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Abstract. We present the results of numerical particle-in-cell (PIC) simulations of the magnetic
field generation and decay in the upstream of collisionless shocks. We use the model, where the
magnetic field in the incoming flow is generated by continuous injection of anisotropic electron-
positron pairs. We found that the continuous injection of anisotropic plasma in the upstream of
the shock-wave generates the large-scale, slowly decaying magnetic field that is later amplified
during the passage of the shock front. In our simulations the magnetic field energy reached
∼ 0.01 of the equipartition value, after that it slowly decays on the time scale proportional to
the duration of the injection in the upstream. Thus, the magnetic field survives for a sufficiently
long time, and supports efficient synchrotron radiation from relativistic shocks, e.g., in GRBs.
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1. Introduction
Relativistic collisionless shocks are common phenomena in extreme astrophysical sources

like AGNs and GRBs. Such shocks are thought to be capable of generating strong
magnetic fields and particle acceleration (Achterberg et al. (2001), Gruzinov (2001),
Medvedev & Loeb (1999)). This makes them natural sources of synchrotron emission.
These theoretical predictions have been tested by various numerical simulations
(Spitkovsky (2008), Keshet et al. (2009), Sironi et al. (2013), Sironi et al. (2015)).

However, these numerical simulations have discovered some problems in this simple
picture. It was found that the magnetic field generated at the shock front via Weibel
instability decays very fast on the time scale comparable to the inverse plasma frequency.
If the strong magnetic field initially exists in the upstream, then no particle acceleration
is observed. So, strong magnetic fields and particle acceleration never meet each other,
leaving no room for efficient synchrotron emission.

Solution to this problem could be linked with presence of magnetic turbulence in
the upstream flow (Medvedev & Zakutnyaya (2009), Miloslavljevic & Nakar (2006)).
Recently a new model of the relativistic collisionless shock was proposed (Derishev &
Piran (2016)), where the magnetic field growth is a two-stage process. In the first stage,
the magnetic field is generated upstream of the shock as a result of massive production of
electron-positron pairs with anisotropic velocity distribution in the fluid comoving frame.
The width of this region is about the electron cooling length, which is many orders of
magnitude greater than the plasma skin depth, so that the magnetic field is growing very
slowly and could be maintained for a very long period of time compared to the plasma
time scale. In the second stage, this magnetic field is enhanced at the shock front, and
then decays in the downstream. According to the model, the decay length is given by the
spatial scale of the turbulent magnetic field formed at the long stage of initial build-up.
The goal of this model is to achieve the magnetic field decay length comparable to the
electron cooling length.
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In this paper we present results of PIC simulations of the magnetic field generation
in the upstream of collisionless shocks. The magnetic field build-up results from slowly
developing Weibel instability in initially isotropic pair plasma with gradual injection
of anisotropic component via generation of electron-positron pairs in collisions of high-
energy photons escaping from the shock. In our simulations, we follow the evolution of
a small (and, therefore, uniform) region in the comoving frame. Simulations start in the
upstream with constant injection rate for anisotropic e+e− pairs, passes through a phase
of the magnetic field growth, the rate of which depends on the rate of injection, and ends
with the observation of the magnetic field decay.

2. Overview of simulation setup
For our simulations we use relativistic PIC-code EPOCH (Arber et al. (2015)) in

Cartesian 2D geometry (x- and y- axis are in the simulation box, z-axis perpendicular
to the simulation box) with periodic boundary conditions. The code was modified to
allow injection of new electron-positron pairs (Garasev & Derishev (2016)). During the
injection step we randomly distribute particles across the computational domain ensuring
that there is no perturbation to the total momenta, charge or current. For this purpose
we simultaneously inject two electron-positron pairs with equal but oppositely directed
velocities. We take 1000 particles per cell per species in each simulation in order to
reduce the numerical noise. The low noise levels are necessary to explore the decay of the
magnetic field on long time scales.

Initially our simulation box was filled with isotropic Maxwellian e+e− plasma whose
distribution function is
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where me is the electron mass, Tx,y ,z the temperatures measured in the energy units,
p the momentum of a particle and N0 the number densities of electrons and positrons.
The initial temperature was set to Tx,y ,z = 50 keV. We used Cartesian 2D grids with
uniform mesh with 1600 × 1600 cells. The size of a cell in each direction was set to
rD =

√
kT/(8πe2N0). Here e is the elementary charge. Injection of anisotropic pairs

starts at the beginning of each simulation at the moment ti < 0, continues with a
fixed rate, and then stops at t = 0. The injected plasma has elongated two-temperature
distribution function with Tx = 200 keV and Ty,z = 50 keV. The total number density
of the injected component is δ times the initial number density of particles. We track the
evolution of a magnetic field for up to 15000/ωp0 , where

ωp(t) =
√

8πe2(N0 + Na(t))/me

is the plasma frequency, ωp0 = ωp(−ti) the background plasma frequency and Na(t) is
the number density of injected component. It is convenient to use dimensionless time

τ =

t∫
−t i

ωpdt − τi, τi =

0∫
−t i

ωp dt . (2.1)

3. Results
We performed a number of simulations with different injection durations. In agreement

with the standard picture of the Weibel instability, the magnetic field filaments start to
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Figure 1. Magnetization parameter (the ratio of the magnetic energy density to the particles
energy density) εB over time for different injections: instantaneous (solid line), ωp0 ti/(2π) = 500
(dashed line), and ωp0 ti/(2π) = 2000 (dash-dotted line). In all simulations δ = 2.
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Figure 2. The average wavelength of magnetic field filaments 〈λ〉 at the end of the injection
phase as a function of τi − τm ax , where τm ax is the time of the maximum magnetic field energy.

grow with relatively small spatial scales. The fastest growing modes have their wave
vectors nearly perpendicular to the axis of anisotropy. The growing magnetic field de-
flects the particles and smears out the anisotropy, eventually stopping the magnetic field
growth. After that the magnetic filed starts to decay. The decay rate is largest for the
short wavelengths. Thus, in the decay phase the spatial scale of the magnetic turbulence
grows.

In Fig. 1 we plot three examples of the magnetic field evolution with different injection
duration (as observed in our simulations). The maximum value of the observed peak
magnetization is about 0.01. This relatively small value is probably due to the small
anisotropy of injected component used in our model. It is clearly seen, that the longer
injection time corresponds to lower peak magnetization and to longer decay time. As a
result, after certain time, the magnetic field generated by long injection overcomes the
magnetic field generated by short injection.We attribute this to a larger spatial scale of a
magnetic field at the moment of maximum magnetization and to subsequent washing-out
of modes with short wavelengths during the rest of injection period (See Fig. 2). From
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Figure 3. Dissipation timescale τd of a magnetic field (it is defined as
τd = (τ2 − τ1 )/ ln(εB (τ1 )/εB (τ2 )), where τ1 = 0.1 τi and τ2 = 0.25 τi are two moments of
time after injection has stopped) as a function of the injection time.

the simulations we found that the typical spatial scale of the generated magnetic field is
much larger than the plasma skin-depth c/ωp and increases with injection time as

〈λ〉 ∝ (τi − τmax)1/3 .

In Fig. 3 we present the measured dependence of the magnetic field dissipation time as
a function of the injection time. We observed that the field dissipation time approximately
equals to the injection duration a least up to ti = 20000ω−1

p .
We show that the prolonged injection leads to build-up of relatively large-scale mag-

netic field in the upstream due to development of the Weibel instability. Moreover, this
large-scale magnetic field could be amplified at the shock front preserving its scale and
then could survive for a long time in the downstream, explaining efficient synchrotron
emission from relativistic shocks, e.g. in GRBs.
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