Gmanifolds, Math. Annln 316 (2000), 169–183.
- 7. R. S. PALAIS, *The classification of G-spaces*, Memoirs of the American Mathematical Society, vol. 36 (1960).
- R. S. PALAIS, On the existence of slices for actions of non-compact Lie groups, Ann. Math. (2) 73 (1961), 295–323.
- 9. T. TOM DIECK, Transformation groups (Walter de Gruyter, Berlin, 1987).