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ABSTRACT. Glaciers in Alaska are currently losing mass at a rate of ∼−50 Gt a−1, one of the largest ice
loss rates of any regional collection of mountain glaciers on Earth. Existing projections of Alaska’s future
sea-level contributions tend to be divergent and are not tied directly to regional observations. Here we
develop a simple, regional observation-based projection of Alaska’s future sea-level contribution. We
compute a time series of recent Alaska glacier mass variability using monthly GRACE gravity fields
from August 2002 through December 2014. We also construct a three-parameter model of Alaska
glacier mass variability based on monthly ERA-Interim snowfall and temperature fields. When these
three model parameters are fitted to the GRACE time series, the model explains 94% of the variance
of the GRACE data. Using these parameter values, we then apply the model to simulated fields of
monthly temperature and snowfall from the Community Earth System Model, to obtain predictions of
mass variations through 2100. We conclude that mass loss rates may increase between −80 and
−110 Gt a−1 by 2100, with a total sea-level rise contribution of 19 ± 4 mm during the 21st century.
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1. INTRODUCTION
Global sea-level rise is likely to be one of the most socially
disruptive consequences of future atmospheric warming. At
present, about 1/3 to 1/2 of the observed rate of sea-level
rise is caused by thermal expansion of the oceans, with the
rest caused by mass loss from the world’s ice-covered
regions: Greenland, Antarctica, small ice caps and mountain
glacier systems (Church and others, 2013). In the distant
future, West Antarctica and Greenland will likely contribute
the majority of the new sea-level rise (Velicogna, 2009;
Joughin and others, 2014). For example, the Amundsen Sea
portion of West Antarctica alone contains enough ice to
raise sea level ∼1.2 m (Rignot and others, 2014), whereas
the entire volume of Alaska’s glaciers, if melted, would
only raise sea level ∼0.04 m (Grinsted, 2013). Still, the rela-
tively rapid response of mountain glacier systems to atmos-
pheric warming implies that through 2100, contributions
from glaciers are likely to be relatively important. Over the
first decade of the 21st century, Alaskan glaciers contributed
between 50 and 75 Gt a−1 to global sea-level rise (e.g.
Arendt and others, 2002; Jacob and others, 2012; Gardner
and others, 2013; Luthcke and others, 2013; Sasgen and
others, 2013; Larsen and others, 2015), equivalent to ∼60–
90% of the contribution from Antarctica over that same
time period (e.g. Shepherd and others, 2012).

Thus, it is of interest to examine the evolution of Alaskan
glaciers when trying to project sea-level rise over the next
century. Several previous studies have addressed this
problem. Radić and Hock (2011), Slangen and others
(2012), Giesen and Oerlemans (2013), and Radic and
others (2013) modeled all the world’s glacier systems, not
just Alaska, and projected the mass loss from those systems
through the 21st century. Each of these studies constructed

a parameterized mass-balance model for individual glaciers
that allowed an estimate of how a glacier’s volume will
evolve with time from knowledge of atmospheric variables
over that glacier. Parameters in these models were generally
determined through calibration against a small sample of
glacier mass-balance observations, world-wide. These
models were then applied to all glaciers in every glaciated
region outside Greenland and Antarctica, and were forced
with global climate model output through (usually) to 2100.

Calibrating models with in situ observations, as the above
studies have done, has some distinct advantages. However,
this type of calibration is also heavily dependent on a very
small sample size with known biases (Gardner and others,
2013). In Alaska, direct observations are made on only a
handful of glaciers out of >27 000 glaciers statewide.
Moreover, the glacier-to-glacier SD of mass balance in
Alaska is approximately half the average regional mass
balance (Larsen and others, 2015). Thus, calibrating models
to sparse in situ observations brings with it the possibility of
large biases.

A solution to this problem is to calibrate regional glacier
models to regional observations rather than in situ data.
Previously, Arendt and others (2009) took such an approach
by calibrating two simplified mass-balance models to
GRACE (Gravity Recovery and Climate Experiment) gravity
observations from glaciers in Alaska’s St. Elias region. They
found that due to the coarseness of GRACE results, models
incorporating elevation complexities could not be well con-
strained. They found that simpler models that do not explicit-
ly incorporate elevation performed better, accounting for up
to 60% of the variance in the GRACE time series. Their
model, however, was forced by meteorological station data
that are subject to local spatial variability in precipitation

Journal of Glaciology (2016), 62(234) 623–639 doi: 10.1017/jog.2016.49
© The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/jog.2016.49 Published online by Cambridge University Press

mailto:evanburgess@gmail.com
https://doi.org/10.1017/jog.2016.49


and temperature. Temperature data from climate re-analyses,
however, has been found to correlate well the GRACE time
series (Arendt and others, 2002).

Our approach aims to see if a simple mass-balance model,
forced with regional re-analysis data, can more closely ap-
proximate Alaska-wide GRACE observations than a model
forced with local meteorological station data. By considering
GRACE results averaged over a larger region, we reduce pos-
sible problems caused by contamination from signals in gla-
ciers outside the region of interest. Also, as in Arendt and
others (2009), we use output from a hydrological model to
subtract the effects of soil moisture and of seasonal snow
mass. However, we do not remove model contributions of
seasonal snow mass from within glaciated regions, under
the assumption that the atmospheric snowfall fields we cali-
brate against contain contributions from snowfall both over
glaciers and over unglaciated land within the glaciated
regions.

We derive a parameterized model of glacier mass variabil-
ity by constructing a simple accumulation/melt model that is
independent of elevation and forced by monthly ERA-Interim
(ERAI) (Dee and others, 2011) snowfall and temperature
fields. We calibrate our model against observations that
cover the entire glaciated region, using regional estimates
of mass loss determined using monthly GRACE gravity
fields (Jacob and others, 2012) from August 2002 through
December 2014. The model involves only three adjustable
parameters, which we tune so that the model results best
match the GRACE estimates.

Despite its simplicity, this model accounts for 94% of the
variance in the GRACE data. The model replicates monthly
variations including a secular decrease, seasonal variations
and interannual fluctuations. Given the quality of this fit,
we experiment with forcing the model with Community
Earth System Model (CESM; Hurrell and others, 2013)
monthly projections of future temperature and precipitation,
to predict how Alaskan glacier volumes might change
through 2100, assuming plausible future greenhouse gas
emission levels.

2. THE GRACE DATA
The GRACE satellite mission, launched in the spring of 2002
by NASA and Deutsches Zentrum für Luft- und Raumfahrt
(the German space agency), has been providing users with
monthly, global estimates of the Earth’s gravity field in the
form of spherical harmonic coefficients (e.g. Tapley and
others, 2004; data available at http://podaac.jpl.nasa.gov).
These gravity fields have been used to study a variety of geo-
physical processes that involve changes in the Earth’s mass
distribution (e.g. Wouters and others, 2014). One such
process is the change in the snow mass and ice in the
world’s mountain glacier systems. Here, we estimate the
mass change in Alaskan glaciers, following the methods
described by Jacob and others (2012) and summarized
briefly here.

We use monthly gravity fields provided by the Center for
Space Research (CSR) at the University of Texas, in the
form of spherical harmonic coefficients. We replace the
monthly GRACE values of C20 (the zonal, degree-2 spherical
harmonic coefficient of the geopotential) with the more ac-
curate values provided by satellite laser ranging (Cheng
and Tapley, 2004), and we include degree-1 terms using
the method described by Swenson and others (2008). We

remove contributions from glacial isostatic adjustment
(GIA), by subtracting the GIA model of A and others (2013).

We solve for changes in snow/ice mass over Alaska’s gla-
ciated regions, by covering the region with ‘mascons’ (small,
arbitrarily defined areas of the Earth) and fitting mass values
for each mascon to the GRACE gravity fields. Each mascon
is defined as the union of points on a 0.5° latitude/longitude
grid. Figure 1 shows the points we use to define glacier
mascons in Alaska. There are seven such mascons, com-
posed of a total of 216 0.5° grid points (covering a total
area of 3.3 km × 105 km) (Jacob and others, 2012). We sum
the time series for all seven Alaskan mascons to obtain the
total Alaska time series shown by the black curve in
Figure 2. The best-fitting trend of that time series is −52 ±
4 Gt a−1. This rate has overlapping error bars with Luthcke
and others (2013) and Arendt and others (2002) and is some-
what lower than Larsen and others (2015). The range of
results is due to a combination of differences in spatial
extent, time period considered and differences in GRACE
processing and terrestrial water storage models (Jacob and
others, 2012; Luthcke and others, 2013).

We also generated GRACE solutions where we separated
the Figure 1 Alaskan grid points into subsets of points and
solved for mass variations of each of those subsets. This
allowed us to focus on smaller glaciated regions. The diffi-
culty with this approach was partly that the solutions
became less accurate, and partly that the resulting subregions
were close enough to one another that GRACE could not
cleanly separate one subregion from another, and so mass
variations in one subregion contaminated the GRACE esti-
mate of mass variations in other subregions. Moreover,
while glacier mass balance has been found to vary substan-
tially glacier-to-glacier, variations between regions are
small (Larsen and others, 2015). For these reasons, we
elected to concentrate on the total Alaskan glaciated region.

Before solving for the mass variations, we subtract (from
the GRACE data) monthly water storage estimates predicted
by the Community Land Model (CLM4.5) land surface
model (Oleson and others, 2013), to minimize the contamin-
ation from non-glacier water storage signals. Specifically, we
subtract CLM4.5 estimates of soil moisture, vegetation and

Fig. 1. Locations of the seven Alaskan glacier mascons, shown in
different colors, and the half-degree latitude/longitude points that
make up those mascons.
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river water storage at every grid point. Over every CLM4.5
grid point that does not correspond to a glacier mascon
point, we further remove CLM4.5 estimates of snow water
storage. Thus, the GRACE mascon time series (Fig. 2)
includes contributions from changes in snow and ice on gla-
ciers within those mascons, as well as contributions from
snow variability over unglaciated land within the mascons.

The removal of CLM4.5 is done in the spherical harmonic
domain. Namely, we expand the relevant water storage com-
ponents of CLM4.5 into harmonics for each monthly CLM4.5
field, and we subtract the resulting monthly CLM4.5 coeffi-
cient of each harmonic from the monthly GRACE value of
that harmonic. We then fit the monthly mascon solutions to
the resulting GRACE-minus-CLM4.5 harmonics.

3. THE MASS CHANGE MODEL
The GRACE mass variability shown in Figure 2 is the result of
accumulated snowfall, which adds mass, and of ablation –

principally through melting – which removes mass.
Tidewater calving in Alaska, we consider small enough to
exclude as they contribute to only ∼7% of the total mass
loss from Alaska and calving is not expected to grow in the
next century (Larsen and others, 2015). We also exclude a
term to represent meltwater refreezing as GRACE is insensi-
tive to internal vertical redistribution of mass. In addition, re-
freezing contributions are absorbed into our numerical
solution for the degree-day factor (DDF), described below.

Temperature index models are commonly used to esti-
mate melt at discrete points on a glacier or snow covered
surface (Hock, 2003). Below 0°C, such models assume no
melting and above 0°C melting are assumed to be linearly
proportional to the number of degrees above zero where
the proportionality constant is referred to as the DDF
(Hock, 2003). Because GRACE does not recover mass
values at individual points, but provides values averaged

over an entire region using a traditional point, implementa-
tion of a temperature index model is ineffective (Arendt
and others, 2009). Thus we design a simple, ad hoc model
based on this proportionality of melting to the degree-day
sum, but that represents averages over the entire glaciated
region. We combine a temperature index model with a
model for accumulation to develop a simple model for
Alaska glacier mass variability. The model involves three ad-
justable parameters, and we find the numerical values of
those parameters that give the best fit to the GRACE data.
Appendix A provides a list of all variables used in our model.

For this model we use monthly, gridded, ERAI reanalysis
fields of precipitation rate and temperature, available from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). ERAI precipitation is partitioned into the sum of
snowfall rate and liquid rainfall rate fields using a tempera-
ture-based algorithm from CLM4.5 (Oleson and others,
2013).

Let SF (t) be the resulting snowfall rate, as a function of
time, averaged over the entire GRACE mascon region
(covered by the x’s in Fig. 1). Let T (t) be the ERAI temperature
values, similarly averaged over the mascon region. We
assume the snowfall accumulation rate averaged over the
mascons is K0SF (t), where the factor K0 is introduced to
account for any bias between the true snowfall rate and the
ERAI/CESM rate, and will be estimated when fitting to the
GRACE time series. K0 may differ from 1.0 because of a
bias in the ERAI precipitation, or a bias in how the CESM
model separates that precipitation into rain and snowfall.

We approximate the melting rate, averaged over the
mascons using a temperature index method (Hock, 2003)
generalized to each mascon. We assign no melt in a
mascon when the ERAI model surface temperature, (T (t))
is below a reference temperature, T0. For T (t) >T0, the
melting rate is linearly proportional to the degrees above
T0, and is scaled by a DDF to have the form DDF (T(t)− T0).

The application of a temperature index model to an entire
mascon carries key differences from the typical implementa-
tion (Hock, 2003). In particular, the DDF and T0 values will
depend on the elevation distribution within each mascon
(which influences the spatial variability of melt and precipi-
tation within the mascon), and ERAI biases. Because the
ERAI temperature represents the regional average tempera-
ture, T0 does not simply represent freezing; rather it may be
offset from 0°C due to differences between the average tem-
perature of the glaciated areas within the mascon and that
within the ERAI pixel. For example, within each mascon
the snow is concentrated at higher elevations, where tem-
peratures are lower than the mascon mean temperature. At
these elevations, melt will begin after the mascon average
temperature climbs above 0°C, which will correspond to
an ERAI temperature i.e. >0°C. We assume the values of
the parameters K0, T0 and DDF are the same for glaciers as
for snow over unglacierized land within the mascons.

Let Sgl be the total mascon area that is covered by glaciers,
and let Sugl be the total mascon area that is covered by ungla-
cierized land. We use hypsometry (area-vs-elevation) data
for every Alaskan glacier (Larsen and others, 2015), and
sum them over all glaciers that lie within the mascons
shown in Figure 1, to obtain an estimate of the total glaciated
area lying in each 30 m elevation band from sea level up to
6165 m. This hypsometry is used to estimate the change in K0

and T0 as the regional glacier mass changes (Appendix C).
Integrating over all elevations, we find that Sgl= 7.4 km ×

Fig. 2. Monthly results for the total mass of the mascons, from
August 2002 through December 2014. GRACE results are shown
in black. Results from the best-fitting accumulation minus melting
model are shown in orange. The difference, shown in blue, has
been offset from 0 to make it easier to distinguish.
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104 km: ∼22% of the total mascon area, implying that the
unglaciated portions of those mascons cover ∼78% of the
total mascon area.

Let Mgl(t) and Mugl(t) be the total mass over glaciated
and unglaciated land relative to the mass at time 0. Let
Cgl and Cugl be the accumulation rates integrated over glaci-
ated and unglaciated land, and let Agl and Augl be the melting
rates integrated over glaciated and unglaciated land. Then,
we assume:

dMgl

dt
ðtÞ ¼ CglðtÞ � AglðtÞ ð1Þ

and
Mugl

dt
ðtÞ ¼ CuglðtÞ � AuglðtÞ ð2Þ

where
CglðtÞ ¼ K0SFðtÞSgl ð3Þ

CuglðtÞ ¼ K0SFðtÞSugl ð4Þ

and

AglðtÞ ¼
0 if TðtÞ< T0

DDFðTðtÞ � T0ÞSgl if T ðtÞ> T0

� �
ð5Þ

AuglðtÞ ¼
0 if TðtÞ< T0

DDFðTðtÞ � T0ÞSgl if T ðtÞ> T0

� �
: ð6Þ

Each of the functions (dMgl/dt)(t), (dMugl/dt)(t), Cgl(t),
Cugl(t), Agl(t) and Augl(t) represent a time rate of change of
mass. But GRACE mass results, Mass (t), represent the total
mass at time t. That total mass is obtained by temporally in-
tegrating the rate of change. So

ðtÞ ¼
Z t

0

dMgl

dt
ðτÞ þ dMugl

dt
ðτÞ

� �
dτ þM0 ð7Þ

whereM0 is the mass at time t= 0 (and cannot be determined
using either this simple model or the GRACE data). For M0

gl
we use Grinsted’s (2013) value:

M0
gl ¼ V0

gl × ρice ¼ 1:6 × 104 km3

Up to this point, there is no difference between the models
over glaciers and unglaciated land. But we now impose the
additional constraint that melting over unglaciated land
vanishes once all the accumulated snow from the previous
season has melted. Thus, at times t when

Z t

0
ðCuglðτÞ � AuglðτÞÞdτ < 0

(which happens every summer), we change Augl(t) so thatZ t

0
ðCuglðτÞ � AuglðτÞÞdτ ¼ 0

We impose no such constraint on Agl(τ). As a result, the
unglaciated contribution to GRACE (t) i.e.

R t
0 ðCuglðτÞ�

AuglðτÞÞdτ þM0
ugl has seasonal and other short-period varia-

tions, but exhibits no secular trend. In principle, this need

not be true. It could be, for example, that if there is a
winter with an unusually large snowfall, or a summer
where the temperatures are unusually low, some of the
snow that fell on unglaciated land might not have melted
by the end of the following summer. This can lead to long-
period variability, but in practice it did not occur in our solu-
tion below. Instead, we find that the unglaciated contribution
to GRACE falls to zero every summer, thus exhibits no
secular trend. Instead, the entire trend comes from the
glacier contribution:

MglðtÞ ¼
Z t

0
ðCglðτÞ � AglðτÞÞdτ þM0

gl ð8Þ

The glaciers can also contribute seasonal and short-period
variability.

4. SOLVING FOR THE MODEL PARAMETERS
To find the best-fitting values of DDF, T0 and K0 we perform a
grid search, where we vary the values of those three para-
meters over a wide range, and find the set of values that mini-
mizes the variance

variance ¼
X
t

ðGRACEðtÞ �MðtÞÞ2; ð9Þ

where GRACE (t) is the GRACE time series, temporal
averages have been removed from both GRACE (t) and
Mass (t), and the sum over t in (9) represents the sum over
the monthly values. We find:

T0 ¼ 2:2○C: 1� σ interval : ½2:1; 2:3�
DDF ¼ 2:3 mm ○C�1 d�1: 1� σ interval : ½2:2; 2:4�
K0 ¼ 0:69 1� σ interval : ½0:66; 0:74�:

ð10Þ

The 1− σ uncertainty intervals in (Eqn (10)) are computed by
adding synthetic Gaussian noise to the GRACE time series,
and repeating the fit. We do this for 500 different synthetic
Gaussian noise time series, one at a time, and we look to
see what range of parameter values spans 68% of the 500
sets of results (68% corresponds to a 1-σ confidence interval).
When constructing the synthetic noise, we have to adopt a
value for the variance of that noise. We find (see the follow-
ing paragraph) that by using the preferred parameter values
given in (Eqn (10)), we are able to explain 94% of the vari-
ance in the GRACE data. We thus assume that the variance
of the Gaussian distribution is the 6% (=100− 94%) vari-
ance of the GRACE-minus-model residuals. By using that
6% variance, rather than the variance of the errors in the
GRACE data, we are trying to account at least partially not
only for the GRACE errors, but also for deficiencies in the
simple model itself.

Figure 2 shows the results for M (t) (in orange) when these
best-fitting values are used in Eqns (3)–(7). The agreement
with the GRACE data is excellent considering that there are
only three free parameters and the model parameterizes all
elevation-related complexities. The model explains 94% of
the variance of the GRACE results, and provides a good
match to the secular trend and the seasonal terms, and
captures much of the interannual variability. The most no-
ticeable discrepancy between the two time series occurs in
the first half of the year, when the model tends to overesti-
mate peak accumulation relative to GRACE.
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The difference (Fig. 2, in blue) between GRACE and the
model shows that there is virtually no residual trend.
Instead, the residuals consist almost entirely of seasonal vari-
ability (the model slightly overestimates the annual cycle)
and short-period scatter. Since it is the glacier contribution
to the model that determines the secular trend (Fig. 3), the im-
plication is that the values of DDF, T0 and K0 obtained from
the least squares fit are probably more representative of the
glaciers than of snow over unglaciated land. We hypothesize
that the values of those parameters for unglaciated land are
close enough to those for glaciers that, by using the same par-
ameter values for the unglaciated land, we get good agree-
ment with GRACE at seasonal periods, in addition to
obtaining a good match for the secular trend. We have
tried, incidentally, including six parameters in the fit: DDF,
T0 and K0 for unglaciated land, in addition to DDF, T0 and
K0 for glaciers, but the correlations between these two sets
of parameters are high enough that the uncertainties of the
parameter solutions are much larger than those given in
Eqn (10), and so we have elected to proceed with the three
parameter solution.

5. PROJECTIONS
We apply this same model of glacier mass variability to simu-
lations of future snowfall and temperature variations, to
predict the future rate of change of Alaskan glacier mass.
Projections of future precipitation and temperature were
obtained from the CESM1 Large Ensemble Community

Project (Kay and others, 2015). The CESM-LE ensemble
includes 30 core members covering 1920–2100, using a
fully-coupled model CESM1 (CAM5). The spatial resolution
of each simulation is 1° latitude/longitude. For the period
1920–2005, historical radiative forcing due to solar variabil-
ity, volcanic aerosol emissions and greenhouse gas concen-
trations was used, and for the period 2006–2100 the
Representative Concentration Pathway (RCP) 8.5 radiative
forcing scenario was used.

Ensemble members use identical model configurations,
except that the initial atmospheric state is perturbed. The
CESM-LE ensemble therefore provides estimates of both in-
ternal climate variability and the response to external
forcings.

We apply the analysis described below to each of the 30
core model projections. The models are identified within the
CESM1 Project by assigning them numbers from 001 to 030.
In what follows, we first show detailed results for model 001.
Later, we will summarize the results for all models.

We start with the model output for the simulated monthly
gridded global temperature and snowfall rate fields, and
average those fields over all the grid points that correspond
to the GRACE Alaskan mascons shown in Figure 1. The
resulting averages are shown in Figure 4 (for ensemble
member 001). Note that, starting shortly after 2000, the
snowfall rate decreases and the temperature increases, with
the trends accelerating after about 2050. Figure 5 compares
the simulated snowfall rate and temperature results for
2003–2014, with the corresponding results for the ERAI

Fig. 3. Results, from the best-fitting model, for mass variability on glaciers (orange) and over unglaciated land (blue).
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data. The two sets of results are in remarkable agreement,
considering that the simulated results did not use real precipi-
tation or temperature data. One implication of this agreement
is that the values for K0, T0 and DDF we obtained by fitting
the ERAI data to the GRACE results are likely to be relevant
when using the simulated fields.

We use the simple model of glacier mass balance
described by Eqns (3), (5) and (8), with the parameter
values given in Eqn (10), together with the simulated 1920–
2100 snowfall rate and temperature values shown in
Figure 4, to predict the Alaskan glacier mass through 2100.
The time derivative of the glacier mass, dM/dt is shown as
the blue curve in Figure 6. Note that dM/dt is of the order
of−30 to−40 Gt a−1 until just before 2000, decreases slight-
ly to ∼−50 Gt a−1 from 2000 to 2010 (consistent with the
August 2002–December 2014 trend of −52 Gt a−1 in the
GRACE time series shown in Fig. 2), and then decreases dra-
matically after that, reaching −220 Gt a−1 by 2100 and
showing no signs of leveling off. The undulations in the
mass loss rate post 2010 are all due to natural variations pro-
jected in the climate simulation used in this case. The model
results prior to the GRACE era are at least partially consistent
with those derived from observations. Berthier and others
(2010), for example, used sequential DEMs to conclude
that Alaskan glaciers lost mass at a rate of −42 Gt a−1

between 1962 and 2006.
The application of this simple glacier mass model does not

account for the fact that the numerical values of the para-
meters Sgl, K0 and T0, which we are using to predict future
mass variability, are likely to change with time as the total

glacier mass decreases. For example, as the glaciers melt,
their total area, Sgl is likely to decrease. Sgl is used in Eqns
(3) and (5), and so a change in Sgl impacts the predictions
of future mass loss. Basically, the smaller the area over
which the snowfall or melting rates are integrated, the
smaller the total amount of snowfall or melted mass,
respectively.

In addition, because the reduction in glacier mass will
come preferentially from lower elevations where the tem-
peratures are higher, the average glacier elevation will in-
crease, thus decreasing the average temperature over the
glaciers and increasing the average snowfall rate. This will
impact the values we use for K0 and T0; we assume it does
not lead to changes in DDF.

In Appendix B, we describe how we compute the change
in area caused by a change in glacier mass, and how we in-
corporate the effects of that change in area back into our pre-
dictions of future mass change. We use a simpler approach
than used by others (e.g. Radic ́ and Hock, 2011) since we
are not modeling on the scale of individual glaciers. The fun-
damental result is (B17), which says that if M1

gl is the mass
change computed using Eqn (8) under the (incorrect) assump-
tion that the total glacier area, Sgl, does not change with time,
andMgl is the mass change computed after allowing that area
to change as the total glacier volume changes, then

ΔMglðtÞ ¼ M0
gl 1þ 0:264

ΔM1
glðtÞ

M0
gl

" #
� 1

 !
ð11Þ

Fig. 4. Simulation of the monthly snowfall rate and the temperature averaged over the Alaskan glacier mascons, for 1920–2100, from the
CESM.
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whereM0
gl is the total initial mass of all the glaciers, which we

take to equal to 1.5 × 104 Gt (see (B18)).
The orange curve in Figure 6 (marked as ‘with area feed-

back’) shows results for dMgl/dt. For those results, we keep
the total glacier area, Sgl, constant until 2010, when we
begin applying Eqn (11). This causes the orange and blue
curves in Figure 6 to agree up until 2010. Our rationale for
doing that is simply that the main objective in this section
is to predict future mass loss, and not to speculate on mass
loss in the past. Note that the inclusion of the area feedback
reduces future mass loss rates considerably. By 2100, the pre-
dicted mass change rate is now of the order of−130 to−140
Gt a−1, and appears to have begun to stabilize. We note,
however, that this rate is still 2–3 times larger than the
present-day mass change rate of ∼−50 Gt a−1.

Our method of estimating the impact of the changing
glacier geometry on K0 and T0 is described in Appendix
C. Our approach involves determining the increase in
mean glacier elevation at each time step, and then using esti-
mates of the atmospheric lapse rate, lr, and the fractional pre-
cipitation gradient, dprec (notation taken from Radic ́ and
Hock, 2011), to estimate the resulting changes in K0 and
T0. Those modified values of K0 and T0 are then used in
Eqns (3), (5) and (8) to compute the total mass at each time
step.

Note that there is an inconsistency between this approach
and the inversion of GRACE data for K0, T0 and DDF
described above. When using the GRACE data, we inverted

for just one set of parameters, K0, T0 and DDF, which we
assumed to describe both glaciated and unglaciated land.
Therefore the values we obtained are presumably some sort
of average of the values for glaciers and the values for ungla-
ciated land. But we are now describing a method of propa-
gating into the future, where we modify those parameters
to reflect the change in elevation of the glaciers alone.
Presumably there would also be changes in the parameters
over unglaciated land, and so to be consistent with the ap-
proach we took for the inversion, we should adopt changes
in K0 and T0 that continue to be consistent with averaging
the parameters for glaciers and unglaciated land. As
described at the end of Section 4, however, we have con-
cluded that the parameter values we obtain from the
GRACE inversion are values that mostly describe the glaciers
alone; and that the impact of unglaciated land on those
values is secondary.

Our method of estimating the values of K0 and T0 as the
glacier area changes, requires estimates of lr and dprec. For
lr, we use the results of Gardner and others (2009), who
looked at how the temperature varies with elevation along
the surface of four glaciers in the Canadian Arctic. They
found lapse rates that varied between lr=−0.31°C
(100 m)−1 and lr=−0.64°C (100 m)−1, but that if a single
lapse rate is required, lr=−0.49°C New Roman (100 m)−1

would be most appropriate. Although Gardner and others’
results were based on observations of glaciers outside of
Alaska, we have opted to use lr=−0.49°C (100 m)−1 as

Fig. 5. Results from the CESM atmospheric simulation compared with those from the observation-based ERAI fields, for the snowfall rate and
temperature averaged over the Alaskan glacier mascons, between January 2003 and December 2014.
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our default value, and to use −0.31 and −0.64°C (100 m)−1

as upper and lower bounds on lr when estimating uncertain-
ties. This range of values, incidentally, is similar to Radic ́ and
Hock’s (2011) conclusion that lr=−0.44 ± 0.18°C (100
m)−1; a range they inferred from tuning a glacier mass
model to direct observations from 36 glaciers world-wide.

For dprec we use Radić and Hock’s (2011) result: dprec=
0.08 ± 0.05 (100 m)−1. This result came from the same
tuning process they employed when deriving their tempera-
ture lapse rate. We use dprec= 0.08 (100 m)−1 as our
default value, and 0.03 and 0.13 (100 m−1) as the limits on
dprec when estimating uncertainties.

We do not modify K0 or T0 prior to 2010. Figure 6 shows
the resulting predictions for the future mass loss rates. To
show the impact of allowing K0 and/or T0 to vary, we
include each case as a separate curve in Figure 6. In each
case, we include the effects of changes in total glacier area
after 2010, as described in Eqn (11). The preferred results
are, of course, those when the modifications to both K0 and
T0 are included (black curve).

Note that the changes in both K0 and T0 cause a reduction
in the mass loss rate (both the purple and green curve are less
negative than the orange). This occurs because an increase in
the mean glacier elevation (due to the mass loss being prefer-
entially concentrated at lower elevations) implies that the
mean glacier temperatures decrease, which leads to

decreased melting and increased snowfall rates, both of
which make dM/dt less negative.

When feedbacks from both K0 and T0 are included (black
curve, Fig. 6), the values of dM/dt decrease more modestly
after 2010, reaching ∼−90 Gt a−1 by 2100. The rate
appears to be starting to level off by then, though it may
still be decreasing somewhat. The 2100 rate in this case is
still substantially more negative than the 2010 rate of
∼−50 Gt a−1. When we integrate the rates shown by the
black curve in Figure 6 between 2000 and 2100, we find a
total mass loss from Alaskan glaciers of ∼6800 Gt, corre-
sponding to 19 mm of global sea-level rise.

Uncertainties. There are several sources of uncertainty on
our mass change estimates. These include the following.

(1) Errors in the model we use to reproduce the GRACE data.
These could include errors in the values of the three para-
meters used in that model, and also the fact that the
model formulation itself is ad hoc, and so cannot be
expected to provide a perfect match, no matter what par-
ameter values are adopted. Our model to the GRACE
data, for example, still leaves 6% of the time series vari-
ance unexplained. Our 1-σ uncertainties for the para-
meters in Eqn (10) attempt to take into account both the
errors in the parameter solutions, and the imperfect
nature of the model. Figure 7 shows what happens

Fig. 6. The rate of change of total Alaskan glacier mass, from 1920 through 2100, based on the simulated atmospheric data and the model
parameters inferred from fitting the ERAI snowfall and temperature fields to the GRACE data. The blue curve shows results where neither the
total glaciated area, nor the model parameters T0 and K0, are allowed to vary as the glacier volume changes. The other curves show results
when various combinations of those quantities are allowed to vary. The most realistic result is the black curve, in which all three quantities are
allowed to vary. These results assume a lapse rate of−0.98°C (100 m)−1, and a precipitation gradient of 0.08 (100 m)−1, when computing the
effects of the variations in T0 and K0, respectively.
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when the projected mass changes are computed using,
not only the default values shown in Eqn (10), but also
the 1-σ limits on those parameters. As can be seen, the
spread in the results is small: of the order of only 1.3
mm of 21st-century sea-level rise between these curves.

(2) Errors in our assumption of how the area-vs-elevation de-
pendence changes as the area decreases. This is dis-
cussed in Appendix C (step 2). For our default method,
employed in finding the results shown in Figure 6, we
use the ‘compression approach’. Figure 8 shows the dif-
ference in the mass change projections between using
that approach and the ‘truncation approach’. Both
these approaches are ad hoc, and unlikely to be
correct. But we are assuming that the difference
between the results provides some idea of the possible
errors caused by using either one of them. Either way
the errors appear small, of the order of only 0.4 mm of
21st-century sea-level rise.

(3) Errors in the values we have adopted for lr and dprec. We
have recomputed our dM/dt results, using the range of
values for lr and dprec described above, when finding
the impact of the decreasing glacier area on K0 and T0.
Specifically, we compute results for lr=−0.31 and
−0.64°C (100 m)−1 (instead of the default value lr=−
0.49°C (100 m)−1), and for dprec= 0.03 and 0.13
(100 m)−1 (instead of the default value dprec= 0.08
(100 m)−1). Figure 9 shows results for dM/dt that use
those endpoints for these parameters. The black curve
in Figure 9 is the same as the black curves in Figures
6–8. The total glacier mass change between 2000 and

2100 for this set of parameter values, ranges from
∼5800 Gt (corresponding to a sea-level rise of 16 mm)
for lr=−0.63°C (100 m)−1 and dprec= 0.13 (100 m)−1,
to ∼8100 Gt (corresponding to a sea-level rise of 23
mm) for lr=−0.31°C (100 m)−1 and dprec= 0.03 (100
m)−1. These results imply that the uncertainty due to
errors in our assumed values of lr and dprec is far larger
than the uncertainties caused by errors in the model
used to reproduce the GRACE results, and by our imper-
fect assumption of how the area-vs-elevation curve
changes as the glacier area decreases.

(4) Uncertainties in the CESM-LE projections of future atmos-
pheric temperatures and snowfall rates. To help quantify
the effects of these uncertainties, we have applied our
formulation to all 30 core CESM-LE ensemble
members, each run from 1920 through 2100. Results
for the mass loss rates as functions of time are shown in
Figure 10, computed using the model parameters
shown in Eqn (10), and assuming the default values
lr=−0.44 ± 0.18°C (100 m)−1 and dprec= 0.08 (100
m)−1. The black curve in Figure 10 is the same as the
black curves in Figures 6–9. The total 2000–2100 mass
loss projected from these models varies from 18.2 to
20.6 mm of global sea-level rise. This is considerably
smaller than the range of 16–23 mm we obtain using dif-
ferent values of lr and dprec (point 3).

It is apparent from these results that lr and dprec are the
greatest sources of uncertainty in the projections. Adding,

Fig. 7. The predicted rate of mass change computed using the 1-σ limits of the model parameters given in Eqn (10). The effects of K0 and T0
feedback are computed using values of the lapse rate and the precipitation gradient: lr=−0.49°C (100 m)−1 and dprec= 0.08 (100 m)−1. The
black curve shows the same results as the black curve in Figure 6.
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Fig. 8. Projections of the mass loss rate for two assumptions of how the hypsometry changes as the glaciated area decreases. The initial values
of the model parameters, DDF, K0 and T0, come from the fit of the model to the GRACE time series, and are given in Eqn (10) The effects of K0

and T0 feedback are computed using values of the lapse rate and the precipitation gradient: lr=−0.49°C (100 m)−1 and dprec= 0.08 (100
m)−1. The black curve shows the same results as the black curve in Figure 6.

Fig. 9. The predicted rate of mass change, computed using different values of the lapse rate and the precipitation gradient when estimating the
K0 and T0 feedback. The initial values of the model parameters,DDF, K0 and T0, come from the fit of the model to the GRACE time series, and
are given in Eqn (10). The black curve shows the same results as the black curve in Figure 6.
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in quadrature, the bounds on the 21st-century contributions
to sea level from the uncertainty sources (1)–(4), we conclude
that the contribution of Alaskan glaciers to global sea level
rise during the 21st century, is likely to be 19 ± 4 mm.

6. SUMMARY
We use monthly GRACE gravity field solutions to recover a
time series of month-to-month surface mass variations
summed over all glaciated areas in southern Alaska from
August 2002 through December 2014. We find that the
average mass loss rate, over this region and during this time
span, was −52 ± 4 Gt a−1. We construct a simple model of
ice/snow mass variability for this glaciated region that uses
monthly ERAI atmospheric temperature and snowfall fields,
along with three adjustable parameters, to estimate
monthly variations in accumulation and melting. We adjust
the values of those three parameters so that the model
output best matches the GRACE results and find that the
resulting model can explain 94% of the variance in the
GRACE time series.

We then apply that same simple, three-parameter model
to 30 simulations of atmospheric temperature and snowfall
through 2100, to compute projections of mass loss from
Alaskan glaciers. When applying that simple model to the
simulated atmospheric data, we use the same values of
the three parameters that we inferred from the fit to
GRACE for projections through 2010. After 2010 we
adjust those values as time progresses, by accounting for
how the values of those parameters would change as the

total glacier volume and area decrease. Our imperfect
knowledge of how those parameters change is the source
of greatest uncertainty in our final estimates of future
glacier mass loss.

We conclude that the total contribution to global sea-level
rise from Alaskan glaciers will be 19 ± 4 mm between 2001
and 2100. This corresponds to a total mass loss of ∼7000
Gt, which is nearly 50% of the present-day total Alaskan
glacier mass. Note, by comparison Radic ́ and Hock (2011)
estimated an Alaskan glacier mass loss during the same
time period equivalent to 26 ± 7 mm of sea-level rise (using
the A1B emissions scenario). Radic ́ and others, (2014) pro-
vided two estimates: one equivalent to 18 ± 7 mm of sea-
level rise (RCP4.5), and the other to 25 ± 8 mm of sea-level
rise (RCP8.5). Slangen and others (2012) projected the
21st-century sea-level rise to be 27 mm SLE (results as
quoted by Giesen and Oerlemans (2013)) estimated 15 mm
of sea-level rise between 2012 and 2099 (A1B scenario).

The fact that we use GRACE mass change estimates to
calibrate our model is both a strength and a weakness
when comparing our approach with the approach used in
earlier studies. By using GRACE results, we are able to cali-
brate our model against estimates of the total mass loss
from all Alaskan glaciers, rather than against just a few tens
of glaciers, few of which are actually in Alaska. However,
because of the limited spatial resolution of GRACE, our
mass change model is more ad hoc than models constructed
to explain mass loss from individual glaciers. Nonetheless,
this model comes remarkably close to other more physic-
ally-based projections of Alaska 2100 mass loss.

Fig. 10. The projected rate of mass change, computed for 30 different core ensemble models for 1920–2100. The black curve is for the first
ensemble member (i.e. model 001) and is the same as the black curves in Figure 6–9.
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DEDICATION
We dedicate this paper to John Wahr who passed away
before its acceptance. His limitless curiosity and selfless
pursuit of understanding the natural world were an inspir-
ation to us all. John’s extraordinary contributions to GRACE
and the Earth science community have forever changed
our field. He will be missed.
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APPENDIX A

Agl: Ablation rate over glacierized land
Augl: Ablation rate over unglacierized land
c: Constant= 0.03 (Bahr and others, 1997)
Cgl: Accumulation rate over glacierized land
Cugl: Accumulation rate over unglacierized land
DDF: Degree-day factor
dprec: Precipitation gradient
γ: Constant= 1.36 (Bahr and others, 1997)
K0: ERAI Snowfall correction factor
lr: Environmental lapse rate
M: Total mass at time t
Mgl: Total glacier mass at time t assuming glacier

area changes in response to volume
Mugl: Total non-glacier mass at time t
M0: Total mass at time 0
M0

gl:
Total glacier mass at time 0

M0
ugl:

Total non-glacier (snow) mass at time t

M1
gl:

Total glacier mass under the assumption glacier
area is constant

Sgl: Total glacierized area within all mascons
Sugl: Total unglacierized area within all mascons
Si: Area of individual glacier
S0i : Initial area of individual glacier
S0gl:

Initial area of all glaciers

Snow
SF:

adjusted to specific elevation using lr

SF (t): ERAI snowfall rate
T (t): ERAI surface temperature
T0: ERAI temperature threshold at which

precipitation is considered snow
Temp T: adjusted to specific elevation using lr
Vgl: Total regional glacier volume
z: Elevation
ΔVgl: Change in total regional glacier volume
Vi: Volume of individual glacier
ΔVi: Change in volume of individual glacier
V0
i : Initial volume of individual glacier

V0
gl:

Initial volume of all glaciers

ρice: Density of ice

APPENDIX B
FEEDBACK FROM THE CHANGING GLACIER AREA
Here, we describe how we compute the change in glacier
area caused by a change in glacier mass, and then how we
incorporate that change in area back into our prediction of
future changes in total glacier mass. We first note that other
methods such as using volume/length scaling (Bahr and
others, 1997; Radic ́ and others, 2008) require information

on glacier geometries that we cannot easily incorporate
here. Instead, let Mgl(t), Vgl(t) and Sgl(t) be the total mass,
volume and area, respectively, of all the Alaskan glaciers,
as functions of time. We define the relation between mass
and volume as,

Vgl ¼
MglðtÞ
ρice

ðB1Þ

where ρice= 917 kg m−3 is the density of ice. We employ a
commonly used volume/area scaling relation, (Bahr and
others, 1997, 2015) between the volume of an individual
glacier and its area:

Vi ðtÞ ¼ cSi ðtÞγ ðB2Þ

where Vi (t) (km
3) and Si (t) (km

2) are the volume and area of
a given glacier, which we denote by the subscript i; and c
and γ are constants. Bahr and others (1997) show that Eqn
(B2), together with the value γ= 1.36, is a general relation
that can be expected to remain valid as glacier areas and
volumes change. The relation does not hold for individual
glaciers but is effective when applied over large samples
of glaciers as implemented below. The parameter c is typic-
ally found to be of the order of 0.03. We can invert Eqn (B2)
to get:

SiðtÞ ¼ Vi ðtÞ
c

� �1=γ

ðB3Þ

Alaska has ∼27 000 glaciers (Kienholz and others, 2015),
which we define as N glaciers, so that i= 1,… N. The
total area of all Alaskan glaciers is then:

SglðtÞ ¼
XN
i¼1

SiðtÞ ¼
X
i

ViðtÞ
c

� �1=γ

¼
X
i

V0
i þ ΔViðtÞ

c

� �1=γ
ðB4Þ

where V0
i is the initial (i.e. at time t= 0) volume of an indi-

vidual glacier, and ΔVi(t) is the change in volume. The result
(B4) implies that the initial area, S0gl, is given by:

S0gl ¼
X
i

V0
i

c

� �1=γ

ðB5Þ

Equation (B4) could be used to find the total glaciated area
at any time, but would require knowledge of the original
volume. While this could be estimated by Eqn (B2), uncer-
tainties could be large. Instead we make the assumption
that the relative change in the volume of each glacier is
the same as the relative change in the total glaciated
volume:

ΔViðtÞ
V0
i

¼ ΔVglðtÞ
V0
gl

ðB6Þ

where V0
gl and ΔVgl(t) are respectively, the original total

volume and change in total volume of all the glaciers.
This assumption will not be strictly true, since as the
climate warms, glaciers at low elevation will lose volume
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faster than those at high elevation. Putting (B6) into (B4)
gives:

SglðtÞ ¼
X
i

V0
i þ V0

i ΔVglðtÞ=V0
gl

� �
c

0
@

1
A

1=γ

¼ 1þ ΔVglðtÞ
V0
gl

 !1=γX
i

V0
i

c

� �1=γ

¼ 1þ ΔVglðtÞ
V0
gl

 !1=γ

S0gl

ðB7Þ

where the last equality follows from, Eqn (B5).
Equation (B7) is a relation between the new and original

total glaciated areas, which requires knowledge only of the
original total glaciated volume and the change in total
volume. We estimate the change in volume using Eqns (8)
and (B1). For the original total volume we use the result
V0
gl ¼ 1:6 × 104 km3, from Grinsted (2013). Grinsted used

estimates of the areas of all Alaskan glaciers, converted
them to individual glacier volumes using Eqn (B2), and
summed over all glaciers to get the total glacier volume.
(We obtain this same numerical result by combining Eqn
(B2) with the integrated area of our hypsometry.)

The result, Eqn (B7), can be used to update Sgl (t) at every
time step, from knowledge of the change in glacier volume,
ΔVgl (t). Those updated values for the area can be used in
Eqns (3) and (5), which are then used in Eqn (8) to find the
change in volume. This is then used in (B7) to find Sgl (t) for
the next time step; etc. We have found, though, a way to
combine all these equations (i.e. (B7), (3), (5) and (8)) into a
single differential equation; which, when solved, provides
an alternative method for computing the change in mass;
one that is easier to implement.

We begin by taking the time derivative of Eqn (8), com-
bined with Eqns (3) and (5), to get:

dMglðtÞ
dt

¼Cgl � AglðtÞ

¼ K0SFðtÞ �
0 if TðtÞ< T0

DDFðTðtÞ � T0Þ if TðtÞ> T0

� �� 	

× SglðtÞ
¼PðtÞSglðtÞ

ðB8Þ

where P(t) is defined as the quantity inside the large brackets
in the second line. Noting that ΔVgl(t) and V0

gl can be related
to the change in total mass and the initial total mass, dMgl(t)/
dt and M0

gl using Eqn (B1), Eqn (B7) becomes

SglðtÞ ¼ 1þ ΔMglðtÞ
M0

gl

 !1=γ

S0gl ¼
MglðtÞ
M0

gl

 !1=γ

S0gl ðB9Þ

If Eqn (B9) is used to relate Agl(t) to Massgl(t), Eqn (B8)
becomes

dMglðtÞ
dt

¼ PðtÞ MglðtÞ
M0

gl

 !1=γ

S0gl ðB10Þ

Or, equivalently:

M0
gl

MglðtÞ

 !1=γ
dMglðtÞ

dt
¼ PðTÞ S0gl ðB11Þ

Integrating Eqn (B11) over time between t= 0 and t= t gives:

MglðtÞ ¼ M0
gl 1þ 1� 1

γ

� � S0gl
M0

gl

Z t

0
PðtÞdt

" #γ=ðγ�1Þ
ðB12Þ

Suppose we predict the change in mass without taking into
account the fact that the glacier area changes as the glacier
mass changes. That is what we did when deriving the
results shown by the blue curve in Figure 6. We refer to
those predictions as M1

glðtÞ. From (B8), M1
glðtÞ is the solution

of:

dM1
glðtÞ
dt

¼ PðtÞS0gl ðB13Þ

so that

M1
glðtÞ ¼ M0

gl þ S0gl

Z t

0
PðtÞdt: ðB14Þ

Then, (B12) can be written as:

MglðtÞ ¼ M0
gl 1þ 1� 1

γ

� �M1
glðtÞ �M0

gl

M0
gl

" #γ=ðγ�1Þ
ðB15Þ

If we denote the change in mass as ΔM1
glðtÞ ¼ M1

glðtÞ �M0
gl

when we do not include the change in area in the computa-
tions, and as ΔMglðtÞ ¼ MglðtÞ �M0

gl when we do include the

change in area, then (B15) becomes:

ΔMglðtÞ ¼ M0
gl 1þ 1� 1

γ

� �ΔM1
glðtÞ

M0
gl

" #γ=ðγ�1Þ
� 1

0
@

1
A ðB16Þ

and using γ= 1.36,

ΔMglðtÞ ¼ M0
gl 1þ 0:264

ΔM1
glðtÞ

M0
gl

" #3:78
� 1

0
@

1
A ðB17Þ

For Mass0gl we use Grinsted’s (2013) value:

Mass0gl ¼ V0
gl × ρice ¼ 1:6 × 104 km3 × 917 kg m�3

¼ 1:5 × 104 Gt
ðB18Þ

Our method, then, includes the effects of a changing area on
the mass estimates and proceeds as follows. First, we use
Eqns (3)–(8) to find the change in glacier mass when the
area feedback is not included. That change is denoted here
as dM1

glðtÞ=dt, and results are shown by the blue curve in

Figure 6. We then use Eqn (B17) (together with the value of
M0

gl gven in Eqn (B18)), to find the change in mass, dMgl(t)/

dt, after the area feedback has been included.
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APPENDIX C
FEEDBACK FROMCHANGINGGLACIER GEOMETRY

Our general approach for estimating the impact of the chan-
ging mass on K0 and T0 is listed: (1) We use Eqn (B9), together
with the value of M0

gl.given in Eqn (B18), to update the total
glacier area at each time step. In general, the area decreases
with time as the total mass decreases with time. (2) We dis-
tribute that area loss over different elevation bands, preferen-
tially taking mass away from the lower elevations using two
different methods (discussed below). This causes the
average glacier elevation to increase with time. (3) We quan-
tify the average elevation increase at each time step. (4) We
use estimates of the lapse rate, lr, and the precipitation gradi-
ent, dprec, to estimate the change in K0 and T0 at each time
step (notation taken from Radic ́ and Hock, 2011) using the
change in average elevation. Our method of updating the
total glacier area, (1), has already been described in
Appendix B. Here, we describe the remaining three steps,
(2)–(4), in detail.

For step (2), we use hypsometry (area-vs-elevation) data
for every Alaskan glacier (Larsen and others, 2015), and
sum them over all glaciers lying within the glacier mascons
shown in Figure 1 to obtain an estimate of the total glaciated
area lying in each 30 m elevation band. This total area-vs-
elevation field is shown as the black curve in Figure 11.
The glaciers’ elevation distribution increases from sea level
up to an elevation of 1575 m, then decreases. The total
glacier area, integrated over all elevations, is 7.4 km × 104

km. We assume these values describe the present-day area-
vs-elevation field.

At a later time, the total glacier area will have decreased.
While the geometry adjustments in reality are complex
(Harrison, 2013) and will be unique to each glacier, we
chose a simpler more generalized approach here. We
assume this decrease occurs mostly at lower elevations.
We use two ad hoc methods for distributing this decrease
over elevation. For our default method, we assume the new
area-vs-elevation field is identical to the original field for ele-
vations>1575 m. For elevations<1575 m, we compress the
area-vs-elevation field as shown by the orange and blue
curves in Figure 11 (corresponding to total areas of 5.7
km × 104 km and 4.9 km × 104 km, respectively: approxi-
mately the total glacier areas we predict for the years 2080
and 2100). Each of those compressed fields has the same
general shape as the original field, but has been squeezed
in from the lower elevations, so that all elevations
<1575 m have lost glacier area, and the lowest elevations
are missing glaciers entirely. We refer to this as the compres-
sion method.

For our second method, which we refer to as the trunca-
tion method, we start at the lowest elevation, and remove
all glaciers as the elevation increases, until the total remain-
ing area equals the desired, decreased area. Figure B2 shows
what the resulting area-vs-elevation curves look like for these
two methods. We use results computed using the truncation
method only to help assess the uncertainties in our final mass
loss results.

Fig. 11. Area-vs-elevation results, based on summing the hypsometry curves of all glaciers that lie within the Alaskan mascons shown in
Figure 1. The black curve shows the observed results for the present day. The orange and blue curves show how we have modified those
results to reflect future reductions in the total area of the Alaskan glaciers.
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For step (3), we formulate a method of using an area-vs-
elevation field to find the average glacier elevation, and we
use the three area-vs-elevation fields shown in Figure 11 to
estimate how that characteristic elevation changes as the
total glacier area changes. For each area-vs-elevation field,
we generate a simulated glacier mass time series as
follows. We start with the 2003–2014 ERAI time series of
temperature and snowfall rate, averaged over all the
Alaskan glacier mascons; the same T (t) and SF (t) time
series described in Section 3 above. The average elevation
of the Alaskan glacier mascons is 1008 m, so we assume
those values of T (t) and SF (t) describe the temperature and
snowfall rate at that elevation. We then assign a temperature
and snowfall rate to each elevation band in the area-vs-
elevation field. We do this by assuming values for the lapse
rate, lr and the precipitation gradient, dprec . Specifically,
for the band at an elevation of Elev, we assume that the tem-
perature is

Tempðt; zÞ ¼ TðtÞ þ lr × ðz� 1008 mÞ ðC1Þ

and that the snowfall rate is

Snowðt; zÞ ¼ SFðtÞ × ½1þ dprec × ðz� 1008 mÞ� ðC2Þ

To find the total snowfall rate over the entire glaciated area,
we multiply Snow(t, z) by the area in the z elevation band,
and sum over all the z bands. To find the total melting rate

over the entire glaciated area, we assume the melting rate is

0 if Tempðt; zÞ< 0○C
DDF½Tempðt; zÞ � 0○C� if Tempðt; zÞ> 0○C

� �

We then multiply by the area in the z band and sum over all
the z bands. We use the value DDF= 2.3 mm °C−1 d−1,
obtained above Eqn (10) by fitting to GRACE data. To get
the total mass, we integrate the total snowfall rate minus
the total melt rate over time, as done in Eqn (8) for the
ERAI fields. This gives us a simulated total glacier mass
time series for 2003–2014.

We then fit a single characteristic elevation to that
time series. The elevation fitting is actually done by fitting
K0 and T0 to the time series, but relating those parameters
to the elevation through the lapse rate and the precipitation
gradient. Specifically, if elevation is the parameter we are
fitting to the simulated data, then we assume that K0= 1
dprec(z− 1008 m) and T0= 0°C− lr (z− 1008 m). Note that
to obtain T0, we subtract lr (z− 1008 m) from 0°C, rather
than add it.

We apply this method of finding the average elevation to
each of the three area-vs-elevation fields shown in Figure 11:
one corresponding to the total glacier area at the present
time, and two corresponding to total glacier areas at future
times. We find that the characteristic elevations vary nearly
linearly with the total glacier area; a conclusion that
appears to hold no matter what values we assume for lr

Fig. 12. Area-vs-elevation results, based on the present-day hypsometry results. The black curve (the same as the black curve in Fig. 11) shows
the present-day results. The orange and blue curves illustrate two methods we have used to modify those results to reflect future reductions in
total area. For the orange curve (the same as the orange curve in Fig. 11) we have compressed the original curve at low elevations. For the blue
curve we have truncated the original curve to remove low elevations. Both the orange and blue curves reflect the same total glaciated area.
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and dprec. We fit a line to those three values (of average ele-
vation vs total glacier area), and use the slope along with the
lr and dprec values to estimate the linear dependence of
glacier elevation on total glacier area.

For step (4), we adopt values for lr and dprec. At each time
step we compute the total glacier area, as described by (B9),
and we use our step (3) estimate of the linear dependence of

characteristic glacier elevation on total glacier area for those
values of lr and dprec, to estimate a characteristic elevation of
the glaciers (Figure 12). We then use those same values of lr
and dprec to extrapolate the GRACE-derived values of T0 and
K0 up to the inferred characteristic glacier elevation. We use
those values in Eqns (3), (5) and (8), to predict the future mass
loss.
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