BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 313-314.

A non-cyclic, locally free, free-by-cyclic group all of whose finite factor groups are cyclic

Gilbert Baumslag

We construct a group G with the properties stated in the title.

We construct here a group G with the properties described in the title of this note. The properties of G should be viewed in the context of the following theorem:

A finitely generated cyclic extension of a free group is residually finite [1].

We construct G as a direct limit of free groups $G_i = \langle a_i, b_i \rangle$ of rank two. To this end let $\phi_i : G_i \neq G_{i+1}$ be defined as follows:

$$a_i \phi_i = b_{i+1}^{-(i+1)!} a_{i+1}^{-1} b_{i+1}^{(i+1)!} a_{i+1}$$
, $b_i \phi_i = b_{i+1}$, $i = 1, 2, ...$

It follows easily that ϕ_i is a monomorphism. The groups G_i together with the monomorphisms ϕ_i constitute a direct system. The direct limit of this system is the desired group G. As usual we identify, for example, a_i with its image $a_i\phi_i$. Then G is the union of its subgroups G_i . Moreover, if we put $b_1 = b$, then $b_i = b$ for all i.

In order to see that G has the desired properties, let N_i be the normal closure in G_i of a_i . Then it is not hard to show that N_i is a

Received 16 November 1971. The author gratefully acknowledges support from the National Science Foundation.

free factor of N_{i+1} . Therefore the union N of these subgroups N_i is a free group. But N is the normal subgroup of G generated by the elements a_1, a_2, \ldots . It follows easily that G/N is infinite cyclic on bN, which means that G is free-by-cyclic as claimed. In addition G is locally free because it is an ascending union of free groups. It remains only to show that every finite factor group of G is cyclic.

Let K be a normal subgroup of G of finite index, n say. Then, working modulo K, we have

$$a_n \equiv b_{n+1}^{-(n+1)!} a_{n+1}^{-1} b_{n+1}^{(n+1)!} a_{n+1} \equiv a_{n+1}^{-1} a_{n+1} = 1 \quad (K)$$

This implies that $N_n \leq K$. Since $N_i \leq N_n$ when $i \leq n$, it follows that $N_i \leq K$, for $i \leq n$. However a similar inductive argument shows that $N_i \leq K$ for every i. So $N \leq K$. Therefore G/K is cyclic, as claimed. This completes the proof that G is a group of the desired type.

Reference

[1] Gilbert Baumslag, "A non-cyclic one-relator group all of whose finite quotients are cyclic", J. Austral. Math. Soc. 10 (1969), 497-498.

Rice University, Houston, Texas, USA.