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1. The purpose of this note is to point out some connexions between 
generalized Hadamard matrices (4, 5) and various tactical configurations such 
as group divisible designs (3), affine resolvable balanced incomplete block 
designs (1), and orthogonal arrays of strength two (2). Some constructions for 
these arrays are also indicated. 

2. Preliminary results. A balanced incomplete block design (BIBD) with 
parameters v, b, r, k> X is an arrangement of v symbols called treatments into 
b subsets called blocks of k < v distinct treatments such that each treatment 
occurs in r blocks and any pair of treatments occurs in X blocks. A symmetrical 
BIBD (SBIBD) is a BIBD with v = b and hence r = k. A BIBD is called 
resolvable if the blocks can be separated into r sets each forming a complete 
replication of all the treatments. A resolvable BIBD is called affine resolvable 
BIBD (ARBIBD) if any two blocks of different sets have the same number of 
treatments in common. As shown by Bose (1), the parameters of such a design 
are given in terms of two integers s > 2, t > 0 by 

v = sk = s2[(s - l)t + 1], b = sr = s(sH + 5 + 1), X = st + 1. 

We shall denote this design by A (s, t). 
A group divisible design (GDD) is an arrangement of v = mn treatments, 

partitioned into m sets of n each, in blocks of k < v treatments such that each 
treatment is replicated in r blocks and any two treatments of the same set 
(different sets) occur together in Xi blocks (X2 blocks). 

Let G be a module of order mn and N a subgroup of G of order n. Let W 
be the set of elements of G not in N. A difference set of G relative to N is a set 
R = {̂ i, r2, . . . , rk) of distinct elements of G such that for i 9^ j , the dif
ferences rt — r3- contain only the elements of W, each exactly 5 times. It is 
then obvious that the b = mn blocks obtained by adding each of the elements 
of G to R generate a symmetrical GDD with 

v = b — mn, r = k, Xi = 0, X2 = 5, 

with m sets of n treatments each. We shall call R a difference set for this GDD. 
An orthogonal array [Xs2, t, s, 2] of strength 2, t constraints, index X in 5 

symbols is a matrix of order (t, \s2) in 5 distinct symbols with the property 
that any two of its rows contain all the s2 ordered pairs exactly X times. Bose 
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and Bush (2) give an upper bound for t in terms of 5 and X from which it follows 
that for [2sn, t, s, 2] 

(1) / < 1 + 2(s + s2 + ... + sn~1). 

We shall denote the orthogonal array [s2{ (s — l)t + 1}, sH + s + 1, s, 2] by 
the symbol OA(s,t). 

A square matrix H of order h with elements the pth roots of unity is called 
a generalized Hadamard matrix (H(p, h)) if HHcT = hlh. It is easily seen 
that when p is a prime, H(p, h) can exist only if h = pt where / is a positive 
integer. Such matrices have been considered by Butson (4, 5). In (4) he proves 
the following theorem. 

THEOREM A. H{p, 2pn) exists where p is any prime and n is any positive 
integer. 

3. Hadamard matrices and certain configurations. Denote by G(s, i) 
the GDD with 

v = b = (s - l)(s2t + s+l), r = k = s[(s - l)t + 1], 

Xi = 0 , X2 = (s - l)t + 1 

with m = sH + s + 1 sets of n = s — 1 treatments each. We then have the 
following theorem. 

THEOREM 1. (i) The existence of any one of A(s,t), G(s,t), and OA(s,t) 
implies the existence of the other two. If further there exists a difference set R 
which generates G(s, t), then the SBIBD with 

v = s{sH + 5 + 1), r = sH + s + 1, X = st + 1 

exists. 
(ii) If p is a prime, the existence of OA(p, t) implies the existence of 

H(p,p*[(p-l)t + l]). 

Proof. The equivalence of A (s, t) and OA (s, t) has been shown by Plackett 
and Burman (7). We now show the equivalence of A (s, i) and G (s, t). Suppose 
A (s, t) exists. Then omitting the blocks containing a particular treatment we 
get an arrangement with v = b = (s — l)(s2t + 5 + 1). The omitted blocks 
contain all the (s — l)(s2/ + 5 + 1) treatments s£ + 1 times. Hence, for the 
arrangement so obtained r = k = s[(s — l)t + 1]. Further, the blocks of the 
arrangement can be divided into s2t + 5 + 1 sets of 5 — 1 each such that any 
two blocks of the same set are disjoint whereas any two blocks of different sets 
have exactly (s — l)t + 1 treatments in common. It is now obvious that the 
dual (9) of this arrangement is exactly G(s,t). Conversely, given G(s,t), 
consider its dual which has the same values of v, b, r, k as G (s, t) and in which 
the blocks are divided into sH + s + 1 sets Si of 5 — 1 each such that any two 
blocks of the same set are disjoint whereas any two blocks from different sets 
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have exactly (s — l)t + 1 treatments in common. To each St add an additional 
block of size k containing a new treatment, say <», and k — 1 other treatments 
so that the new set S/ of 5 blocks forms a complete replication of s2[(s — l)t 
+ 1] treatments. Utilizing the fact that any two blocks coming from different 
St s have exactly (s — l)t + 1 treatments in common, it is easy to see that 
the same is true for S/ 's . Further, the design given by S/'s has b = v + r — 1. 
Hence, from the results of Plackett and Burman (7) it follows that the blocks 
of 5 / , i = 1, 2, . . . , sH + s + 1, give an ARBIBD. This completes the proof 
of the first part of (i). 

To prove the latter part of (i) we note that we can modify the proof given 
by Butson (5) to show that we get a difference set for the factor group G/N 
which generates the SBIBD with 

v = sH + s + 1, r = s[(s - 1)/ + 1], X = (s - l)[(s - 1)/ + 1]. 

The complementary design is then a SBIBD with 

v = sH + 5 + 1, r = st + 1, X = /. 

The existence of this design together with that of A (5, t) already proved above 
implies the existence of SBIBD of the theorem as shown by Shrikhande (8). 

To prove (ii) consider the array OA(p, t) where the symbols can be taken 
as elements of GF{p). Replacing x 6 GF(p) by px where p is a primitive root 
of xp = 1, we get a matrix A1. From A1 obtain A t by replacing p by p \ i = 1, 
2, . . . , p — 1; and consider the matrix 

"A, 
A2 

A = 

/ ' 

where J' is a row with all elements 1. We show that A is the required Hadamard 
matrix of the theorem. Obviously any two rows of any Ai are orthogonal. 
Also J' is orthogonal to all the other rows of A, since each of these rows con
tains all the £th roots of unity the same number of times. Now consider two 
rows of A coming one from A t and the other from Ah i 9^ j . If these rows 
correspond to the same row of A\y then it is obvious that the ordered pairs 

V7 ' x e GF(p), 

occur in these rows the same number of times and hence these rows are ortho
gonal. If, however, the rows of At and Aj correspond to different rows of Aiy 

then under each set of pxi in the row from A t the row from Aj contains all the 
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distinct powers of p exactly (p — l)t + 1 times and hence again the rows are 
orthogonal. 

4. Construction of orthogonal arrays. Let M denote a module of order s 
and let D be a matrix of t rows and JJLS columns with elements from M. Then D 
is called a difference set D(fxs, /, s, 2) if the ordered differences arising from 
any two rows of D contain all the elements of M exactly ju times. As shown in 
(2) such a difference set leads to (us2, t, s, 2) by replacing each element of D 
by the corresponding row of the addition table of M. 

Let p denote a fixed prime and H = (h^) denote an H(p, pi). Each element 
of hij is of the form px where p is a primitive pth root of unity and x G GF(p). 
Define 0(px) = x and put E = 6(H) = (0(&*,)). It then follows that £ is a 
difference set D(pt, pt, p,2) in the residues (mod p). Utilizing Theorem A, 
we have 

LEMMA 1. If p is a prime, then for any positive integer n, D(jjLp, 2pn, p, 2) 
exists with p. = 2pn~l. 

THEOREM 2. [2pn+\ 1 + 2(p + p2 + . . . + pn), p, 2] exists for any prime p 
and any positive integer n. 

Proof. For n = 1, D(2p, 2py p, 2) of the above lemma gives [2p2, 2p, p, 2], 
which is resolvable, i.e. the 2p2 columns can be divided into 2p sets of p each 
such that in any row of the array each set contains all the p symbols exactly 
once. We can add one more row by putting the symbol x in any two sets, 
x Ç GF(p). Obviously then we have [2p2, 2p + 1, pf 2]. Now suppose that 
A (n) = [2£n+1, 1 +2(p + ... +pa),p,2] exists for any given n. From the 
above lemma D(2pn+\ 2pn+1, p, 2) exists and gives rise to B(n + 1) = [2pn+2

y 

2pn+1, p, 2], which is resolvable with 2pn+1 sets of p columns each. Under the 
columns of the ith set of B (n + 1), write down the ith column of A (n) repeated 
p times, i = 1, 2, . . . , 2pn+1. It is then obvious that we get A(n + 1). The 
proof is thus complete. 

For given p and n we note from (1) that the orthogonal array of the above 
theorem has the maximum possible number of rows. Kempthorne and Addel-
man (6) have given a method not depending upon difference sets for the con
struction of the above array with p replaced by s, which is a prime power. 

We now obtain two composition theorems for orthogonal arrays. 
Let Dt = D(p.i s, tu s,2),i = 1, 2, be two difference sets with elements in M. 

Define the Kronecker sum Di + D2 to be the matrix of order (t\ t2l MI M2 S2) 
obtained by replacing each element d\(ij) of Z>i by the matrix obtained from 
D2 by adding di(ij) to all the elements of D2. We then have 

THEOREM 3. If D\ = D(pt s, tu s, 2), i = 1, 2, are two difference sets with 
elements in M, then D = Di + D2 is also a difference set D(ns, t\ t2l s, 2) where 
M = Mi M2 s. 
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Proof. Consider any two rows of D which arise from the elements in a given 
row of D\. Noting that D2 is a difference set it is obvious that all the elements 
of M will occur JJLS times in the differences arising from these rows. Now con
sider any two rows of D which arise from the same row of D2 but different rows 
of Di. The result again follows from the fact that Di is a difference set. A similar 
result follows for two rows of D which arise from different rows of both D\ 
and D2, from the fact that both D\ and D2 are difference sets. 

For any [jus2, t, s, 2] we can choose the 5 symbols as residues (mod s) and 
define the Kronecker sum of two arrays in the same manner as indicated above. 
In a similar manner it is then easy to verify 

THEOREM 4. The existence of [nt s
2, tu s, 2], i = 1,2 implies the existence of 

[m M2 s\ h t2l s, 2]. 
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