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Abstract. Ultra-luminous X-ray sources (ULXs) are off-nuclear point sources in nearby galaxies
with luminosities well exceeding the Eddington limit for stellar-mass objects. It has been recog-
nized after the discovery of pulsating ULXs (PULXs) that a fraction of these sources could be
accreting neutron stars in high-mass X-ray binaries (HMXBs) though the majority of ULXs are
lacking in coherent pulsations. The earliest stage of some HMXBs may harbor rapidly rotating
neutron stars propelling out the matter transferred by the massive companion. The spin-down
power transferred by the neutron-star magnetosphere to the accretion disk at this stage can
well exceed the Eddington luminosities and the system appears as a non-pulsating ULX. In this
picture, PULXs appear as super-critical mass-accreting descendants of non-pulsating ULXs. We
present this evolutionary scenario within a self-consistent model of magnetosphere-disk interac-
tion and discuss the implications of our results on the spin and magnetic field of the neutron
star.
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1. Introduction

A significant fraction of ultra-luminous X-ray sources (ULXs) may consist of neutron
stars as indicated by the recent detection of pulsations from M82 X-2 (Bachetti et al.
2014), ULX NGC 7793 P13 (Fürst et al. 2016), ULX NGC 5907 (Israel et al. 2017), and
NGC 300 ULX1 (Carpano et al. 2018). In addition to pulsating ULXs (PULXs), ultra-
luminous super-soft sources (ULSs) (Di Stefano & Kong 2003; Fabbiano et al. 2003;
Kong & Di Stefano 2003) and other non-pulsating ULXs emerge as seemingly different
subclasses of the ULX population. The lack of pulsations can be due to the optically
thick envelope fed by the outflows of the accretion disk around the neutron star (Ekşi
et al. 2015) and/or the propeller effect (Illarionov & Sunyaev 1975) of the neutron-star
magnetosphere on the disk matter (Tsygankov et al. 2016).

We consider the spin and luminosity evolution of neutron stars in high-mass X-ray
binaries (HMXBs). The magnetosphere of the newborn rapidly rotating neutron star
with spin periods of a few milliseconds interacts with the wind-fed disk in the very
early stage of the X-ray binary (Erkut et al. 2018). The donor, as an already evolved
massive star, produces dense winds with high mass-loss rates (Ṁw >∼ 10−6 M� yr−1).
Such an evolutionary scheme can be illustrated by a neutron star–helium star binary
that is expected to form soon after the common-envelope phase of a twin massive binary
(Brown 1995; Dewi et al. 2006). It takes ∼ 106 years for the helium-burning stage to end.
During its lifetime (∼ 106 years), the massive helium star loses mass at a rate of Ṁw ∼
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10−5 M� yr−1. Following the fusion of elements heavier than helium within <∼ 104 years,
the helium-star core collapses to give rise to the birth of the second neutron star. Double
neutron-star systems might therefore be the descendants of helium star–neutron star
X-ray binaries (Dewi et al. 2006).

2. Model

The fraction of the mass-loss rate of a ∼ 20M� wind donor to be captured by a 1.4M�
neutron star can be as high as Ṁ0/Ṁw ∼ 0.3 due to photoionization of the wind matter
irradiated by the X-rays emitted from the neutron star. Deceleration of the wind matter
usually leads to the formation of an extensive disk around the neutron star with high
mass-transfer rates (Čechura & Hadrava 2015).
In our picture, the mass transfer from the massive helium companion (Wolf-Rayet

star) with mass-loss rates of Ṁw >∼ 10−5 M� yr−1 to the neutron star occurs at
super-Eddington (super-critical) rates (Ṁ0 >∼ 10−6 M� yr−1). The innermost disk radius
(magnetopause) is smaller than the spherization radius, i.e., Rin <Rsp. The system is
thus in the super-critical regime (Shakura & Sunyaev 1973). The neutron star acts as a
super-critical propeller for Rco <Rin <Rsp. The super-critical accretion regime is realized
when Rin <Rco <Rsp. The corotation radius in the disk, Rco ≡ (GM/Ω2

∗)
1/3, is deter-

mined by the neutron-star spin period, P = 2π/Ω∗. The ejector phase is realized when
RL <Rin, where RL = c/Ω∗ is the light-cylinder radius.
To obtain the spin-period evolution of the neutron star of moment of inertia I, we

solve the torque equation,

− 2πI

P 2

dP

dt
=N. (2.1)

In the ejector phase, the torque, N , acting on the neutron star is due to the magnetic
dipole radiation, i.e., N �−(2/3)μ2Ω3

∗/c
3. For the super-critical propeller and accretion

regimes, we write

N = n (ω∗) Ṁin

√
GMRin (2.2)

with the fastness parameter ω∗ ≡ PK,in/P in terms of the mass inflow rate and the
Keplerian period at Rin. As a function of the fastness parameter, the dimensionless
torque becomes n< 0 and n> 0 for the propeller and accretion regimes, respectively. We
use n� 1 for the accretion torque and n� 1− ω∗ for the propeller torque (Erkut et al.
2018).

The total luminosity of the disk around a propeller with subcritical mass-inflow rates
can be written as Ltot =GMṀ/Rin − IΩ∗Ω̇∗ − Ṁoutv

2
out/2 (Ekşi et al. 2005). In the

super-critical propeller regime, however, each term contributing to the total luminosity
of the neutron star–disk system must be treated accordingly by taking into account
the regulation of the accretion flow inside the spherization radius. Noting that the mass-
inflow rate, throughout the disk, is Ṁ = Ṁ0(R/Rsp) for R<Rsp and Ṁ = Ṁ0 for R>Rsp

(Shakura & Sunyaev 1973), we calculate the total luminosity of the neutron-star-disk
system in the super-critical accretion regime using Ltot =Lacc +Lout +LG and in the
super-critical ejector and propeller regimes using Ltot =Lsd +Lout +LG. As a result of
super-critical mass inflow, Lout < 0 represents the energy-loss rate due to outflows from
the disk. The rate of gravitational energy release throughout the disk is given by LG.
The spin-down power and accretion luminosity can be written as Lsd =−2πN/P and
Lacc =GMṀin/R∗ with Ṁin = Ṁ0(Rin/Rsp), respectively, for a neutron star of mass M
and radius R∗ (Erkut et al. 2018).
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Figure 1. Spin-period evolution with super-critical ejector (thin dashed), propeller (solid), and
accretor (thick dashed) phases for a set of initial magnetic moments. We assume that the dipole
magnetic fields stronger than B = 109 T (µ30 = 10 at t= 0) decay according to the scenario B
(Erkut et al. 2018).
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Figure 2. Luminosity evolution for two different initial magnetic moments. The luminosity
for isotropic emission is on the right vertical axis. The left vertical axis represents the observed
luminosity if the geometrical beaming is b= 0.1. Shaded regions correspond to phases such as
ejector (E), propeller (P), and accretor (A) (Erkut et al. 2018).
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3. Results

In the super-critical propeller and accretion regimes, the inner disk radius depends on
several parameters, that is,

Rin �
(

μ2Rspδ

Ṁ0

√
GM

)2/9

, (3.1)

where μ, Rsp, δ, and Ṁ0 are the neutron-star magnetic dipole moment, the spheriza-
tion radius, the width of magnetosphere-disk interaction zone, and the mass inflow
rate in the outer disk (Erkut et al. 2018). We assume M = 1.4M�, R= 10 km, Ṁ0 =
4× 1017 kg s−1(∼ 6× 10−6 M� yr−1), δ = 0.01, and P0 = 2ms for the initial period of the
neutron star. We allow the field decay for initial magnetic field strengths in the magnetar
range. Here, we present our results (Fig. 1 and Fig. 2) for the field-decay mechanism B
(Colpi et al. 2000) as an illustrative example (the other field mechanisms such as A and
C yield similar equilibrium periods with different timescales).

4. Conclusions

As shown in Figure 1, the observed spin periods of PULXs (P ∼ 1 s) can be realized for
sufficiently strong initial magnetic fields in the B ∼ 109 − 1011 T (1013 − 1015 G) range. In
the very early (ejector) stage of the luminosity evolution, neutron stars with such strong
initial fields can even appear as supernova impostors (lower panel of Fig. 2). The super-
critical propeller stage, during which the source luminosity becomes comparable with
those of ULXs, is much shorter for strongly magnetized neutron stars than for weakly
magnetized neutron stars (Fig. 2). Neutron stars with relatively strong magnetic fields
spend most of their lives in the super-critical accretion regime. It is therefore more likely
that the neutron stars of B > 109 T appear as PULXs (Fig. 1 and lower panel of Fig. 2).

Most of the non-pulsating ULXs/ULSs may consist of neutron stars in the super-critical
propeller regime (upper panel of Fig. 2) with relatively weak magnetic fields (B ∼ 107 T)
and shorter (but hardly observable) spin periods (P ∼ 0.01 s). Although the equilibrium
periods of the weak-field ULXs are smaller than the observed typical periods of PULXs,
the population of the weak-field systems can be larger than the population of PULXs.
Yet, it would relatively be more difficult, due to the smaller size of the magnetosphere,
to observe pulsations from these weakly magnetized neutron-star ULXs/ULSs.
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