
TPLP 24 (4): 663–681, 2024. c© The Author(s), 2024. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000346 First published online 28 October 2024

663

CON-FOLD
Explainable Machine Learning with Confidence

LACHLAN MCGINNESS
School of Computer Science, ANU and CSIRO/Data61, Canberra, Australia

(e-mail: lachlan.mcginness@anu.edu.au)

PETER BAUMGARTNER
CSIRO/Data61 and School of Computer Science, ANU, Canberra, Australia

(e-mail: peter.baumgartner@data61.csiro.au)

submitted 16 August 2024; accepted 13 September 2024

Abstract

FOLD-RM is an explainable machine learning classification algorithm that uses training data
to create a set of classification rules. In this paper, we introduce CON-FOLD which extends
FOLD-RM in several ways. CON-FOLD assigns probability-based confidence scores to rules
learned for a classification task. This allows users to know how confident they should be in a
prediction made by the model. We present a confidence-based pruning algorithm that uses
the unique structure of FOLD-RM rules to efficiently prune rules and prevent overfitting.
Furthermore, CON-FOLD enables the user to provide preexisting knowledge in the form of
logic program rules that are either (fixed) background knowledge or (modifiable) initial rule
candidates. The paper describes our method in detail and reports on practical experiments. We
demonstrate the performance of the algorithm on benchmark datasets from the UCI Machine
Learning Repository. For that, we introduce a new metric, Inverse Brier Score, to evaluate the
accuracy of the produced confidence scores. Finally, we apply this extension to a real-world
example that requires explainability: marking of student responses to a short answer question
from the Australian Physics Olympiad.

KEYWORDS: logic programming methodology and applications, inductive logic programming
and multi-relational data mining

1 Introduction

Machine learning (ML) has been shown to be incredibly successful at learning patterns

from data to solve problems and automate tasks. However, it is often difficult to interpret

and explain the results obtained from ML models. Decision trees are one of the few ML

methods that offer transparency with regard to how decisions are made. They allow users

to follow a set of rules to determine what the outcome of a task (say, classification) should

be. The difficulty with this approach is finding an algorithm that is able to construct a

reliable set of decision trees.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346
https://orcid.org/0000-0002-3231-4827
mailto:lachlan.mcginness@anu.edu.au
mailto:peter.baumgartner@data61.csiro.au
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000346&domain=pdf
https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner664

One approach of generating a set of rules equivalent to a decision tree is the First

Order Learner of Default (FOLD) approach introduced by (Shakerin et al. 2017).

To improve a model’s ability to handle exceptions in rule sets, Shakerin, Wang, Gupta,

and others introduced and refined an explainable ML algorithm called First Order

Learner of Default (FOLD) (Shakerin et al. 2017; Wang 2022; Wang and Gupta 2022;

Wang et al. 2022; Wang and Gupta 2023; Padalkar et al. 2024), which learns non-

monotonic stratified logic programs (Quinlan, 1990b). The FOLD algorithm is capable

of handling numerical data (FOLD-R) (Shakerin et al. 2017), multi-class classification

(FOLD-RM) (Wang et al. 2022), and image inputs (NeSyFOLD) (Padalkar et al. 2024).

FOLD-SE uses Gini Impurity instead of information gain in order to obtain a more con-

cise set of rules (Wang and Gupta 2023). Thanks to these improvements, variants of

the FOLD algorithm are now competitive with state-of-the-art ML techniques such as

XGBoost and RIPPER in some domains (Wang and Gupta 2022, 2023).

The rules produced by the FOLD algorithm are highly interpretable; however, they

can be misleading. As an example let’s consider the popular Titanic dataset (Kaggle

2012), where passengers are classified into two categories: perished or survived. One rule

from the FOLD algorithm might say that a passenger survives if they are female and do

not have a third-class ticket. When given a new set of data and this rule, a user might be

unpleasantly surprised to find that such a passenger perished. This is because the rule

can have the appearance of being definitive. In reality, this could be a good rule that

is correct 99% of the time. In order for a FOLD model to be more understandable and

trustworthy for users, a confidence value could be provided. This would provide the user

with a measure of the certainty of the rule and would make it clear to the user that not

all women with second-class tickets survive.

In this paper, we introduce Confidence-FOLD (CON-FOLD), an extension of the

FOLD-RM algorithm. CON-FOLD provides confidence values for each rule generated

by the FOLD algorithm so users know how confident they should be for each rule in the

model. In addition, we present a pruning algorithm that makes use of these confidence

values. These techniques applied to the Titanic example yield the following rules and

confidences1:

survived(X, false) :- rule1(X). %confidence: 0.9

survived(X, true) :- rule2(X), not rule1(X). %confidence: 0.97

rule1(X) :- not sex(X, female).

rule2(X) :- sex(X, female).

We also provide a metric, Inverse Brier Score, which can be used to evaluate proba-

bilistic or confidence-based predictions that maintain compatibility with the traditional

metric of accuracy. We provide the capability to introduce modifiable initial knowledge

into a FOLD model. Finally, we demonstrate the effectiveness of adding background

knowledge in the marking of student responses to physics questions. Note that we choose

to focus on multi-class classification tasks in our experiments; however, CON-FOLD can

also be applied to binary classification.

1 For simplicity of demonstration, the rules were obtained from the Titanic test dataset. We used an
improvement threshold of 0.1 (Section 4.1) and a confidence threshold of 0.5 (Section 4.2).

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 665

2 Formal framework and background

We work with the usual logic programming terminology. A (logic program) rule is of the

form

h : - l1, . . . , lk, not e1, . . . , not en . (1)

where the h, l1, . . . , lk, and e1, . . . , en all are atoms, for some k, n≥ 0. A program is a

finite set of rules. We adopt the formal learning framework described for the FOLD-RM

algorithm. In this, two-ary predicate symbols are used for representing feature values,

which can be categorical or numeric. Example feature atoms are name(i1,sam) and

age(i1,30) of an individual i1. Auxiliary predicates and Prolog-like built-in predicates

can be used as well. Rules always pertain to one single individual and its features as in

this example:

female(X) :- rule1(X). (1)

rule1(X) :- age(X,A), A>16, not ab(X). (2)

ab(X) :- name(X,sam), not fav color(X,purple). (3)

These rules for a target relation female could have been learned from training data

where all individuals older than 16 are female, except those named sam and whose favorite

color is not purple. Below, we use the letter r to refer to the rule for the target relation,

r= female, (1) in this example, and the letter R for the set of auxiliary rules, R=

{(2), (3)}, that are needed to define the predicates in r.

The learning task in general is defined in Wang et al. (2022). The learning algorithm

takes as input two disjoint sets X =Xp �Xn of positive and negative training examples ,

respectively. It assumes that the training set distribution is approximately the same as

the test set distribution.

For any d∈X, let features(d) denote d’s features as a set of atoms

over some a priori fixed Skolem constant, say, c, for example: features(d) =

{age(c,18), name(c,adam), fav color(c,red)}. The learning algorithm below checks

if a current set R ∪ {r} puts an example d into the target class. Letting � denote the tar-

get class as an atom, for example �= female(c), this is accomplished via an entailment

check R ∪ {r} ∪ features(d) |= �.

Because all learned programs are stratified, we adopt the standard semantics for that

case, the perfect model semantics (layered bottom-up fixpoint computation), which is

also reflected in the FOLD-RM algorithm. We emphasize that default negation causes

no problems in calculating the confidence scores of a rule.

The confidence scores are attached only to the top-level rules r, never to the rules R

referred to under default negation. That is, having to deal with confidence scores in a

negated context will never be necessary. We will describe the rationale behind this design

decision shortly below.

The Boolean learning task is to determine a stratified program P such that

P ∪ features(d) |= � for all d∈Xp and P ∪ features(d) �|= � for all d∈Xn .

The multi-class learning problem is a generalization to a finite set of classes. The train-

ing data X then is comprised of atoms indicating the target class, for each data point,

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner666

for example, survived(c,false) or survived(c,true) in the Titanic example.

Conversely, by splitting multi-class learning problems can be treated as a sequence of

Boolean learning problems.

The basis of CON-FOLD is the FOLD-RM algorithm (Wang et al. 2022). FOLD-RM

simplifies a multi-class classification task into a series of Boolean classification task. It

first chooses the class with the most examples and sets data which correspond to this

class as positive and all other classes as negative. It then generates a rule that uses input

features to maximize the information gain. This process is repeated on a subset of the

training examples by eliminating those that are correctly classified with the new rule.

The process stops when all examples are classified.

3 Related work

Confidence scores have been introduced in decision tree learning for assessing the admis-

sibility of a pruning step (Quinlan 1990a). In essence, decision tree pruning removes a

sub-tree if the classification accuracy of the resulting tree does not fall below a certain

threshold, for example, in terms of standard errors, and possibly corrected for small

domain sizes. Decision trees can be expressed as sets of production rules (Quinlan 1987),

one production rule for each branch in a decision tree. The production rules can again

be simplified using scoring functions (Quinlan 1987).

The FOLD family of algorithms learns rules with exceptions by means of default

negation (negation-as-failure). The rules defining the exceptions can have exceptions

themselves. This sets FOLD apart from the production systems learned by decision tree

classifiers, which do not take advantage of default negation. This may lead to more

complex rule sets. Indeed, (Wang et al. 2022) observe that “For most datasets we exper-

imented with, the number of leaf nodes in the trained C4.5 decision tree is much more

than the number of rules that FOLD-R++/FOLD-RM generate. The FOLD-RM algo-

rithm outperforms the above methods in efficiency and scalability due to (i) its use of

learning defaults, exceptions to defaults, exceptions to exceptions, and so on, (ii) its top-

down nature, and (iii) its use of improved method (prefix sum) for heuristic calculation.”

We do feel, however, that these experimental results could be completed from a more

conceptual point of view. This is beyond the scope of this paper and left as future work.

Scoring functions have been used in many rule-learning systems. The common idea

is to allow accuracy to degrade within given thresholds for the benefit of simpler rules.

See Law et al . (2020) for a discussion of the more recent ILASP3 system and the ref-

erences therein. Hence, we do not claim the originality of using scoring systems for rule

learning. We see our main contribution differently and not in competition with other

systems. Indeed, one of the main goals of this paper is to equip an existing technique

that has been shown to work well – FOLD-RM – with confidence scores. With our algo-

rithm design and experimental evaluation we show that this goal can be achieved in

an “almost modular” way. Moreover, as our extension requires only minimal changes to

the base algorithm, we expect that our method is transferrable to other rule-learning

algorithms.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 667

4 The CON-FOLD algorithm and confidence scores

The CON-FOLD algorithm assigns each rule a confidence score as it is created. For

easy interpretability, confidence scores should be equal to probability values (p-values

from a binomial distribution) in the case of large amounts of data. However, p-values

would be a very poor approximation in the case of small amounts of training data; if a

rule covered only one training example, it would receive a confidence value of 1 (100%).

There are many techniques for estimating p-values from a sample, we chose the center

of the Wilson Score Interval (Wilson, 1927) given by Eq. (2). The Wilson Score Interval

adjusts for the asymmetry in the binomial distribution which is particularly pronounced

in the case of extreme probabilities and small sample sizes. It is less prone to producing

misleading results in these situations compared with the normal approximation method,

thus making it more trustworthy for users (Agresti and Coull 1998).

p=
np +

1
2Z

2

n+Z2
, (2)

where p is the confidence score, np is the number of training examples corresponding to

the target class covered by the rule, n is the number of training examples covered by the

rule corresponding to all classes, and Z is the standard normal interval half width; by

default, we use Z = 3.

Theorem 4.1.

In the limit where there is a large amount of data classified by a rule (n→∞), the

confidence score approaches the true probability of the sample being from the target

class.

Proof

The true probability that a randomly selected example that follows the provided rule is

from the target class is pr =
np

n . As n increases, the law of large numbers states that the

portion of examples which belong to the target class becomes limn→∞ np = prn. Also, as

n→∞, the relative contribution of Z2 terms becomes negligible. Therefore:

lim
n→∞ p= lim

n→∞
np +

1
2Z

2

n+Z2
= lim

n→∞
npr
n

= pr

Once rules have the associated confidence scores, they are expressed as follows:

p :: h : - l1, . . . , lk, not e1, . . . , not en . (3)

where p is the confidence score. The format of confidence score annotations is directly

supported by probabilistic logic programming systems such as Problog (De Raedt et al.

2007) and Fusemate (Baumgartner and Tartaglia 2023). In this paper, we do not explore

this possibility and just let the confidence scores allow the user to know the reliability of

a prediction made by a rule in the logic program.

The CON-FOLD algorithm (Algorithm 1) closely follows the presentation of FOLD-

RM in Wang et al. (2022); see there for definitions of split by literal, learn rule

(slightly adapted) and most. On line 11, conf(P, Xp, Xn) computes the Wilson score

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner668

Algorithm 1 CON-FOLD

CON-FOLD(X, t)
Input: X training examples, t threshold
Output: program P for classifying X

1 P ←∅ // Result
2 while X �= ∅ do
3 l← most(X)
4 Xp, Xn← split by literal(X, l)
5 r, R← learn rule(l, Xp, Xn)
6 R← evaluate exceptions(r, R, Xp, Xn, t)
7 Xfn←{d∈Xp |R ∪ {r} ∪ features(d) �|= l}
8 if |Xfn|= |Xp| then break // End if rule does not correctly classify any examples
9 Xtn←{d∈Xn |R ∪ {r} ∪ features(d) �|= l}
10 X←Xfn ∪Xtn

11 c← conf(R ∪ {r}, Xp, Xn)
12 P ← P ∪R ∪ {c :: r}
13 return P

Fig. 1. This toy example illustrates the difference between the FOLD-RM and CON-FOLD
core algorithms. Both produce rules of the form shown. CON-FOLD would not consider the
Flamingo as part of the data to fit when generating rule 2. FOLD-RM would consider the

Flamingo. Note that in many cases, both algorithms would generate an abnormal rule ab(X)

:- flamingo(X), preventing the Flamingo from being covered by the first rule. In this case,
both FOLD-RM and CON-FOLD would include the Flamingo. When harsh pruning occurs

and there are few abnormal rules, this subtle change becomes noticeable.

p as in (2), letting

np = |{d∈Xp | P ∪ features(d) |= �}|,
n= np + |{d∈Xn | P ∪ features(d) |= �}|

and � the target class as an atom. Note that line 6 is only used if pruning. Other than

this, the only difference between CON-FOLD and FOLD-RM are lines 9 and 10. In our

terminology, FOLD-RM includes in the updated set X the full set Xn instead of Xtn.

The consequence of this difference is highlighted in Figure 1.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 669

Theorem 4.2.

CON-FOLD algorithm always terminates on any set of finite examples.

Proof

Each pass through the while loop produces a rule that will either successfully classify

at least one example or not. If no examples are successfully classified, the algorithm

terminates immediately (lines 8–9). Otherwise, the examples classified are removed from

the set (line 11) strictly decreasing its size. Since the set is finite and each cycle removes

at least one element, it will become empty eventually, and the loop will terminate on

that condition.

FOLD-RM has a complexity of O(NM3) where N is the number of features and M is

the number of examples (Wang et al. 2022). In the worst case, each literal only covers

one example and requires an additional M − 1 literals to exclude the remaining data.

Then the pruning algorithm can be called once per rule for each target class, which in

the worst case is M times. The complexity of the pruning algorithm is below.

Once confidence values have been assigned to each rule, it is possible to use these

values to allow for pruning and prevent overfitting. In the following, we introduce two

such pruning methods: improvement threshold and confidence threshold pruning.

4.1 Improvement threshold pruning

Improvement threshold pruning is designed to stop rules from overfitting data by becom-

ing unnecessarily “deep.” The rule structure in FOLD allows for exceptions, for exceptions

to exceptions, and then for exceptions to these exceptions and so on. This may overfit

the model to noise in the data very easily. We will refer to any exception to an exception

at any depth as a sub-exception.

In order to avoid this overfitting, each time a rule is added to the model, each exception

to the rule is temporarily removed, and a new confidence score is calculated. If this

changes the confidence by less than the improvement threshold, then this exception is

removed. If an exception is kept, then this process is applied to each sub-exception. This

process is repeated until each exception and sub-exception has been checked.

The details are formalized in the pseudocode in Algorithm 2. In there,

remove rule(R, r) removes the rule r from the set R of rules and removes the possibly

default-negated atom with the head of r from the bodies of all rules in R.

Theorem 4.3.

The Evaluate Exceptions algorithm always terminates on any set of finite set of rules,

exceptions, and data points.

Proof

On any given rule, each exception is checked once, and the algorithm terminates when

there are no more exceptions to be checked. The depth of recursions and therefore the

number of times that evaluate exceptions is called recursively is bound by the number

of exceptions.

To determine the complexity of this pruning algorithm, let R be the total num-

ber of exceptions and sub-exceptions and M = |Xp|+ |Xn| be the number of examples.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner670

Algorithm 2 Evaluate Exceptions

evaluate exceptions(r, R, Xp, Xn, t)
Input:

r - rule of form h0 : - lr1 , �e0 where lr1 is the head of the rule r1 ∈R

R - set of auxiliary rules for r, each of form h : - �l, �e where �e= not e1, . . . , not en
where each ei is the head of a rule �rei ∈R

Xp - positive examples, Xn - negative examples, t - threshold
Output: Pruned version of auxiliary rules R

1 return ev ex loop(r, R, r1, Xp, Xn, t)
ev ex loop(r, R, r′, Xp, Xn, t)

Input:
r, R, Xp, Xn, t as in evaluate exceptions

r′ - rule in R of form h : - �l, �e where �e= not e1, . . . , not em
and each ei is the head of a rule rei ∈R

Output: Pruned version of auxiliary rules R
1 R′←R
2 for ei ∈ �e do
3 Rt← remove rule(R′, rei)
4 c← conf(r, R′, Xp, Xn)
5 ct← conf(r, Rt, Xp, Xn)
6 if c− ct < t then
7 R′←Rt // Tolerable loss of confidence
8 else // Recurse into exceptions for ei
9 R′← ev ex loop(r, R′, ei, Xp, Xn, t)

10 return R′

Therefore, the number of sub-exceptions to any exception is bounded in the worse case

by R− 1 or O(R). The calculation of confidence within the loop takes O(MR) time as

it requires comparing each sub-exception to a maximum of M data points. The loop

must run once for each exception which in the worst case is O(R). Therefore the total

complexity of running the pruning algorithm is O(MR2).

4.2 Confidence threshold pruning

In addition to decreasing the depth of rules, it is also desirable to decrease the number of

rules. A confidence threshold is used to determine whether a rule is worth keeping in the

model or whether it is too uncertain to be useful. If the rule has a confidence value below

the confidence threshold, then it is removed. This effectively means that rules could be

removed on two grounds:

• There are insufficient examples in the training data to lead to a high confidence

value.

• There may be many examples in the training data that match the rule; however,

a large fraction of the examples are actually counterexamples that go against the

rule.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 671

Fig. 2. Scatter plot of the accuracy and number of rules for a ruleset generated by the pruning
algorithm with different values of the improvement threshold and the confidence threshold.
Each point has two circles. The background circle displays the number of rules and accuracy
for no pruning; therefore, all background circles are the same. The front circle displays the
rules and accuracy when pruning is applied. The accuracy is indicated by the color shown in
the scale bar on the right-hand side. Pruning conditions that are more accurate than the
unpruned condition are indicated with a black dot in the center. The number of rules is

indicated by the area of the circle (equal amount of ink for number of rules), normalized by
the number of rules in the unpruned case. The results shown for both the accuracy and the

number of rules are the average of 300 trial runs for each test condition.

The two pruning methods introduced above can greatly simplify a model making it more

human interpretable. However, the pruning of rules reduces the model’s ability to fit noise

and can lead to an increase in accuracy. However, if rules are pruned too harshly, then

the model will be underfit, and performance will decrease. In order to assess these effects

we applied CON-FOLD to a sample dataset, the E.coli dataset. In our experiments, we

varied the values for the two threshold parameters corresponding to the two pruning

methods. This allowed us to assess the performance with respect to accuracy and to

derive recommendations for parameter settings (see Figure 2). For this dataset, accuracy

is highest for pruning with a low confidence threshold and a moderate improvement

threshold. If the pruning is too harsh, this leads to a significant decrease in performance.

5 Inverse Brier Score

A standard measure of performance in ML is accuracy which for multi-class tasks is

defined by:

Accuracy =
1

N

N∑

i=1

A(y∗i , yi) (4)

where A(y∗, y) = 1 if y∗ = y and 0 otherwise.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner672

When predictions are made with confidence scores, it is possible to use more sophis-

ticated measures of the model’s performance. In particular, the model should only be

given a small reward if it makes a correct prediction with a low confidence, and the

model should be punished when making high confidence predictions that are incorrect.

We have three desiderata that for such a scoring system:

1. It is a proper scoring system: the maximum reward can be gained when the

probability value given matches the true probability value.

2. The scoring system reduces to accuracy when non-probabilistic predictions are

made. This allows for the comparison between probabilistic and non-probabilistic

models in terms of performance.

3. The scoring system has an inbuilt mechanism for dealing with no given prediction.

In order to meet all three of these desiderata, we propose a variant of the Brier scoring

system and call it Inverse Brier Score (IBS). Brier score (or quadrature score) is often

used to evaluate the quality of weather forecasts (Allen et al. 2023; Liu et al. 2023) and

can be obtained with the following formula (Brier 1950):

Brier Score =
1

N

N∑

i=1

K∑

k=1

(pki − yik)
2, (5)

where i is an index over each data point in a test dataset, k corresponds to a class in

the dataset, N is the total number of test examples, and K the total number of classes.

This is commonly reduced to the following when only making predictions for one class

(Murphy and Epstein 1967):

One Class Brier Score =
1

N

N∑

i=1

(pi − yi)
2 (6)

We define the IBS as:

IBS= 1− 1

N

N∑

i=1

(pi − yi)
2 (7)

Theorem 5.1.

Inverse Brier Score is a proper scoring system.

Proof

It known that the Brier Score is a proper scoring system (Murphy and Epstein 1967).

Since the propriety of a scoring system is preserved under linear transformations, the

IBS is a proper scoring system.

Theorem 5.2.

When definite predictions are made (p= 1 or p= 0), IBS is equivalent to accuracy.

Proof

For non-probabilistic decisions, pi is replaced by the prediction y∗. Therefore, (y∗i − yi)
2 =

1−A(y∗i , yi), and the IBS reduces to the definition of accuracy as follows:

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 673

1− 1

N

N∑

i=1

1−A(y∗i , yi) = 1− N

N
+

1

N

N∑

i=1

A(y∗i , yi) =
1

N

N∑

i=1

A(y∗i , yi)

Finally, IBS has a natural way of dealing with no predictions being made. If any class

was given a prediction of p= 0.5, then IBS would be 0.75 regardless of the class that

is chosen. This provides a natural default value if a model refuses to make a prediction

due to low confidence, satisfying the third desideratum. Note that this is also important

for the FOLD algorithm because it is possible that it will find a test sample, which is

significantly different to the training examples and may not match any rules.

Therefore, the IBS satisfies all three desiderata. Both IBS and accuracy are used to

evaluate CON-FOLD against other models in Section 7. We note that confidence values

are regularly used in weather forecasting where Brier score is used as a metric to evaluate

their quality. We use this metric to show that FOLD models with confidence scores

obtain higher scores. Although Brier Score does not always align with user’s expectations

(Jewson 2004), it is a metric which indicates that models with confidence are more

interpretable.

6 Manual addition of rules and physics marking

A key advantage of FOLD over other ML methods is that users are able to incorpo-

rate background knowledge about the domain in the form of rules. In addition to fixed

background knowledge, we include modifiable initial knowledge. Initial knowledge can be

provided with or without confidence values. During the training, CON-FOLD can add

confidence values to provided rules, prune exceptions, and even prune these rules if they

do not match the dataset.

In order for rules to be added to a FOLD model, they must be admissible rules

as defined below, with optional confidence values. Admissible rules obey the following

conditions:

• Every head must have a predicate of the value to be decided.

• Each body must consist only of predicates of values corresponding to features.

• Bodies can be Boolean combinations literals.

• The <, >, ≤, ≥, = and �= operators are allowed for comparison of numeric variables.

• For categorical variables, only = and �= are allowed.

Given formulas of this form are translated into logic programs. Stratified default negation

is in place to ensure that rule evaluation is done sequentially, mirroring a decision list

structure. Therefore, the rules are in a hierarchical structure, and the order in which

the initial/background knowledge is added can influence model output in the case of

overlapping rule bodies.

The inclusion of background and initial knowledge can be very helpful in cases where

only very limited training data is available. An example of such a problem domain is grad-

ing a students’ responses to physics problems. Usually, background domain knowledge is

easily available in the form of well-defined rules for how responses should be scored.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner674

We evaluated this idea with data from the 2023 Australian Physics Olympiad pro-

vided by Australian Science Innovations. The data included 1525 student responses to

38 Australian Physics Olympiad questions and the grades awarded for each of these

responses. We chose to mark the first question of the exam because most students

attempted it and the answer is simply a number with units and direction. This prob-

lem was also favorable because the marking scheme was simple with only three possible

marks, 0, 0.5 and 1. Responses to this question were typed, so there was no need for

optical character recognition (OCR) to interpret hand-written work. An example of a

rule used for marking is:

grade(1,X) :- rule1(X).

rule1(X) :- correct number(X), correct unit(X).

In order to apply the marking scheme, relevant features would need to be extracted from

the student responses. Feature extraction is an active area of research in natural language

processing (NLP) (Qi 2024). Many approaches focus on extracting information and rela-

tionships about entities from large quantities of text and can extract large numbers of

features (Carenini et al. 2005; Vicient et al. 2013). The tools that use term frequency

can struggle with short answers (Liu et al. 2018) especially if they contain large numbers

of symbols and numbers, making them inappropriate for feature extraction for grading

physics papers.

In our work, we use SpaCy (Honnibal and Montani 2017) for part-of-speech (POS)

tagging to extract noun phrases and numbers to be used as keywords. The presence or

absence of these keywords is then one hot encoded for each piece of text to create a

set of features. This method alone was not sufficient to extract sufficiently sophisticated

features that would allow the marking scheme to be implemented. Therefore, we also used

regular expressions to extract the required features for the marking scheme. This required

significant customization to match the wide variety of notations used by students.

7 Results

We compare the CON-FOLD algorithm to XGBoost (Chen and Guestrin 2016), a stan-

dard ML method, to FOLD-RM, and FOLD-SE, which is currently the state-of-the-art

FOLD algorithm. The results can be found in Table 1. The experiments use datasets

from the UCI Machine Learning Repository (Kelly et al. 2024). The comparison uses 30

repeat trials, where a random 80% of the data is selected for training and the remaining

20% is used for testing.

The hyperparameters for all XGBoost experiments are the defaults in the existing

Python implementation.2 In all FOLD-RM and CON-FOLD experiments, the ratio is

set to 0.5 (default in FOLD-RM).

The hyperparameters for the pruned CON-FOLD algorithm are included with the

results. FOLD-SE was not included in the experiments as the implementation is not

publicly available, but values from Wang and Gupta (2023) are included. We note that

2 max depth = 6, learning rate = 0.3, n estimators = 100, objective = binary:logistic and
scale pos weight = 1

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Table 1. Accuracy, runtime, and number of rules and predicates for different methods and different benchmarks from the UCI repository. Pruning
hyperparameters are provided for the CON-FOLD algorithm. The uncertainty values provided are the standard deviations from 30 trial runs.

FOLD-SE results are taken from Wang and Gupta (2023)

Dataset XGBoost FOLD-RM CON-FOLD with pruning FOLD-SE

Time Acc Time Acc Rules Preds tcon timp Time Acc Rules Preds Acc Rules Preds

Wine 0.15 s 0.96±0.03 0.02 s 0.94±0.03 7.3±0.6 7.3±0.9 0.55 0.02 0.02 s 0.93±0.03 6.8±0.8 7.0±0.9 0.95 6.5 7.6
E. coli 0.67 s 0.84±0.04 0.04 s 0.79±0.04 39.2±4.6 46±8 0.65 0.08 0.04 s 0.80±0.04 12.2±1.8 16±5 0.80 24 45
Weight Lifting 9.2 s 1.0±0.0 1.7 s 0.999±0.001 14.4±1.2 16.6±1.3 0.90 0.02 1.7 s 0.990±0.005 11.3±0.8 12.4±1.1 1.0 7.0 11
Wall Robot 0.47 s 0.996±0.002 2.0 s 0.993±0.003 30.1±2.4 41±4 0.65 0.01 2.6 s 0.988±0.003 20.0±1.8 25±3 0.99 7.1 16
Page Blocks 0.75 s 0.972±0.004 0.93 s 0.967±0.005 65.1±9.5 112±26 0.70 0.09 1.9 s 0.94±0.01 4.1±1.2 4.4±2.0 0.96 8.5 15
Nursery 0.68 s 0.999±0.001 0.90 s 0.96±0.01 71.4±8.0 26±3 0.55 0.04 1.9 s 0.92±0.01 23±3 15.2±2.5 0.92 18 40
Dry Bean 1.3 s 0.928±0.004 9.6 s 0.911±0.005 186±16 303±37 0.65 0.01 14.3 s 0.90±0.01 63±19 106±36 0.90 25 31

675

https://doi.org/10.1017/S1471068424000346 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner676

Fig. 3. Plot of IBS against the percentage of data included in the stratified training data for
the E.coli UCI dataset. Thirty trials for each condition were performed, and error bars
indicate one standard deviation across the trials. Pruned CON-FOLD used a confidence

threshold of 0.65 and a pruning threshold of 0.07.

the accuracy and number of rules for XGBoost and FOLD-RM are very similar to the

results given in the 2023 study and are confident that the experiments are equivalent.

The times measured are wall time measured when the result is run on a PC with an

Intel Core i9-13900K CPU with 64 GB of RAM. Note that when only small amounts of

training data were used, we ensured that at least one example of each class was included

in the training data; we will refer to this as stratified training data.

Figure 3 demonstrates how the amount of training data impacts the IBS for XGBoost

and the CON-FOLD algorithm with and without pruning.

One particular use case where high levels of explainability are required is marking

students’ responses to exam questions. When artificial intelligence or ML is applied to

automated marking, it is desirable for a minimal training dataset. This reduces the cost

to mark initial examples to use as training data for the models. Therefore, we tested

each model on very small training datasets with the first having just three examples of

student work (0.2% of the dataset).

Three different models were tested. The first two were XGBoost and the unpruned

CON-FOLD algorithm. The third model tested was the CON-FOLD algorithm with the

marking scheme given as domain knowledge before training. Each rule from the marking

scheme was given a confidence of 0.99. Thirty trials were conducted with randomly gen-

erated stratified data ranging from 0.2% to 90% of the data used for training. The results

of this experiment can be seen in Figure 4. The average is represented by the points on

the graph, and the standard deviation from the 30 trials is given as error bars.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Fig. 4. Each of the plots shows the performance of models using the Inverse Brier Score metric
with different amounts of training data. Plots a and b show the regimes where large amounts
of training data are available, while plots e and f explore model performance with very small
amounts of training data available. Plots a, c, and e use automatic feature extraction, while
plots b, d, and f use manual feature extraction using regular expressions, which allows for
domain knowledge in the form of a marking scheme to be included. The total number of

student responses was n= 1525.

677

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner678

Plots of IBS against amounts of training data for grading student responses to an

Australian Physics Olympiad problem with and without manual feature extraction.

8 Discussion

The runtime for XGBoost on the weight lifting data in Table 1 appears anomalously

long. This has been observed previously (Wang and Gupta 2023) and can be attributed

to the large number of features (m= 155) in the dataset, which is an order of magnitude

greater than the others. This result confirms that both CON-FOLD and the pruning

algorithm scale well with the number of input features.

Table 1 shows that the pruning algorithm reduces the number of rules compared with

the FOLD-RM algorithm with a small decrease in accuracy. The main advantage of

decreasing the number of rules is that it makes the results more interpretable to humans,

as having hundreds of rules becomes quite difficult for a human to follow. Furthermore,

a smaller set of rules reduces the inference time of the model. The FOLD-SE algorithm

produces a smaller number of rules and higher accuracy for most datasets. We note that

the CON-FOLD pruning technique and the use of Gini Impurity from FOLD-SE are

not mutually exclusive and applying both may result in even more concise results while

maintaining performance.

Our experiment in Figure 3 shows that for small amounts of stratified training data,

the ability to put confidence values on predictions gives CON-FOLD a significant advan-

tage over XGBoost. We also note that pruning gives a very slight advantage in cases

of very small training datasets. We attribute this to the prevention of the model from

overestimating confidence from only a small number of examples.

For the physics marking dataset, the rules created from the marking scheme align

almost perfectly with the scores that students were actually awarded, as expected. This

results in very strong performance even when there is very little training data. We note

that the unpruned CON-FOLD algorithm gradually increases its IBS as the amount of

training data increases. We attribute this to a combination of increasing confidence in

rules that were learned and being able to learn more complex rules from larger training

datasets.

For the XGBoost experiments with features generated by regular expressions in

Figure 4f, we note that the algorithm is able to score approximately 0.92 consistently

until 1.8% of the training data is reached. Then the model’s performance seems to vary

wildly between trials before jumping to an accuracy of 0.99 at 2.8%. We attribute the

instability as sensitivity to specific training examples being included in its training data.

Once 2.8% of the data is included in training, this seems to settle as this is a suffi-

cient amount that the required examples reliably fall into the training dataset. A similar

pattern is also present in Figure 4c.

For small amounts of training data, IBS of the CON-FOLD algorithm is mostly inde-

pendent on whether regular expression features were included or not. However, in the

regime of large amounts of training data shown in Figure 4a and Figure 4d, manu-

ally extracted features make a small but significant improvement in the performance of

both XGBoost and CON-FOLD. This has implications for the use of automated fea-

ture POS tagging tools when being used for feature extraction for automated marking.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000346

Explainable machine learning 679

Regular expressions for feature extraction allow for more accurate results and for the

implementation of background rules, but this comes at significant development costs.

9 Conclusion and future work

We have introduced confidence values that allow users to know the probability that a rule

from a FOLD model will be correct when applied to a dataset. This removes the illusion

of certainty when using rules created by the FOLD algorithm. We introduce a pruning

algorithm that can use these confidence values to decrease the number and depth of

rules. The pruning algorithm allows for the number of rules to be significantly decreased

with a small impact on performance; however, it is not as effective as the use of the Gini

Impurity methods in FOLD-SE.

IBS is a metric that can be used to reward accurate forecasting of probabilities of rules

while maintaining compatibility with non-probabilistic models by reducing accuracy in

the case of non-probabilistic predictions.

CON-FOLD allows for the inclusion of background and initial knowledge into FOLD

models. We use the marking of short answer physics exams as a potential use case

to demonstrate the effectiveness of incorporating readily-available domain knowledge

in the form of a marking scheme. With this background knowledge, the CON-FOLD

model’s performance is significantly improved and out performs XGBoost, especially in

the presence of small amounts of training data.

Besides improvements to the FOLD algorithm, an area for future work is feature

extraction from short snippets of free-form text. NLP feature extraction tools were not

able to capture the required features to implement a marking scheme, but otherwise were

able to extract enough features to allow for accuracy and IBS of over 99% in the regime

of large amounts of training data. OCR could allow for the grading of hand-written

responses to be explored. As a final suggestion for future research, more advanced NLP

tools such as large language models could be used to allow for the automated extraction

of numbers and units from text.

Acknowledgments

The authors would like to thank Australian Science Innovations for access to data from

the 2023 Australian Physics Olympiad. This research was supported by a scholarship

from CSIRO’s Data61. The ethical aspects of this research have been approved by the

ANU Human Research Ethics Committee (Protocol 2023/1362). All code can be accessed

on GitHub at https://github.com/lachlanmcg123/CONFOLD. We thank Daniel Smith

for helpful comments.

References

Agresti, Alan and Coull, Brent A. 1998. Approximate is better than “Exact” for inter-
val estimation of binomial proportions. The American Statistician 52, 2, 119–126. doi:
10.2307/2685469.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.2307/2685469
https://doi.org/10.1017/S1471068424000346

L. McGinness and P. Baumgartner680

Allen, Sam, Ferro, Christopher A. T. and Kwasniok, Frank 2023. A conditional decomposi-
tion of proper scores: quantifying the sources of information in a forecast. Quarterly Journal
of the Royal Meteorological Society 149, 754, 1704–1725. doi: 10.1002/qj.4478.

Baumgartner, Peter and Tartaglia, Elena 2023. Bottom-up stratified probabilistic logic
programming with fusemate. EPTCS 385, 87–100.

Brier, Glenn W. 1950. Verification of forecasting expressed in term of probablity I. Monthly
Weather Review 78, 1, 1–3. doi: 10.1175/1520-0493(1950)0780001.

Carenini, Giuseppe, Ng, Raymond T. and Zwart, Ed 2005. Extracting knowledge from evalua-
tive text, Association for Computing Machinery, InProc. of the 3rd international conference on
Knowledge capture, K-CAP ’05, New York, NY, USA, 11–18, doi: 10.1145/1088622.1088626

Chen, Tianqi and Guestrin, Carlos 2016. XGBoost: A Scalable Tree Boosting System,
Association for Computing Machinery, Proc. of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, New York, NY, USA,
785–794, doi: 10.1145/2939672.2939785.

De Raedt, Luc, Kimmig, Angelika and Toivonen, Hannu January 2007. ProbLog: a probabilis-
tic prolog and its application in link discovery. Proc. of the 20th international joint conference
on Artifical intelligence, IJCAI’07, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc, 2468–2473.

Honnibal, Matthew and Montani, Ines. 2017. SpaCy 2: natural language understanding
with bloom embeddings, convolutional neural networks and incremental parsing. URL:
https://spacy.io/. [Accessed on February 1, 2024].

Jewson, Stephen . 2004. The problem with the Brier score. arXiv:physics/0401046.

Kaggle. 2012. Titanic-Machine Learning from Disaster. Kaggle. URL: https://kaggle.com/
competitions/titanic

Kelly, Markelle, Longjohn, Rachel and Nottingham, Kolby. 2024. Home - UCI Machine
Learning Repository. URL: https://archive.ics.uci.edu/.

Law, Mark, Russo, Alessandra, and Broda, Krysia. 2020. The ILASP system for inductive
learning of answer set programs. Theory and Practice of Logic Programming, 20(4-5), 633–652.
https://doi.org/10.1017/S1471068420000257

Liu, Jing, Yu, Jin, Lin, Shen, Zhang, Guodong, Zhang, Shuo, Li, Min and Lin, Xiaoyue.
2023. Research on rainbow probabilistic forecast model based on meteorological conditions in
ZhaoSu region. Meteorological Applications 30, 3, e2131. doi: 10.1002/met.2131.

Liu, Qing, Wang, Jing, Zhang, Dehai, Yang, Yun and Wang, NaiYao 2018. Text features
extraction based on TF-IDF associating semantic. In 2018 IEEE 4th International Conference
On Computer and Communications (ICCC), 2338–2343, 10.1109/CompComm.2018.8780663.
URL https://ieeexplore.ieee.org/document/8780663

Murphy, Allan H. and Epstein, Edward S. 1967. A note on probability forecasts
and “Hedging”. Journal of Applied Meteorology and Climatology 6, 6, 1002–1004.
doi: 10.1175/1520-0450(1967)006, Publisher: American Meteorological Society Section:
Journal of Applied Meteorology and Climatology, URL https://journals.ametsoc.

org/view/journals/apme/6/6/1520-0450_1967_006_1002_anopfa_2_0_co_2.xml.

Padalkar, Parth, Wang, Huaduo and Gupta, Gopal 2024. NeSyFOLD: a framework for inter-
pretable image classification. Proceedings of the AAAI Conference On Artificial Intelligence
38, 5, 4378–4387. doi: 10.1609/aaai.v38i5.28235. URL https://ojs.aaai.org/index.php/

AAAI/article/view/28235.

Quinlan, J. R.1987. Simplifying decision trees. International Journal of Man-Machine Studies
27, 3, 221–234. doi: 10.1016/S0020-7373(87)80053-6, URL https://www.sciencedirect.com/

science/article/pii/S0020737387800536,

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1002/qj.4478
https://doi.org/10.1175/1520-0493(1950)0780001
https://doi.org/10.1145/1088622.1088626
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1002/met.2131
https://doi.org/10.1109/CompComm.2018.8780663
https://doi.org/10.1175/1520-0450(1967)006
https://doi.org/10.1609/aaai.v38i5.28235
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1017/S1471068424000346

Explainable machine learning 681

Quinlan, J. R. 1990a. 5 - Probabilistic decision tree. In Machine Learning, KodratoffYves
and MichalskiRyszard S. Eds. San Francisco (CA): Morgan Kaufmann, 140–
152. doi:10.1016/B978-0-08-051055-2.50011-0, URL https://www.sciencedirect.com/

science/article/pii/B9780080510552500110, ISBN 978-0-08-051055-2.

Quinlan, J. R. 1990b. Learning logical definitions from relations. Machine Learning 5, 3,
239–266. doi: 10.1023/A:1022699322624.

Shakerin, Farhad, Salazar, Elmer and Gupta, Gopal. 2017. A new algorithm to automate
inductive learning of default theories. Theory and Practice of Logic Programming 17, 5-6,
1010–1026. doi: 10.1017/S1471068417000333. ISSN 1471-0684, 1475-3081.

Vicient, Carlos, Sánchez, David and Moreno, Antonio. 2013. An automatic approach
for ontology-based feature extraction from heterogeneous textualresources. Engineering
Applications of Artificial Intelligence 26, 3, 1092–1106. doi 10.1016/j.engappai.2012.08.002.

Wang, Huaduo. 2022. Explainable AI algorithms for classification tasks with mixed data.
URL: https://utd-ir.tdl.org/items/89289f1a-c517-42bc-bb32-a7f3337a7410

Wang, Huaduo and Gupta, Gopal 2022. FOLD–R++: a scalable toolset for automated induc-
tive learning of default theories from mixed data. In Functional and Logic Programming.
Hanus, Michael and Igarashi, AtsushiEds. Springer International Publishing, 224–242.
doi: 10.1007/978-3-030-99461-7˙13, ISBN 978-3-030-99461-7.

Wang, Huaduo and Gupta, Gopal 2023. FOLD-SE: an efficient rule-based machine learn-
ing algorithm with scalable explainability. In Practical Aspects of Declarative Languages,
Gebser, Martin and Sergey, Ilya Eds. Springer Nature Switzerland, pp. 37–53.
doi: 10.1007/978-3-031-52038-9˙3.

Wang, Huaduo, Shakerin, Farhad and Gupta, Gopal 2022. FOLD-RM: a scalable, efficient,
and explainable inductive learning algorithm for multi-category classification of mixed data.
Theory and Practice of Logic Programming 22, 5, 658–677.

Wilson, Edwin B.1927. Probable inference, the law of succession, and statistical inference.
Journal of the American Statistical Association 22, 158, 209–212. doi: 10.2307/2276774

Zhenzhen, Qiand Z.Q. 2024. English sentence semantic feature extraction method based on
fuzzy logic algorithm. Journal of Electrical Systems 20, 1, 262–275. doi: 10.52783/jes.681,
URL https://journal.esrgroups.org/jes/article/view/681.

https://doi.org/10.1017/S1471068424000346 Published online by Cambridge University Press

https://doi.org/10.1016/B978-0-08-051055-2.50011-0
https://doi.org/10.1023/A:1022699322624
https://doi.org/10.1017/S1471068417000333
https://doi.org/10.1016/j.engappai.2012.08.002
https://doi.org/10.1007/978-3-030-99461-7_13
https://doi.org/10.1007/978-3-031-52038-9_3
https://doi.org/10.2307/2276774
https://doi.org/10.52783/jes.681
https://doi.org/10.1017/S1471068424000346

	Introduction
	2 Formal framework and background
	3 Related work
	4 The CON-FOLD algorithm and confidence scores
	Improvement threshold pruning
	Confidence threshold pruning

	5 Inverse Brier Score
	6 Manual addition of rules and physics marking
	Results
	Discussion
	Conclusion and future work
	References

