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Let R be a ring, see below for other notation. The functor categories (mod-/?,Ab) and
((/?-mod)op, Ab) have received considerable attention since the 1960s. The first of these has
achieved prominence in the model theory of modules and most particularly in the investiga-
tion of the representation theory of Artinian algebras. Both [11, Chapter 12] and [8] contain
accounts of the use (mod-/?, Ab) may be put to in the model theoretic setting, and Aus-
lander's review, [1], details the application of (mod-/?, Ab) to the study of Artinian algebras.
The category ((/?-mod)op, Ab) has been less fully exploited. Much work, however, has been
devoted to the study of the transpose functor between 7?-mod and mod-/?. Warfield's paper,
[13], describes this for semiperfect rings, and this duality is an essential component in the
construction of almost split sequences over Artinian algebras, see [4]. In comparison, the
general case has been neglected. This paper seeks to remedy this situation, giving a con-
crete description of the resulting equivalence between (mod-/?, Ab) and ((/?-mod)op, Ab)
for an arbitrary ring /?.

The first two sections are concerned with detailing an equivalence between ((/?-mod )op,
Ab) and (mod-/?, Ab). The main result, Theorem 2.5, states that the equivalence between
these categories may be built from the functors Tor(-,-) and Ext(-,-). Parts of this theorem
are well known. For instance the functor Tor(-,-) has been extensively studied in this setting
when R is an Artinian algebra, see [3]. In the third section this equivalence is applied to the
Ziegler spectra of /?. In Theorem 3.3, it is shown that the sets {M | fp-inj.dimM < n] and
{jV|w.dinr/V < n\,n a natural number, are closed in their respective spectra when /? is left
coherent. Furthermore, it is also demonstrated that these sets are mapped onto each other
under Herzog's correspondence between the closed sets of the Ziegler spectra, [7, Theorem
5.5]. The main result of Section 3, Corollary 3.4, states that when R is left coherent both
spectra are test spaces for right finititistic weak dimension of /?. Two special cases are noted:
when R is left Noetherian and when /? is left coherent and right perfect.

Throughout R denotes an associative ring with unity. Mod-/? is the category of right
/?-modules, mod-/? the category of finitely presented right /?-modules, mod-/? is the quotient
category of mod-/? modulo the ideal of those maps that factor through a projective. The left
handed analogues of these categories are written as /?-Mod, /?-mod and /?-mod, respectively.
If C is a small additive category then (C, Ab) (respectively (Cop, Ab)) is the category of cov-
ariant (respectively contravariant) additive functors from C to the category of abelian
groups; (C, Ab)fp is the category of finitely presented objects of (C, Ab). If F e /?-mod and
G € mod-/? then ( - , / • )£ ((/?-mod)op, Ab) and (G, - ) e (mod-/?, Ab) are the corresponding
projective objects.

All tensors are over R and for L, M e /?-Mod, N eMod-R, Tor(/v\ M) = Torf (TV, M)
and Ext(L, M) = Ext)j(L, M). If M is a (left or right) /?-module then w.dim M is the weak
dimension of M and fp-inj.dimM is the fp-injective dimension of M. Let M e R-Mod, recall
that w.dim M is the least natural number n such that Tor*+|(—, M) = 0 and is infinite if no
such natural number exists. The fp-injective dimension of M is the least natural number m
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168 ELWOOD WILKINS

such that Ext^+1(F, M) = 0 for each F e R-mod and is infinite if no such number exists. The
fp-injective dimension is only well behaved over coherent rings; R is left coherent if and only
if, for each left ^-module M, fp-inj.dim M = m implies Ext^+k(F, M) = 0 for each F e R-
mod and k > 1. Set r.fdR to be the right finitistic weak dimension of R, that is
r.fd7? = sup{w.dim N\N e Mod-R, w.dim TV < oo}, see [12] and [5].

The left Ziegler spectrum of R is written as «Zg, Zg« denotes the right Ziegler spectrum.
The reader is referred to [7] and [9] for the theory of the Ziegler spectrum in categorical set-
ting employed in this paper, and to [14] for the original model theoretic exposition.

1. The functor Tor: ((fl-mod)op, Ab) -> (mod-/?, Ab). Let M be a left /^-module; (-, M)
denotes the corresponding representable object of the category ((/?-mod)op, Ab), P(-,A/)
denotes the subobject of (-,M) consisting of those homomorphisms that can be factored
through a projective module and we set (—, M) — ( - , M)/P(—, M). For H e /?-mod and
x G (H, M) it is easily shown that x e P(H, M) precisely when x can be written as x = J2 Siyi->
for some g,- : H -*• R and y; e (R, M).

LEMMA 1.1. Let Rm—>R"-^+H -*• 0 be a presentation of H e R-mod. Then, considering
(H,M) as a subgroup of (Rn, M),xe (H, M) if and only ifWx-0 and x e ?(H, M) if and
only ifx= Vy for some V e(R", Rp) satisfying WV = 0 and some y e (Rp, M).

Proof The stated characterisation of (H, M) is immediate from the exact sequence
0 -+ (H, M) -> (Rn, M) -> (Rm, M).UVe (R", Rp) satisfies WV = 0 then V = wg for some
g: H^> Rp. That lm(V, M) c P(H, M), under the given identification of (H, M), follows.
Let x = YH=\ giyi G ?(H, M), where gr. H ^ R, yt e (R, M), and let v, = wgh Set V: R" ->•
Rp to be the matrix whose i'th column is v,, then WV = Ww^gi — 0 and wx = J2 wgiy* =
W(yi) as required.

L e t / : F^> G e mod-/?. Fix presentations Ra - ^ Rb-^F-+ 0, Rc-^Rd-^-G ->• 0 and
pick matrices A, B which provide a commutative diagram

Ra J1+ Rb -1+ f _ + 0

^U IB If (1)
/?c -^ Rd -^ G —>• 0

Set [/* : Rb-^Ra e /?-mod etc. to be the i?-dual of U etc. and let

Z?*j | y l* | / T (2)
/?* JX R" ^ FT —> 0

be the resulting diagram with exact rows between finitely presented left i?-modules. The
modules FT etc. are called transposes of Fete, and likewise the homomorphisms/1 etc. are
called transposes of/etc.
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It is convenient to work with matrices by considering their action on the bases of the free
/{-modules. Let

^M1' V: Pk "-* E/ a ' V l k '
pkaki, B-.itj^ £ ^ a,by

where {i>,-} etc. are the bases of the appropriate free right /^-modulus, so that
£ • bijUji = J2k vik°ki for each / and /. All the above notation is fixed for the remainder of this
section.

Let M be a left .R-module. There is an exact sequence 0 -> Tor(/\ M) ->
Im U ig> M -> Rb ® M. We may thus identify Tor(F, M) with a subgroup of ImC/ <g> M and as
such

Tor(F, M) =

Using the identifications of Lemma 1.1, it is apparent that there is an epimorphism

t' : (Fy,M) ^ Tor(F, M)

Let U*W = 0,Wye P(FT, M) and write W=(win),y = (yn). Then t'{Wy) = /
( £ „ M'taJ'n) = E « ( E y ^ £,• "y/W/«) <8> J« = 0 and P^ 1 " , A/) < Keri'. Assume now that
(*,•) 6 Ker?'. From the exact sequence K e r [ / ® M - > Ra ® M -+ \mU ® M -»• 0, we have
that £> , -®* i = £ „ ( £ , v , ^ ) <8)>;n, for suitable £,v,w,« e Kert/,j>n e M. Let W={win),
then t/*H^=0 and (x,) = W{yn). Thus P^1", A/) = Kert'. We have proved the following
generalisation of [3, Proposition 2.2].

LEMMA 1.2. For F e mod-/?, M € R-Mod and any choice of F1, there is an isomorphism

t% : (Fr,M) -+ Tor(F, M).

LEMMA 1.3. For M e /?-Mod and any choice of the matrices in (1), the square

(FT,M) -L lox{F,M)
<fT,M) 4- I Tortf,M)

(GTM) - ^ Tor(G,M)

commutes.
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Proof. Let x = Qc,) + P(FT, M) 6 (FT, M), then

LEMMA \A.Letg : M ^ N e R-Modandx e (FT, M), thenf%[(F\g)x] = (tfx)Tor(F,g).

Proof. Set x = (x,) + P(FT, A/), then

LEMMA 1.5. Let M e R-Mod and A e ((i?-mod)°P, Ab satisfy P(-, M)<A<(-,M).
Define T(A)(F) = [t$x\x e A(FJ)/P(FT, M)} and T(A)(J): tfx ^t%(x(JT, M)), then T(A) e
mod-R,

Proof. In the diagram (1), assume that F= G and / is the identity. Then Tor(/, M) :
tpx ^->t%(x(fT, A/)) is an isomorphism. Since tfx 6 T(A)(F) gives t^jxjf1, A/)) e r(^)(G),
the restriction of Tor(/, A/) to T(,4) is well defined and is also an isomorphism. Thus T(A)(F)
is independent of the choice of transpose of F. Likewise T(A)(f) is independent of the choice
of the transpose of/and T(A): mod-j? ->• Ab is a well defined map. It remains to verify that
T(A) is an additive functor. The required properties are inherited from Tor(—, M).

LEMMA 1.6. Let g : M ->• N e R-Mod and a : A ->• B e ((i?-mod)op, Ab) satisfy P(- , M)
<A<{-, M), P(-, N)<B<{-,N) and A^- (-, Mp4l~, ^0 = A AB -> (_; AQ. Define
T(a): T(^) -»• T(B) by T(a)F : Z^x ^t%[(FT, g)x]. Then T(a) : T(^) -> 7(5) € (mod-/?, Ab).

Prao/. As Im(/4/P(-,Af)-» (-,AQ ^=» (-, AQ) < B/P(-, AQ, the restriction of
Tor(-,g) to T{A) does give a map T(a): 7T[/4) -»• T(B). That 7T(a)f is independent of the
choice of transpose follows from Lemma 1.3 and that T(a) is a natural follows from the same
lemma and Lemma 1.4. That T(a) is additive follows from the additivity of Tor(-,g).

Let ft : C -> D e ((J?-mod)op, Ab). Construct a diagram

0 -
a

0 -

> A —
I
* B -

-» (—, M) —
4- (-.*)

-> (-,A0 -

-»• C-

4-
-> £> -

»0

>0
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with M and N pure-projective left /?-modules. Clearly g : M -*• N and a : A -*• B satisfy the
hypotheses of Lemma 1.6. Define Tor: (/?-mod)op, Ab) -» (mod-/?, Ab) by Tor(C)
= Tor(—, M)/T{A) and setting Tor(^) to be the unique map which makes the diagram

0-> T(A) -
•)i
T(B) -

-+ Tor(-, M) -

•+ Tor(—, N) —

-> Tor(C) ->
4- Tor(/3)

- • T o r ( D ) - •

0

0

commute.

THEOREM 1.7. Tor(^): Tor(C) -*• Tor(Z)) « independent (up to isomorphism) of the
choice of g : M -» /V. //e«ce Tor : ((/?-mod)op, Ab) ->• (mod-/?, Ab) w a we// defined additive
functor.

Proof. It is routine to check that Tor(C) is well defined up to isomorphism and that,
having fixed g, Tor(/S) is likewise well defined. That Tor is an additive functor follows.

2. The functor Ext: (mod-/?, Ab)->((fl-mod)O|\ Ab). Let A € (mod-,/?, Ab), then A is an
object of ("mod-/?, Ab) if and only if A{P) = 0 for each projective P e mod-i?, or equivalently
if and only if A(R) = 0. It follows that each A e (mod-/?, Ab) has a unique largest subobject,
eA, which is an object of (mod-/?, Ab). If a : A -*• B e (mod-/?, Ab), then ea : eA -*• eB is
defined by restriction. Observe that e is a torsion radical; in particular Hom(eA, B/eB) = 0
for A, B e (mod-/?, Ab). If g : M -*• N € /?-Mod, then we abbreviate s(— <g> g) : e(— <g> M) -»•
e(— ® N) to sg : sM -*• sN.

Assume that (1) is a commutative diagram in /?-mod with exact rows. As before U* etc.
are the /?-duals of U etc. and (2) denotes the induced diagram in mod-/? with exact rows.
Again FT,fT etc. are called transposes of F,/etc. If M e R-Mod and x 6 M" then, abusing
notation, x also denotes the corresponding homomorphism x : Ra —> M.

LEMMA 2.1. Let M € R-Mod and xeM", then («' ® M)x e eM(FJ) if and only if
Kerf/<Kerx.

Proof. Assume that Kerf/ < Kerx and let h : FT -» /?. Set r* = hu' : R" -> R and let
/• = r** : R -> Ra be its /?-dual. Then hu'U* = 0 gives rf/ = 0 and r e Kerx. Thus {h ® M)
(«' (8) A/)* = rx = 0 and («' ® AO-̂  e eM(FT). Conversely assume (w' ® A/)JC e £M(FT) and let
r 6 KerC/. If r* : R" ->• /? denotes the /{-dual of r : /? ->• /?", r*C/* = 0 gives r* = AM' for some
h:Fr^R. Then rx = (h® M)(u' <g>M)JC = 0 and KerC/ < Kerx.

Let / = Im U and let Ra -M- Rb = /?" -4- / -V /?* be the epi-moni factorisation of f/. Lemma
2.1 gives an epimorphism

e' : (I, M) -
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LEMMA 2.2. The map e' induces an isomorphism

e% • Ext(F, M) -* eM(FT)

Proof. It is enough to show that g e Kere' if and only if g factors through i. Certainly
e'(ix) = (1/ <g> M)(mx) = (u'U* ® M)x = 0. Suppose («' ® M)x = 0 then, by the right exact-
ness of — (g> M, x = (£/* ® M)y = f/y for some y e Mb. Writing x — ng : Ra -> M,ng = my
and g = ly.

LEMMA 2.3. Let g : M -> N e i?-Mod. Then the squares

Ext(G, M)
Ext(/-.Af) I

Ext(F, M)

X EM(Gr)
4- eM(fr)

-X sM(FJ)

Ext(F, M)
Ext(/;g) 4,

Ext(F, N)

^ eM(Fr)

4- %f

X eN(FT)

commute.

Proof. If h: I-> M,H denotes the corresponding element of Ext(F, A/); a similar con-
vention will be used for other Ext groups.

Let Rc -H f -4-Rd be the epi-moni factorisation of V. The matrix A induces a map
a-.I^-I' which satisfies na = An1. Kh-.I'^-M, then AExt(/, M) = (ah). We have

eM(fT)[e%h] = ( / V (8i hfA.it!h)

= («' ® M)(nah)

= ef[hExt(f M)]

and the left hand square commutes.

ifh.I^-M, then ~h~Ext(F, g) = (tig). Thus

(efh)sgFT = [(*/ (g

and the right hand square commutes as well.
Let a : A -> B e (mod-/?, Ab); set - <g> M and - <8> N to be the respective injective

envelopes of A and 5 in (mod-/?, Ab). Pick g : M -> ./V such that y4 ->• - ® M—* - ®JV =
yl A 5 -*• — <3> N. Since ea = a, we have an induced commutative square

A —> sM

B —+ eN

Define Ext: (mod-/?, Ab) -» ((/?-mod)op, Ab) on objects by Ext(A)(F) = {h\e^h e A(Fr)}
and set Ext(a): Ext(^) -+ Ext(B) to be the restriction of Ext(- , g).
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THEOREM 2.4. Ext: (mod-R, Ab) -»• ((/?-mod)op, Ab) is a well defined additive functor.

Proof. That Ext(A) e ((7?-mod)op, (Ab) and that Ext(A) is independent__(up to iso-
morphism) of the choice of M is routinely verified. If e^Ji e A(FT), that eN

FJhg) e B{FT) is
easily checked (using Lemma 2.3), and thus the definition of Ext(a) makes sense. That Ext is
a functor follows and the additivity of Ext is inherited from the additivity of Ext(—, —).

THEOREM 2.5. Let A e((R- mod)op, Ab), B e (mod-/?, Ab). There are natural iso-
morphisms A ^ Ext(Tor(^)), Tor(Ext(£)) ^ B. Hence the pair (Ext, Tor): (mod-R, Ab) ->•
((i?-mod)op, Ab) is an equivalence.

Proof. We construct the natural isomorphism r\A : A -*• Ext(Tor(y4)), the isomorphism
Tor(Ext(2?)) = B is left to the reader. Let N e /?-Mod be pure-projective and 0 -> C ->
(—, AO -^A -*• 0 exact. Let — <g> M be the injective envelope of Tor(^) and ft : Tor(,4) ->• sM
the embedding. If yGx e_A(G), then t%(x + P(G, N)) + T(Q (GT) = («' ® AT)^'^ for some
/ : / ' ->• M. Set rif-ycx = h, which by definition is an element of Ext(Tor(,4))(G). Consider the
following squares:

A{G)
mi
A(F)

—^ Ext(Tor(y4))(G)
i Ext(Tor(/l))(/)

- ^ Ext(Tor(A))(F)

(G,N) —
(f.tf)i
(F, N) —

^ Ext(G, M)
| Ext^.AO

^ ExtfF, M)

The map y is an epimorphism and ExtQS) is monic (it is the restriction of Ext(—, 1A/)). Thus
to show that the left hand square commutes, it is enough to show that the right hand square
commutes. Set ep = e*p', eg = e£f and for g e (—,N) let g be the corresponding element of
(-AQ-

(f, M) = \Ext(fi)c(g + C(G))]Ext(/, M)

= e-F
l[(Tor(fT,N)tG

!g)+T(Q(FT)]

= ExWFyf(g(f, AO).

Therefore both squares commute and r\A : A -+ Ext(Tor(^)) e ((J?-mod)op, Ab). Since A and
Ext(Tor(^4)) have isomorphic underlying groups and that the isomorphism between these
groups is r)A, it follows that r\A is a natural isomorphism. Finally it can be checked that if
S:A^A'€ ((R-mod)op, Ab), then &r\A' = ^Ext(Tor(S)). This completes the verification
that Ext o Tor is isomorphic to the identity functor.
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3. The finitistic weak dimension. Recall, [14], that «Zg has points the indecomposable
pure-injective left /?-modules. By [8, Theorem B.16], we may consider the points of «Zg to be
the indecomposable injective objects of ((mod-/?), Ab). We shall switch between both for-
mulations of the points of «Zg without comment. The closed sets of «Zg are in correspon-
dence with the Serre subcategories of (mod-i?, Ab)fp, [7, Theorem 3.8] and [9, Corollary
2.10]. Let C be a closed set of RZg and S a Serre subcategory of (mod-/?, Ab)fp, this corre-
spondence is given by

C ^{A e (mod-R, Ab)fp|Hor<4, C) = 0},

S H->ES = [M eR Zg|Hom(5, - <g> M) = 0}.

If T is a subset of (mod-/?, Ab)fp, (T) denotes the smallest Serre subcategory of (mod-R, Ab)fp

containing T.

LEMMA 3.1. [7, Proposition 3.3]. If T is a subset of (mod-i?, Ab)fp, then S(T) =
{M e«Zg|Hom(T, - <g> M) = 0}.

Auslander [2] and Gruson and Jensen [12] showed that there is a duality D : (mod-/?,
Ab)fp - • (/?-mod, Ab)fp which is defined on objects by DA(F)= Hom(,4, - ® F),
(F e R-mod, A e (mod-/?, Ab)fp). This duality induces an order preserving bijection between
the Serre subcategories of (mod-/?, Ab)fp and those of (/?-mod, Ab)fp, [7, Theorem 5.5].
There is thus an equivalence between the closed sets of «Zg and ZgR. If S c (mod-/?, Ab)fp is
a Serre subcategory, then VS is the corresponding Serre subcategory of (/?-mod, Ab)fp, and
if C c RZg is closed, then C* denotes the corresponding closed subset of ZgR.

PROPOSITION 3.2. R is left coherent if and only if Tor( - , F) e (mod-/?, Ab)fp for each
F G R-mod. IfR is left coherent, Tor*(- , F) s {mod-R, Ab)fp/or each F e R-mod and n >0.

Proof. Let F e R-mod and fix a presentation R"-^-Rb-^F-^ 0. Let
FT -*• 0 be as before and / = imU, J = Kerf/. Construct the commutative diagram with
exact rows:

a I I I p
0 -> (FT, - ) —* (Ra, - ) —• A ^ 0

where A = Ker( - ® u). Since Tor(—, F) = Ker/S and ft is an epimorphism, there is an iso-
morphism Tor(—, F) s Coka. Thus Tor(—, F) is finitely presented if and only if Im a is
finitely generated if and only if / is finitely generated if and only if / is finitely presented. The
first statement follows. For the second statement, note that when R is left coherent and
n > 1, Torf ( - , F) ^ Tor(- , G) for some G e R-mod.

THEOREM 3.3 [7, Example 5.1]. Let R be a left coherent ring. For n > 0, set
Xn - [M € /{Zg|fp-inj.dimM < n], and yn = {N e Zg^|w.dim N < n\. Then Xn and yn are
closed sets of their respective Ziegler spectra andyn — X*n.
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Proof. Let F e /?-mod, M e R-MoA, N e Mod-/? and put A = Tor*+1(-, F). We start by
showing that Ext^+I(F, M) 3* Hom(,4, - ® M) and Tor*+1(iV, F) s* Hom(DA, N® - ) .

Set« = 0. Using the equivalence of Theorem 2.5, Ext(F, A/) ̂  Hom((-, F), Ext(-, A/)) £*
Hom((-, F), Ext(-, A/)) g Hom(/4, eA/) g HomQ4, - ® A/). Assume that N is finitely
presented, then Tor(JV, F) s Hom((AT, - ) , ,4) ̂  Hom(ZM, N ® - ) . For N arbitrary, write
N=l\mNj with each Nj finitely presented. Since - ® —, Tor(—,F) and Hom(D^,—) all
commute with direct limits, we have Tor(N, F) ^ limTor(yV,-, F) = \imHom(DA, N, ® —)

£ Hom(£> /4, N ® - ) . For « > 0, let 0 - • G—>P—>F ->• 0 be exact with P finitely generated
projective. Then Ext'^+I(F, M)^E\t"R(G, A/) = Hom(Tor,f(-, C), - ® Af) = Hom(A, - ® M).
Also Tor,f+1(JV, F) ^ Tor,f(M G) ̂  Hom(Z)(Tor^(-, G)),N® - ) ^ Hom(D/4, iV® - ) .

Set Tn to be the Serre subcategory of (mod-/?, Ab)fp generated by the objects
Tor,^+|(—, F) with Fe/?-mod. By Lemma 3.1, fp-inj.dimM < n if and only if
Hom(T,,, - ® M) = 0 and w.dim N < n if and only if Hom(PT«, iV ® - ) = 0. The theorem
follows from Xn = ETn and >>« =

We apply this theorem to the finitistic weak dimension of/?. Krause [10, Theorem 1], has
shown that for a two sided artinian ring, the finitistic projective dimension of the ring is the
supremum of the projective dimension of the points in the Ziegler spectrum with finite pro-
jective dimension. The following result generalises this, the proof is analogous.

COROLLARY 3.4. If R is left coherent then r.fd R = supfw.dimA'l./V e Zgs, w.dimTV
< oo} = sup{fp-inj.dimA/|A/ e «Zg, fp-inj.dimM < oo}.

Proof. If for some n > 0 and K e Mod-/?, w.dimK = n + 1 then Hom(Tn, A:® - ) ^ 0,
Hom(Tn+i, K® - ) = 0. Thus T,, properly contains Tn+\. Using the correspondence between
Serre subcategories of (/?-mod, Ab)fp and closed subsets of ZgR, this gives that Xn is properly
contained in Xn+\. Thus if N e Xn+\ \ Xn, w.dimA^ = n + 1. This proves the first equality.
Recalling from [12, Proposition 3.4] that r.fd/? = sup{fp-inj.dimAf|M e R-Mod, fp-
inj.dimAf < oo}, the other equality is similarly proved.

Two special cases of this result are worth noting. If /? is left Noetherian, then the fp-
injective dimension of a left module is its injective dimension. Thus the left Ziegler spectrum
of a left Noetherian ring is a test space for the left finitistic injective dimension of /?, see [5,
Section 5]. The other case is when R is a right perfect and left coherent ring. In this situation
the weak dimension of a right module is its projective dimension, this following directly from
Bass' Theorem P, [5], a part of which characterises right perfect rings as being those for
which flat modules are projective. For such a ring, the above corollary states that the right
Ziegler spectrum is a test space for the right finitistic projective dimension of /?.

REFERENCES

1. M. Auslander, A functorial approach to representation theory, in Representations of algebras,
eds. M. Auslander and E. Lluis, Lecture Notes in Mathematics 944 (Springer-Verlag, 1982), 105-179.

2. M. Auslander, Isolated Singularities and almost split sequences, in Representation Theory II,
eds. V. Dlab, P. Gabriel, G. Michler, Lecture Notes in Mathematics 1178 (Springer-Verlag, 1987), 194-
242.

https://doi.org/10.1017/S0017089500032481 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032481


176 ELWOOD WILKINS

3. M. Auslander and I. Reiten, Representation theory of Artin algebras III. Almost split
sequences, Comm. Algebra 3 (1975), 239-294.

4. M. Auslander, I. Reiten and S. O. Smalo, Representation theory of Artin algebras, Cambridge
Studies in Advanced Mathematics 36 (Cambridge University Press, 1995).

5. H. Bass, Finitistic dimension and a homological generalisation of semi-primary rings, Trans.
Amer. Math. Soc. 95 (1960), 466-488.

6. L. Gruson et C. U. Jensen, Dimension cohomologiques reliees aux foncteurs lim^, in Sim.
d'Algebre, P. Dubreil et M.-P. Malliavin, eds, Lecture Notes in Mathematics 867, (Springer-Verlag,
1981), 234-294.

7. I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London
Math. Soc. (3) 74 (1997), 503-509.

8. C. U. Jensen and H. Lenzing, Model theoretic algebra (Gordon and Breach, 1989).
9. H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra, 114 (1997),

259-271.
10. H. Krause, Finitistic dimension and the Ziegler spectrum, Proc. Amer. Math. Soc, to appear.
11. M. Prest, Model theory and modules, LMS Lecture Notes Series (Cambridge University

Press, 1988).
12. B. Stenstrom, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323-329.
13. R. B. Warfield Jnr., Serial rings and finitely presented modules, J. Algebra 37 (1975) 187-222.
14. M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213.

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF BRISTOL

BRISTOL

ENGLAND

Present address:
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ESSEX

COLCHESTER CO4 3SQ

ENGLAND

https://doi.org/10.1017/S0017089500032481 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032481

