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Abstract

Consider a general class of constrained optimal control problems in canonical form. Using
the classical control parameterization technique, the time (planning) horizon is partitioned
into several subintervals. The control functions are approximated by piecewise constant or
piecewise linear functions with pre-fixed switching times. However, if the optimal control
functions to be obtained are piecewise continuous, the accuracy of this approximation
process greatly depends on how fine the partition is. On the other hand, the performance
of any optimization algorithm used is limited by the number of decision variables of the
problem. Thus, the time horizon cannot be partitioned into arbitrarily many subintervals to
reach the desired accuracy. To overcome this difficulty, the switching points should also be
taken as decision variables. This is the main motivation of the paper. A novel transform,
to be referred to as the control parameterization enhancing transform, is introduced to
convert approximate optimal control problems with variable switching times into equivalent
standard optimal control problems involving piecewise constant or piecewise linear control
functions with pre-fixed switching times. The transformed problems are essentially optimal
parameter selection problems and hence are solvable by various existing algorithms. For
illustration, two non-trivial numerical examples are solved using the proposed method.

1. Introduction

Optimal control is a mathematically challenging subject. Moreover, it has many
practical applications in a wide range of disciplines such as engineering, economics
and the environmental sciences, to name just a few. Numerous computational methods
for various constrained optimal control problems are now available in the literature
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(see [2,4-6,11-16,20,21] and the references cited therein).
The formulation of a typical optimal control problem may involve state variables,

control variables, system parameters, an objective functional (or multiple objective
functionals), state differential equations, initial and terminal state conditions, upper
and lower bounds on all variables and constraints of various types. See [21 ] for details.

A detailed exposition of the classical control parameterization technique as a basis
for solving various constrained optimal control problems numerically in a unified
fashion may also be found in [21]. The classical control parameterization method is
a flexible and efficient approach for a large class of optimal control problems. The
central idea of the method relies on a simple and elegant approximation mechanism.
The time (planning) horizon is partitioned into several subintervals and the controls
are approximated by piecewise constant (or piecewise linear) functions consistent
with this partition. The switching times defined by these subintervals are referred to
as knots. The heights of the piecewise constant (or piecewise linear) functions are
now decision variables to be optimized. Control parameterization can thus be used
to approximate an optimal control problem by a finite-dimensional optimal parameter
selection problem.

Since an optimal parameter selection problem can be viewed as a mathematical
programming problem, the approximate problem can be readily solved by various
existing optimization techniques such as those reported in [18,19,23] and the relevant
references cited therein.

To improve the accuracy of the approximate solution thus obtained, we can refine
the partition of the time horizon. This refinement is usually performed iteratively, and
is terminated when a satisfactory solution is obtained. An optimal control software
MISER3 [7] has been developed implementing these techniques. Their theoretical
justifications can be found in [21 ]. Also see [3] and [9] for further results on the control
parameterization technique. For an illustration of the numerical results obtained by the
control parameterization technique, see [21] and the references cited therein, where
many practical problems are solved.

In spite of the flexibility and the efficiency of the classical control parameterization
approach, there are several numerical difficulties associated with it which are yet to
be addressed.

Consider the case in which the optimal control to be obtained belongs to the class
of piecewise continuous functions. The possibly finite number of discontinuity points
inherited from this class of functions are referred to as switching times.

Clearly the number of, as well as the locations of, these switching times are not
known in advance. The accuracy of the classical control parameterization method
thus depends greatly on the choice of knot distribution. The ideal knot distribution
would be to have a knot placed exactly at the location of each switching time. If
one has no insight of how the switching times are distributed, a set of dense and
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evenly distributed knots is usually chosen in the hope that there would be a knot
placed near each switching time. Hence the number of parameters in the approximate
optimal parameter selection problem is usually very large. However, as the number of
parameters increases, the optimization process quickly becomes much more expensive
in terms of the computational time required.

Intuitively, the control parameterization method would be more effective if the
switching times could be treated as decision variables to be optimized just like the
control and system parameters. This would largely reduce the overall number of pa-
rameters used. However, the gradients of the cost functional and constraint functionals
with respect to these switching times are known to be discontinuous (see Chapter 5
of [21] for details). Another difficulty is that the differential equations governing the
dynamics of the problem would now be only piecewise continuous with the points of
discontinuity (that is, the switching times) varying from one iteration to the next with
the optimization process. Furthermore, the number of the decision variables would
change when two or more switching times coalesce. Thus the task of integrating the
differential equations accurately can be very involved. For these reasons, the gradient
formulae presented in [5] and Chapter 5 of [21] were never implemented for a practical
problem.

In this paper a novel transform, to be referred to as the control parameterization
enhancing transform (CPET), is introduced to enhance the classical control parameter-
ization technique. This transform involves the introduction of an additional piecewise
constant control function. Using the CPET, the switching times are mapped on to
an equally spaced set of knots in a new time scale. Hence, the transformed optimal
control problem can be solved readily and accurately by the usual control parameter-
ization technique. From our extensive numerical studies, CPET is far superior to the
classical control parameterization technique. This is particularly true for time optimal
control problems, see [10]. The remainder of the paper is organized as follows.

In Sections 2 and 3, a generic optimal control problem is defined along with the
control parameterization technique. Section 4 introduces the CPET for handling the
switching times. Section 5 contains a short convergence analysis in relation to previous
results ([3,21]) for the classical control parameterization method. Two examples are
discussed in Sections 6 and 7.

This paper is dedicated to B. D. Craven.

2. The optimal control problem

Consider a process described by the following set of differential equations defined
on (0, T\.

x(t)=f(x(t),u(t),z), (2.1)
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with the (possibly variable) initial conditions:

x(O)=x°(z). (2.2)

where x(r) = [x,(r), . . . ,*n(0]T € R", u(f) = [II ,(O, . . . , «r(01T e 0T and z =
[zi, • • • , zm]T € D£m are, respectively, the state, control and system parameter vectors.
The vectors/ = [ / , , . . . , fn]

T e K" andx° = [x° , . . . ,x°Y e K" are continuously
differentiable with respect to their respective arguments.

Two types of constraints on the controls and system parameters are introduced as
follows:

0 , k = l,...,Nlt (2.3)

M z ) > 0 , k = Nl + l,...,N2 (2.4)

and

gk(t) = £>*,«,(0 + A = 0, Vr € [0, T), k = 1,... , N3, (2.5)

r

gk{t) = JTakiu,«) + fo > 0, Vr e [0, T], k = N3 + 1 A^4. ( 2 . 6 )

Equations (2.3) and (2.4) involve only the system parameters, while all-time linear
constraints involving only controls are included in (2.5) and (2.6). All of these
constraints are independent of the state variables, and hence their gradients can be
calculated directly.

All controls and system parameters are subject to upper and lower bounds as
follows:

«f < «/(') < «?, V* € [0, T], i = 1,..:. , r, (2.7)

z^Zi^z]1 1 = 1 m. (2.8)

A measurable function u : [0, T] —• Rr is called an admissible control if the
constraints (2.5), (2.6) and (2.7) are satisfied. Let ̂  be the class of all such admissible
controls. Similarly, z 6 DSm is called an admissible system parameter vector if the
constraints (2.3), (2.4) and (2.8) are satisfied. 2f denotes the set of all such admissible
system parameter vectors. A pair (u, z) € % x 2f is referred to as an admissible pair.
For an admissible pair (u, z) e <% x 2f, letx(-) denote the corresponding solution of
system (2.1).

Constraints involving the state variables or nonlinear constraints in control functions
can be described in the standard canonical form

G t ( « , z ) = 0 , k = l,...,N5, (2.9)

G 4 ( « . z ) > 0 , k = N5 + l,... ,N6, (2.10)
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where, for each k = \, ... , N6,

-nf
/
Jo

k(x(t),u(t),z)dt. (2.11)

Here 4>*, k — 1 , . . . , N6, and Jzf*, k = 1 , . . . , iV6, are given real valued functions
which are continuously differentiable with respect to each of their arguments, and
Tk € (0, T] is referred to as the characteristic time for the /t-th constraint with To = T
by convention.

An admissible pair (u, z) € W x 3° is called a feasible pair if the constraints (2.9)
and (2.10) are also satisfied. Let & x y be the class of all feasible pairs.

The optimal control problem considered in this paper may now be stated as follows.
Subject to the dynamical system (2.1) and (2.2), find a feasible pair («, z) 6 & x 5?

such that the cost functional

Jo
G0(u,z) = <t>0(x(T),z) + I &0(x(t),u(t),z)dt (2.12)

is minimized over & x 5?.
Let this optimal control problem be referred to as Problem (P).

REMARK 2.1. Note that the functions defining Problem (P) do not depend explicitly
on time. Let Problem (Q) denote a problem identical to Problem (P) except that
the functions defining it depend explicitly on time. Then, it is well-known that by
introducing an additional state variable, Problem (Q) can be easily transformed into
the form of Problem (P). For details see, for example, [1]. Thus, without loss of
generality, we only consider Problem (P) unless otherwise stated.

REMARK 2.2. Consider the continuous state inequality constraints defined as follows:

hk(x(t),z)>0, Wte[O,T],k=l,...,Ns. (2.13)

Then, by using the e — r method given in Chapter 8 of [21], we can approximate these
continuous state inequality constraints as inequality constraints in canonical form

* + / -2*.*(*(0, z)dt > 0, (2.14)
Jo

where

hk(x(t),z), if hk(x(t),z) < -s,

-(**(x(0, z) - e)2/4e, if - e < hk(x(t), z) < e, (2.15)

0, ifhk(x(t),z)>e.
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Under appropriate assumptions, it is shown in Lemma 8.3.3 of [21] that there exists
a r(£) > 0 such that for all r, 0 < x < r(e), if an admissible pair (u,z) e W x &
satisfies the constraints (2.14), then it also satisfies the constraints (2.13). Thus optimal
control problems involving continuous state inequality constraints (2.13) can also be
cast in the form of Problem (P).

REMARK 2.3. Note that many classes of optimal control problems involving, for ex-
ample, terminal state constraints, interior point constraints and periodic boundary
conditions, can be transformed into the form of Problem (P). For further details, see
[8] and Chapters 6 and 10 of [21].

3. The classical control parameterization

We now briefly describe the control parameterization method. Essentially, each
control component M, (/) is approximated by a zeroth order or first-order spline function
(that is, a piecewise constant function or a piecewise linear continuous function)
defined on a set of knots {0 = t'o, t[, t^,... , t'p. = T). Note that each component may
have a different set of knots and the knots are not necessarily equally spaced. For the
case of piecewise constant basis functions, we write the i-th control component as a
sum of basis functions with coefficients or parameters {ot);,j = 1, . . . , /> ,} :

Yf (3.1)

where BJ°\t) is the indicator function for the j-th interval of the i-th set of knots
defined by

*• ^ - f < / / ' 0.2)
0, otherwise.

For piecewise linear continuous basis functions, we write the i-th control component
as

pi

y=0
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where B]j (t) are the witch's hat functions defined by

otherwise,

B0"(t) = (t -

t€[tj_vtj],

te[tj,tj+l]J = 1 , . . . ,Pi-\,
otherwise, (3-4)

* . - ' * , - ! > .
[0, otherwise.

These basis functions have finite support and have the added property that

This latter property is important for constraints (2.7) (that is, the boundedness con-
straints of control) and for (2.5) and (2.6) (that is, the all-time linear constraints on
control). For higher degree splines, we cannot have both small finite support and
Oy = Uj(tj). Judging from our extensive simulation studies, it appears that the ill-
conditioning inherent in optimal control problems could get worse if higher-degree
splines are used to approximate the controls. Many interesting questions in this regard
remain unsolved. Note the system parameters are constant for all t. Thus, with r
control components, all piecewise constant, the number of such control parameters
will be p = £ ' = i Pi and the total number of parameters will include the m system
parameters to give a total of rj = $^_, p, + m parameters.

After the control parameterization, the cost function (2.12) as well as all the con-
straint functions (2.3)-(2.10) can be regarded as (somewhat implicit) functions of the
parameter vector 0 = (<r,z), where (for piecewise constant controls)

cr = , a X p i a 2 u . . . , a 2 p 2 , . . . ,

z = [ z i , . . . , z m ] T e

and

0 = [<TT,ZrT € W.

More precisely, the corresponding approximate problem may be written as

min Go(0) (3.5)
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hk(z) = 0,
hk(.z) > 0,

£>«?) = 0,

gk(0) > 0,

Gk(0) = 0,
Gk(0) > 0,

£ < au < ujj,
7L U

zk < zk <zk,

k = 1,
)fc = N] + 1

* = 1 , . . . ,

k = N3 + 1

4 = 1 , . . . ,

k = N5 + 1

7 = 1 , . . . ,
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subject to

(3.6)

. , N2, (3.7)

(3.8)

. , M,, (3.9)

(3.10)

• ,N6, (3.11)

i = l,...,r, (3.12)

,m, (3.13)

where ~gk, k = 1 , . . . , N4 and Gt, Jfc = 0 , . . . , N6, are obtained from (2.5), (2.6),
(2.12), (2.9) and (2.10), respectively, in an obvious way.

REMARK 3.1. Note that bounds on a,, automatically put bounds on the control func-
tions for all time as appropriate. The problem posed by (3.5)-(3.13) is now a standard
constrained nonlinear mathematical programming problem which can be solved by
means of a sequential quadratic programming technique. See, for example, [18,19,23]
or the web site

http://www.mcs.anl.gov/home/otc/Guide/SoftwareGuide/ .

Like many nonlinear programming techniques, these require the analytical gradients
of the cost function Go as well as the constraint functions hk, k = 1 , . . . , N2,^k, k =
1, . . . , iV4, Gk,k = 1 N6. However, the dependence of Gk, k = 0, 1, . . . , N6, on
6 is not explicit. Thus, their gradients need to be calculated in a somewhat roundabout
way. See [7] or Chapter 5 of [21] for details.

4. The control parametrization enhancing transform

Consider the new time scale s which varies from 0 to 1. The transformation from
/ € [0, T] to s e [0, 1] can be defined by the differential equation

^ = »(,) (4.1)
as

with the initial condition

* (0) = 0, (4.2)
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where the scalar function v(s) is called the enhancing control. It is a piecewise
constant function with possible discontinuities at the pre-fixed knots £0> • • • > HM, that
is,

M

XM, (43)

where x,(s) is the indicator function defined by

Jl , if S €&_, ,$,) ,

0, otherwise.

Clearly,

/

s i - l

v(x)dr = ^^ VJ (%j:~ §-i) + v> (s ~ t i - i ) ' •* G [?;-!.&]• (4.4)
The optimal control function can thus be written in terms of the new time variable

s, where

u(s) = «(/(*)), x(s) = [(x(t(s)))\ t(s)}\ v(s) = [(u(s))T, v(s)]T. (4.5)

The equivalent transformed optimal control problem may now be stated as follows:

min GO(V,Z) = <D0(x(l),z) + / v(s)JC0(x(s),u(s),z)ds (4.6)
Jo

subject to the dynamical system

dx(s)
ds ~ \ v(s)

with initial condition

•CD*(0) = {0) (4-8)

and subject to constraints (2.3)-(2.8) and to the canonical constraints

G k ( u , z ) = 0, k = l,...,N5. (4.9)

G k ( u , z) > 0 , k = N5 + l,...,N6, (4.10)

where

Gk(u, z) = 4>k(x(zk), z) + / v(s)Sfk0c(s),u(s), z) ds
Jo
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and T* = s(Tk) is one of the knot points in [0, 1]. For the new control v(s), it is
necessary that

v(s)>0, se [0,1], (4.11)

so that the new state t(s) is monotonically non-decreasing. Usually, an additional ter-
minal state constraint is required to prevent it vanishing to zero during the optimization
process. For some problems, it is necessary to impose the constraint

f (1) - 7 = 0, (4.12)

while for others, the constraint

t(l)-Zj=O (4.13)

is used, where z, is some system parameter which has a lower bound of zero.
Let the corresponding transformed optimal control problem be referred to as Prob-

lem (P).

REMARK 4.1. Consider a modified version of Problem (P), where the differential
equation (4.1) and its initial condition (4.2) are dropped, while the terminal time
constraints (4.12) and (4.13) are replaced, respectively, by

v(s)ds-T = O (4.14)
Jo

and

v(s)ds-Zj=O. (4.15)
/
Jo

Let this slightly simplified problem be referred to as Problem (P). The solution to
Problem (P) can then be used to construct the solution of the original problem through
solving (4.4) to obtain t as a function of 5.

REMARK 4.2. Note that in the transformed problem, only the knots contribute to the
discontinuities of the state differential equation. Thus, all locations of the disconti-
nuities of the state differential equation are known and fixed during the optimization
process. These locations will not change from one iteration to the next during the op-
timization process. Even when two or more of the original switching times coalesce,
the number of these locations remains unchanged in the transformed problem. Fur-
thermore, the gradients of the cost functional and constraint functional with respect
to the original switching times in the new transformed problem are provided by the
usual gradient formulae in the classical control parametrization context.
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5. Convergence analysis

The basic ideas behind the CPET method developed in Section 4 is aiming to
include the switching times as parameters to be optimized and, at the same time, to
avoid the numerical difficulties mentioned in Section 1. Clearly, if the optimal control
is a piecewise constant function with discontinuities at r,, . . . , tM, then, by solving the
transformed problems with number of knots greater or equal to M, and by using (3.1),
we obtain the exact optimal control. Similar conclusions hold if the optimal control
is piecewise linear and (3.3) is used instead. For the general case, the convergence
results are much harder to establish. In view of the convergence analysis given for
the classical control parametrization technique in Chapter 6 of [21] and Chapter 7 to
Chapter 10 for special cases, we note that the time interval is partitioned as follows.

Construct a monotonically non-decreasing sequence [Sp}p
xLl of finite subsets of

[0, T]. For each p, let np + 1 points of Sp be defined by

'o=O, £ = 7\ £ , < £ . k=l,2,...,np.

Then, associated with each Sp there is the obvious partition y of [0, T] defined by

SP = {l>:k = \ np},

where lp
k = [i£_,, tp

k).
We choose S" such that Sp+l is a refinement of Sp and linip^oo Sp is dense in [0, T].
With such partitions, convergence results have been obtained for classical control

parametrization technique under appropriate conditions. For details, see [3] and [21].
Using the notation of [21], the approximate problem after control parametrization

is denoted by Problem (P(p)). It is a finite dimensional optimization problem with np

parameters for each original control variable. Applying this to the transformed prob-
lem of Section 4, we obtain similar approximate problems except with an additional
enhancing control. This enhancing control captures the discontinuities of the optimal
control if the number of knots in the partition of the new time horizon is greater than
or equal to the number of discontinuities of the optimal control. Since the enhancing
parameters u, are allowed to vary, the control parametrization enhancing technique
gives rise to a larger search space and hence produces a better or at least equal subop-
timal cost. Note that the optimal objective function value of an approximate Problem
(P(p)) with enhancing control is less than or equal to the optimal objective function
value of the same problem without an enhancing control. Hence, by the squeeze
theorem, since convergence has been proven for the problem without an enhancing
control, the convergence for the problem with an enhancing control is guaranteed.
All the corresponding convergence results obtained in Chapter 6 of [21] remain valid.
In fact, the relevent corresponding convergence results obtained in [3] and for the
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special cases considered in Chapter 7 to Chapter 10 of [21] also hold if the control
parametrization enhancing technique is used to construct approximate problems.

6. A manufacturing system example

Consider a deterministic manufacturing system over time /, with storage variables
Xi(t), i = 1 , . . . , ns, and machine rate of processing variables H,(0> i = I,... ,nc.
The output demand rates are functions d,-(f). ' = 1, ...,«</ which are assumed
constant in time for this example. The system has simplified linear dynamics

x = Bu-Cd, (6.1)

for given constant matrices B, («, x nc), and C, (ns x nd). A constraint on the system
is to keep storages placed before the nm = ns — nd machines non-negative. Label
these storages from i = 1 , . . . , rim. Storages from where the demand is taken, labelled
i = nm + l,... , ns, are allowed to be negative but this is considered undesirable as it
represents unmet demand. Machines have upper bounds on their rate of throughput.
The objective of the manufacturing system is to keep storages as low as possible but
to satisfy demand.

Let

, \a, a > 0,
a = max{0, a] = {

(0, a < 0

and

a > 0 ,

A suitable objective function for this system is

rT r "••, ". "c ~]

Jo [ ,= , ' ,=n/+i ' ' ,=, Jj ( 6 2 )

The numbers a, are weights attached to the storage representing a cost per unit of
storage in store i, while bt represents the cost per unit of unmet demand and is usually
larger than the corresponding a,. The y, are much larger than the corresponding a,
and act as a penalty on the storages placed before a machine being negative. In [22]
it is shown that y, can be made large enough so that the corresponding x, are never
negative at a solution, after suitable smoothing of a+ and a~.
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U 2

U 6 cIX4

FIGURE 1. A manufacturing system.

This example (see Figure 1) has one final product with demand d, but the product
can be made in one of two ways, namely by machines (Mly M3, M4) or (M2, M4, M3).
The intermediate storages are shared, with storage x3 +x4 limited. The costs of storage
of the part-made product are the same in each combined storage. The dynamics are

Xi = M, - U 3 ,

X"i = 14,2 — ^4i

X3 == M3 — Wg,

X4 — W4 — W5,

The state constraints are

The control constraints are

+ 4̂ <

w, > 0, i = 1 , . . . , 6,

"2 < 2,

"3 + "5 < 1,

«4 + «6 5 2.

The all-time state constraint 1 — ;r3 - x4 > 0 is treated as a penalty in the objective
function similar to the lower bound state constraints. The penalty value for these
all-time state constraints is y, = 20. The discounting factor is zero. The costs
are a{ = a2 = 2, a3 = a4 = 1 and a5 = 4. The initial point in state space is
x(0) = (1,1, 0,0,1).
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CONTROL U1 CONTROL U2 CONTROL U3

1

0.8

0.6

0.4

0.2

O

10

1

0.8

0.6

O.4

0.2

0

10

1

0.8

0.6

0.4

0.2

0

CONTROL U4

1

O.8

0.6

0.4

0.2

0

CONTROL U5

1

0.8

0.6

0.4

0.2

0

CONTROL U6

1 0 1 0 10

FIGURE 2. Controls for the manufacturing system, Case 1.
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FIGURE 3. States for the manufacturing system, Case 1.
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FIGURE 5. States for the manufacturing system, Case 2.
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The model is computed three times. The first is without an enhancing control, but
with a value of d so that the step changes in control occur at some of the chosen fixed
switching points of the control. The time interval [0, 10] is divided into ten equal
intervals with the control functions parametrized by piecewise constants, making the
state trajectories piecewise linear continuous. Note that the control levels are likely
to change whenever a new boundary constraint of state space is reached. This case
has four switching points for controls M3 and M4. These four switching points occur
when boundaries of state space are reached. The first switching point at t = 1 occurs
because store x3 + x4 becomes full. The second at t = 2 occurs because store x$
becomes zero. The third at t = 4 occurs because store X\ + x2 becomes zero, while
the fourth at t = 6 occurs because store *3 + x4 becomes empty.

Case 2 also has no enhancing control, but d = 0.45, a value chosen so that the
times of switching (optimally) do not occur at any of the chosen fixed discontinuities
of the controls. The controls are parametrized as for Case 1. Figures 4 and 5 show the
effect on the control levels about the true switching points. The value of the objective
is 17.37.

Case 3 uses the enhancing control with controls chosen with the required number
of switches. The times of switching are chosen optimally using the enhancing control
technique. This only involves 18 control parameters for u\,... , u6 and 5 control
parameters for the enhancing control, much less than the 60 used in Cases 1 and 2.
The objective value is 16.8905, a clearly better value.
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FIGURE 6. Controls for the Manufacturing System, Case 3.
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FIGURE 7. States for the Manufacturing System, Case 3.

The performance of the optimization algorithm is better for Case 3. The number of
iterations to achieve the solutions in the three cases are 575,349 and 235, respectively.
Note also that Cases 1 and 2 had to be restarted (reset the Hessian) many times to
achieve convergence to a similar accuracy. Case 3 only had to be restarted once.

Of some interest are the condition numbers of the three cases. The active constraint
gradients have condition numbers of 1, 1 and 7, which is to be expected. However the
condition numbers of the projected Hessians are 7 x 106, 7 x 106 and 800, indicating
the new method is far superior in terms of algorithmic performance for this type of
optimal control problem.

7. The container crane example

The dynamics of a container crane model are (see [17])

=X5(t),

X3(t)=X6(t),

= Mi(0 + 17.265&c3(O,

= u2(t),

x6(t) = - ( « , (0 +27.0756JC3(O
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FIGURE 8. Controls for the crane problem, Case 1.

with initial and final state values

x(0) = [0,22,0,0,-1,0]T,

x(9) = [10, 14,0, 2.5,0,0]T.

Here x{ represents a horizontal direction while x2 represents the vertical direction
and hence x4 and x5 are the corresponding velocities. The movement to optimize
is a diagonal motion in a vertical plane, equivalent to continue lifting a container,
travelling vertically at time t = 0, and preparing it for the horizontal movement of 2.5
units/time at t = 9. There are bounds on the two controls (torques of motors),

| « , (0 l< 2.83374, W e [0,9],

-0.80865 < M2(r) < 0.71265, W e [0,9].

There are all-time state constraints (on the two translational velocities),

1*4(01 < 2.5, Vr e [0, 9],

M 0 l < 1 . 0 , W e [0,9].

The objective is to minimise the swing of the container, represented by x3, the
position of swing, and x6, the velocity of swing. Hence the objective function is

Go= / x\{t)+xl(t)dt.
Jo
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STATE X3

FIGURE 9. States for the crane problem, Case 1.

In the computational formulation the four linear all-time state constraints are added
as penalties to the objective, and then smoothed as in [22]. The final state constraints
are treated as 6 terminal state equality constraints.

The normal method of computing this example with MISER3 is to use a small
number of equally spaced knots for the control parametrization, be it piecewise con-
tinuous or piecewise linear continuous, in the first instance. A solution is calculated.
The control parametrization is then doubled by subdividing the knot set, the conver-
gence accuracy increased and the problem is run again, with initial parameter values
those of the previous solution. This can be repeated until the required number of
parameters is attained. This procedure is followed for Figures 8 and 9, where the
final parametrization has 21 equally spaced knots and where the result of the p.l.c.
(piecewise linear continuous) computation is shown. See Case 1 in Table 1 for a
summary of the computations performed. The p.c. (piecewise constant) computation
shows a similar result. The control parametrization enhancing technique is then used
to solve the same problem, where 6 knots are chosen at 0, 1,2,7, 8 and 9, to represent
an enhancing control to parametrize time. See Case 2 in Table 1 for a summary of the
computations performed. Figures 10 and 11 show the result of applying the enhanc-
ing control algorithm for p.l.c. control. In this example the controls represent torques
generated by an electric motor so the p.l.c. control is more suitable. The dotted lines
on the control graphs are the upper and lower bounds on the controls, displayed to

https://doi.org/10.1017/S0334270000010936 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010936


[20] Control parameterization for constrained optimal control

CONTROL U1 CONTROL U2

333

-0.5

4 6 8 0 2 4 6 8

FIGURE 10. Controls for the crane problem, Case 2.

indicate when the controls come close to these bounds.
What is important about this problem is that the same objective value is achieved

with far fewer switching points by a judicious placement of the switching points via
the enhancing control.

The computations were started with initial control parameters set at zero and the
accuracy requested is 10~7 for constraint compliance, and, 10~5 for the gradient
stopping condition.

TABLE 1. Summary for the crane problem

Case

1
2

Number of
Knots

21
6

Number of
Parameters

42
17

Number of
Iterations

105
127

Objective

0.01047
0.01048

The other notable property of this problem is the wide difference in control curves
producing almost the same objective value.

8. Conclusions

A novel transform, known as the control parametrization enhancing transform, has
been introduced to convert optimal control problems with variable switching times
into equivalent standard optimal control problems. In the standard form, the problems
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STATE X3
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FIGURE 11. States for the crane problem, Case 2.

can be solved by the classical control parametrization method. The convergence
properties of the new method are discussed and numerical examples illustrating its
usefulness are given.
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