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Abstract

In this paper we study a single-period optimal portfolio problem in which the aim of the
investor is to maximize the expected utility. We assume that the return of every security
in the market is a mixture of some common underlying source of risks. A sufficient
condition to order the optimal allocations is obtained, and it is shown that several models
studied in the literature before are special cases of the proposed model. In the course of
the analysis concepts in stochastic orders are employed, and a new characterization of
the likelihood ratio order is obtained.
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1. Introduction

In recent years dependence concepts have attracted attention and are widely studied in
various fields. One particular area is the study of optimal portfolio in the classical single-
period expected utility-based setting. To make the model more realistic, researchers try to
abandon the traditional assumption that asset returns are independent. For example, Hennessy
and Lapan [7] modeled the dependence structure of asset returns using Archimedean copula.
Lapan and Hennessy [10] assumed that the asset returns were location and scale shifts of some
permutation symmetric random variables. Cheung and Yang [4] assumed that the assets were
subject to dependent default risk. They pointed out that ignoring the dependence structure by
merely assuming independence may lead to a wrong rank order of the optimal allocations. In
[2] an alternative optimization criterion was suggested. Instead of maximizing the expected
utility by fixing the returns’ dependence structure, it was suggested that we might first identify
the worst dependence structure that would give rise to the minimum expected utility for any
fixed allocation, then proceed to study the optimal portfolio problem as if this worst dependence
structure were the actual one. The rationale is that a risk-averse investor may adopt a prudent
and conservative attitude toward the uncertainty in the dependence structure and, hence, may
assume that the dependence structure is most unfavorable to him/her. The advantages of this
approach is that we can ignore the complicated modeling issue of the dependence structure
altogether, and the worst dependence structure is very often much easier to analyze. This
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paradigm has also been applied to other contexts, such as the study of optimal policy limits and
deductibles (see [3]).

In this paper we propose a more general dependence model by using a different way to
get rid of the independence assumption. We assume that there are some fundamental risks in
the market having unknown dependence structure, and the return of each security is simply a
mixture of the underlying fundamental risks. Since the return of every security is a mixture on
the same group of risks, returns are not independent except in some degenerate cases. Here,
the aforementioned worst dependence structure paradigm is applied to deal with the unknown
dependence structure among the fundamental risks. While this approach is not modeling the
dependence structure explicitly, it has the advantages of being analytically tractable, and being
flexible enough to incorporate several optimal portfolio models studied in the literature as
special cases.

This paper is organized as follows. The formulation of the problem is presented in Section 2.
The problem of identifying the worst dependence structure among the fundamental risks is
solved in Section 3, and the problem of existence is studied in Section 4. In Section 5 we solve
the proposed problem by giving a sufficient condition for ordering the optimal allocations.
Concepts in the theory of stochastic orders are used heavily. In the course of the analysis we
also prove a new characterization of the likelihood ratio order, which enables us to generalize
the probabilistic version of the well-known Hardy–Littlewood–Pólya rearrangement inequality
presented in [9]. The final section demonstrates the flexibility and the usefulness of our model
by showing that it can incorporate some other models studied in the literature as special cases,
and our analysis can produce exactly the same results.

We close this introduction by introducing the notation and terminology used in this paper,
and briefly reviewing the concept of comonotonicity. All random variables are defined on a
common probability space (�, F , P). Whenever an expectation is mentioned, it is assumed
to exist. The usual stochastic order, the convex order, and the increasing concave order are
denoted by ‘≤st’, ‘≤cx’, and ‘≤icv’, respectively. A subset A of R

n is said to be comonotonic
if whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) are elements of A then either xi ≤ yi for
all i or yi ≤ xi for all i. A random vector X = (X1, . . . , Xn) in R

n is said to be comonotonic
if there is a measurable comonotonic subset A of R

n such that P(X ∈ A) = 1. When a
collection of infinitely many random variables is given, we say this collection is comonotonic
if any finite subcollection is comonotonic. From the definition, it is clear that if (X1, . . . , Xn)

is comonotonic, and if g1, . . . , gn are n real-valued functions that are all increasing or all
decreasing, then (g1(X1), . . . , gn(Xn)) is also comonotonic. It is also known that (X1, . . . , Xn)

is comonotonic if and only if

(X1, . . . , Xn)
d= (F−1

X1
(U), . . . , F−1

Xn
(U))

(where ‘
d=’ denotes equality in distribution), whenever U is uniformly distributed on (0, 1).

Here, F−1
X is the left-continuous inverse of the distribution function of the random variable X.

From this equation we can easily deduce that

P(X1 ≤ s2, . . . , Xn ≤ sn) = min(P(X1 ≤ s1), . . . , P(X1 ≤ s1)) (1)

for any real numbers s1, . . . , sn. Hence, if a given random vector is known to be comonotonic,
its joint distribution can be determined solely from the marginal distributions. Lemma 1, below,
is one of the most important results concerning comonotonic random vectors. It states that a
comonotonic random vector has the maximum convex sum when the marginal distributions are
fixed. An application appears in Section 3.
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Lemma 1. If (X1, . . . , Xn) and (Xc
1, . . . , X

c
n) have the same marginal distributions, and if the

latter is comonotonic, then

X1 + · · · + Xn ≤cx Xc
1 + · · · + Xc

n.

We refer the reader to [5] for a survey of the notion of comonotonicity.

2. The model

In the market we assume that there is a group of fundamental risks, which is modeled as a
collection of random variables X = {Xj : j ∈ J } that are probably dependent on each other.
Here, J is an arbitrary index set. Extra structures will be imposed on it later. Alternatively, the
collection X can be regarded as a stochastic process indexed by J rather than a collection of
random variables. The return of any security in the market is assumed to be a mixture of the
fundamental risks, that is, associated with every security is a mixing variable M taking values
in J such that the return of the security can be expressed as XM .

One possible interpretation of this model is as follows. We may think of J as the collection
of all possible investment/economic environments that the underlying companies of the stocks
would face. Each possible investment environment j ∈ J is characterized by an investment
return distribution Xj . Different companies in general have different chances of facing different
environments and, hence, can be represented by different mixing variables M taking values in J .
Obviously, the return of the corresponding stock would be XM .

Assume that n securities are available to a risk-averse investor who has an endowment
of W dollars, and that the preference of this investor admits a von Neumann–Morgenstern
representation. This investor may wish to maximize the expected utility of wealth by investing
a suitable amount in each asset. Mathematically, the problem to solve is

max
a∈S(W)

E

[
U

( n∑
i=1

aiXMi

)]
,

where a = (a1, . . . , an) represents an admissible portfolio in which ai is the amount invested in
the ith security. The maximization is performed over S(W), which is defined as the collection
of all n-tuples of nonnegative numbers whose sum is W . The function U is the utility function of
the investor, which is assumed to be increasing and concave. The ith security is represented by
the mixing variable Mi and, hence, its return is XMi

. Security returns modeled in this way will
have a complicated dependence structure, as they are inherited from the dependence structure
in {Xj : j ∈ J }. The main objective of this paper is to obtain conditions that allow us to rank
the optimal allocations to the n securities. However, before any analysis is carried out, more
specific assumptions are needed so that the above problem is both meaningful and analytically
tractable. Here are the standing assumptions of this paper.

(a) Different random variables in the collection X = {Xj : j ∈ J } have different distribu-
tions. The collection X is equipped with the weak topology. Moreover, we assume that
X can be totally ordered by the usual stochastic order.

(b) The total order on X induces the corresponding total order on the index set J , which will
be denoted as ‘�’. The set J will be equipped with the topology J that makes J and X
homeomorphic under the canonical bijective map j ↔ Xj . The σ -field on J generated
by the topology J is denoted as B(J ).
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(c) The mixing variablesM1, . . . , Mn are independent; each of them isF /B(J )-measurable.
They are also independent of {Xj : j ∈ J }.

(d) The process {Xj : j ∈ J } is jointly measurable in the sense that it is F ⊗ B(J )/B(R)-
measurable when viewed as a map from � × J to R.

(e) The dependence structure among {Xj : j ∈ J } is unknown to the investor. The investor
will take a conservative attitude toward this uncertainty by always assuming that the
actual dependence structure is the most unfavorable one.

Some explanations are in order. Since our primary objective is to rank the optimal allocations
(without specifying the distribution of each Xj explicitly), we should be able to compare the
‘size’ of every pair of underlying risks in the first place. In other words, a total order on X
is needed. Recall that a total order is a binary relation that is transitive, antisymmetric, and
total. The most natural way to achieve this is to utilize the concept of the usual stochastic
order. This leads to the second part in assumption (a). Another justification here is that in
our investment/economic environment interpretation of J it is very natural and mathematically
desirable to have a ranking among the various environments. This brings us to the total order
assumption. Moreover, the best way to compare different environments is to compare their
corresponding investment return distributions. This leads to the use of the usual stochastic
order. While this order looks strong, it is exactly what our later analysis needs. Without this
order, we may not be able to derive a general rule to order the optimal allocations.

While the usual stochastic order is just a partial order on the space of all random variables,
we consider a subspace of the space of all random variables, and assume that there is a total
order in this subspace. Hence, for every pair of risks Xj1 and Xj2 , either Fj1(u) ≤ Fj2(u) for
all u ∈ R or the reversed inequality holds. Here and in the sequel, Fj denotes the distribution
function of Xj . If Xj1 ≤st Xj2 but Xj1 �=st Xj2 , we write Xj1 <st Xj2 . If j1 � j2 but j1 �= j2,
we write j1 ≺ j2.

For further analysis, a topology and a σ -field structure on X are needed. Being a collection
of random variables, an analytically convenient topology on X would be the weak topology,
which is defined as follows. Let M1(R) denote the set of all probability measures on (R, B(R)),
the weak topology on M1(R) is the weakest topology for which the mapping M1(R) 	 µ 
→∫

f dµ is continuous for every bounded continuous function f on R. Then the weak topology
on X is simply the relative topology by treating X as a subset of M1(R). This explains the
first part of assumption (a).

Assumption (b) means that J is equipped with the total order and the topology J through
the one to one canonical relationship (j ↔ Xj) between J and X. Therefore, (J, �) is order
isomorphic to (X, ≤st) in that j1 � j2 if and only if Xj1 ≤st Xj2 , and a subset A in J is open
with respect to the topology J if and only if {Xj : j ∈ A} is open in X with respect to the
weak topology. It is known that X with the weak topology is a separable metric space (see, for
example, [12, p. 122]), therefore, (J, J) is also a separable metric space, and these two spaces
are isometric. Therefore, (jn) converges to j (in the topology J) if and only if (Xjn) converges
in distribution to Xj .

Lemma 2, below, tells us that the total order on X is continuous in the sense that

{Xj ∈ X : Xj <st Xi} and {Xj ∈ X : Xi <st Xj }
are open subsets of X for every Xi ∈ X.
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Lemma 2. The total order on X defined above is continuous with respect to the weak topology
on X.

Proof. We first show that the subset A = {Xj ∈ X : Xj ≤st Xi} is closed in the weak
topology for every fixed Xi ∈ X. Let (Xjn) be a sequence in A that converges in distribution
to X0 ∈ X. Clearly, Fjn(u) ≥ Fi(u) for all u ∈ R and for all n ∈ N, and Fjn(u) → F0(u)

when u is a continuity point of F0. Therefore, F0(u) ≥ Fi(u) for all u, meaning that X0 ∈ A

as well. This proves that A is closed and, hence, the complement {Xj ∈ X : Xi <st Xj } is
open. By the same argument, a subset of the form {Xj ∈ X : Xj <st Xi} is also open.

An equivalent way to state this result is that the order topology on X is weaker than the
weak topology. As a direct consequence of Lemma 2, the set {(Xj , Xi) : Xj <st Xi} is open
in X2 (equipped with the product topology), while {(Xj , Xi) : Xj ≤st Xi} is closed (see, for
example, [6]).

Assumption (c), which states that the mixing variables are independent, will make the
problem analytically more tractable. Assumption (d) guarantees the measurability of each
XMi

. Assumption (e) is self explanatory. Because of this assumption, the investor will first
minimize the expected utility over all possible dependence structures in {Xj : j ∈ J } before
constructing the optimal portfolio. Therefore, the original problem becomes the following
problem.

Problem 1. Solve

max
a∈S(W)

min
X

E

[
U

( n∑
i=1

aiXMi

)]
.

3. Worst dependence structure

In this section we will solve the ‘min’ part of Problem 1, that is, we will identify the worst
dependence structure that minimizes the expected utility.

Proposition 1. Let {Xc
j : j ∈ J } be a comonotonic copy of {Xj : j ∈ J } that is independent of

M1, . . . , Mn, and is jointly measurable. Then

E

[
U

( n∑
i=1

aiX
c
Mi

)]
≤ E

[
U

( n∑
i=1

aiXMi

)]

for any (a1, . . . , an) ∈ S(W).

Proof. Fix any j1, . . . , jn ∈ J . The collection {Xc
j1

, . . . , Xc
jn

} is comonotonic by hypothe-
sis. Since each ai is nonnegative, the collection {−a1X

c
j1

, . . . ,−anX
c
jn

} is also comonotonic.
Therefore,

−
n∑

i=1

aiXji
≤cx −

n∑
i=1

aiX
c
ji

and, hence,

E

[
U

( n∑
i=1

aiXji

)]
≥ E

[
U

( n∑
i=1

aiX
c
ji

)]
,

because x 
→ −U(−x) is convex. The result follows by taking the conditional expectation of
M1, . . . , Mn to both sides of this inequality.
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Owing to this result, from now on we will assume that {Xj : j ∈ J } is comonotonic,
in addition to the standing assumptions made in the previous section. The problem of the
existence of such a collection is dealt with in the next section. One important consequence is
that if j1 � j2 then Xj1 ≤st Xj2 and, hence, Xj1 ≤ Xj2 on � by comonotonicity. In particular,
this means that every realization of {Xj : j ∈ J } is an increasing real-valued function on J .

4. Existence of a comonotonic and jointly measurable collection

In view of the characterization of the worst dependence structure described in Section 3, the
next important problem we should study is the problem of existence.

Problem. (Problem of existence.) Given a set of distinct marginal distributions {Fj : j ∈ J },
is there a stochastic process {Xj : j ∈ J } that is comonotonic, jointly measurable, and has the
prescribed marginal distributions?

Based on our standing assumptions, the collection {Fj : j ∈ J } should satisfy the following
assumption.

Assumption 1. When a sequence (jn) in J converges to j in the topology J, (Fjn) converges
to Fj at all continuity points of Fj .

To solve the problem of existence, we need the following general result concerning the
existence of a measurable modification of a stochastic process, which is taken from [8].

Lemma 3. Let {Xt : t ∈ T } be a stochastic process defined on (�, F , P) with values in K ,
in which the index set T is a separable metric space and K is a compact metric space. Set
Q(s, t, A) = P((Xs, Xt ) ∈ A) for (s, t) ∈ T 2 and A ∈ B(K2). Suppose that G is a subset
of B(K) which is closed under finite intersection such that σ {G} = B(K). Then {Xt : t ∈ T }
has a measurable modification if and only if the following two conditions hold.

1. The map t 
→ Q(s, t, G × H) is a measurable map from T into [0, 1] for all s ∈ T and
G, H ∈ G.

2. There exists a countable set T0 ⊆ T such that, for all t ∈ T , we can find a sequence (tn)

in T0 with Q(tn, t, ·) converging weakly to Q(t, t, ·).
Proposition 2. If {Fj : j ∈ J } is a given set of distinct distribution functions that satisfies
Assumption 1 then there exists a stochastic process {Xj : j ∈ J } that is comonotonic, jointly
measurable, and Xj ∼ Fj for all j .

Proof. We first construct a process that is comonotonic and has the prescribed marginal
distributions. Let U be an arbitrary uniform (0, 1) random variable. For each j ∈ J , we define
X̃j = F−1

j (U). Clearly, X̃j ∼ Fj for all j , and {X̃j : j ∈ J } is comonotonic.
Next we show that the process {X̃j : j ∈ J } has a measurable modification using Lemma 3.

This measurable modification is exactly the process we want. To this end, we recall that
our index set J with the topology J is a separable metric space, and we use the one-point
compactification of R as the state space instead of using R directly. We denote this one-
point compactification as R. Let G = {(−∞, s] : s ∈ R}. Obviously, G is closed under
finite intersection, and the σ -field generated by it is B(R). In order to prove that the process
{X̃j : j ∈ J } has a measurable modification, we need to verify the two conditions stated in
Lemma 3.
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For condition 1 of Lemma 3, we need to verify the measurability of the map j 
→ f (j) =
P(X̃i ≤ s, X̃j ≤ t) for any fixed i ∈ J and for any fixed real numbers s and t . Since (X̃i , X̃j )

is comonotonic, it follows from (1) that

f (j) = P(X̃i ≤ s, X̃j ≤ t) = min(P(X̃i ≤ s), P(X̃j ≤ t)).

By Assumption 1 and the well-known Portmanteau theorem on weak convergence (see, for
example, [1, p. 11]), the map j 
→ P(X̃j ∈ (−∞, t]) is lower semicontinuous because (−∞, t]
is a closed set. Hence, this map is measurable as well. This in turn implies the measurability
of the map f .

For condition 2 of Lemma 3, we first select a countable dense subset J0 in J by the
separability. For any j ∈ J , there exists a sequence {jn} ⊆ J0 that converges to j . We
need to show that (X̃jn, X̃j ) converges in distribution to (X̃j , X̃j ). However, this is just an
immediate consequence of our construction: when jn converges to j , X̃jn converges almost
surely to X̃j by Assumption 1 and, hence, (X̃jn, X̃j ) also converges almost surely to (X̃j , X̃j ).
Convergence in distribution then follows.

We remark that the process {X̃j : j ∈ J } constructed in the first step of the above proof is
indeed the Skorohod representation of a sequence of weakly convergent random variables. This
enables us to transfer weak convergence to almost sure convergence in the second step, which
is the crux of the proof. Proposition 2 also explains the reason why we adopt the topology J
on J instead of the order topology, which is weaker than J by Lemma 2. If the weaker order
topology was used then the second step of the above proof is no longer valid. Of course, the
cost of this convenience is that each Mi : � → J has to be measurable with respect to a larger
σ -field on J .

Finally, we note that by choosing the uniform (0, 1) random variable U to be independent
of M1, . . . , Mn, then the collection constructed in this proof will also be independent of
M1, . . . , Mn.

5. Main result

In this section we are going to obtain conditions that allow us to rank the optimal allocations
by comparing the mixing variables representing the securities. Intuitively, if Mi is relatively
large (recall that J is totally ordered) then the return of the ith security will also be relatively
large because the usual stochastic order among {Xj : j ∈ J } is consistent with the order in J .
To make this precise and to prepare for our main result, we need the following definition.

Definition 1. Let W and Y be two measurable maps in J . Then W is said to be smaller than
Y in the likelihood ratio order if

P(W ∈ S) P(Y ∈ T ) ≥ P(W ∈ T ) P(Y ∈ S)

for all measurable subsets S and T in J such that s ∈ S and t ∈ T imply that s � t (i.e. S � T ).
In this case we write W ≤lr Y .

Note that this definition is equivalent to the classical definition when J is the real line
equipped with the usual order on R. For more information on the likelihood ratio order, we
refer the reader to [11].

Theorem 1. Suppose that a∗ = (a∗
1 , . . . , a∗

n) is the solution to Problem 1. Then

M1 ≤lr M2 �⇒ a∗
1 ≤ a∗

2 .
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The proof of this result requires several lemmas. We first introduce some notation. Let
x = {xj : j ∈ J } be an increasing real-valued function on J (i.e. j1 � j2 ⇒ xj1 ≤ xj2 ), and
let a1 ≤ a2 be two nonnegative numbers. We define the following subsets of J 2:

L(x, a1, a2; u) = {(j1, j2) ∈ J 2 : a1xj1 + a2xj2 < u}, u ∈ R,

R(x, a1, a2; u) = {(j1, j2) ∈ J 2 : a2xj1 + a1xj2 < u}, u ∈ R,

A = {(j1, j2) ∈ J 2 : j1 ≺ j2},
B = {(j1, j2) ∈ J 2 : j2 ≺ j1},
C = {(j1, j2) ∈ J 2 : j1 = j2}.

Moreover, for any subset D of J 2, its reflection {(j1, j2) ∈ J 2 : (j2, j1) ∈ D} is denoted as D.
Note that A, B, and C form a partition of J 2 because J is totally ordered. It is also noted that
A and B are open in J 2 (equipped with the product topology), while C is closed.

Lemma 4. Let x = {xj : j ∈ J } be an increasing real-valued function on J , and let a1 ≤ a2
be two nonnegative numbers. Then

1. R(x, a1, a2; u) ∩ B ⊆ L(x, a1, a2; u) ∩ B;

2. L(x, a1, a2; u) ∩ A ⊆ R(x, a1, a2; u) ∩ A;

3. L(x, a1, a2; u) ∩ C = R(x, a1, a2; u) ∩ C;

4. (L(x, a1, a2; u) \ R(x, a1, a2; u)) ∩ B = (R(x, a1, a2; u) \ L(x, a1, a2; u)) ∩ A.

Proof. Suppose that (j1, j2) ∈ R(x, a1, a2; u) ∩ B. Then j2 ≺ j1 and a2xj1 + a1xj2 < u.
Since x is increasing, j2 ≺ j1 implies that xj2 ≤ xj1 . Hence,

a1xj1 + a2xj2 ≤ a2xj1 + a1xj2 < u,

by rearranging the inequality. Therefore, (j1, j2) ∈ L(x, a1, a2; u) as well. This proves the
first relationship. The other relationships can be proved similarly and are omitted.

Lemma 5, below, deals with the comparison of two measures by comparing their sizes on a
generating semiring.

Lemma 5. Suppose that µ1 and µ2 are two σ -finite measures on a measurable space (Y, Y),
and R is a semiring that generates the σ -field Y. If µ1 ≥ µ2 on R the µ1 ≥ µ2 on Y.

Proof. Let µ∗
1 and µ∗

2 be the Carathéodory extensions of µ1 and µ2, respectively, that is,

µ∗
i (D) = inf

{ ∞∑
k=1

µi(Dk) : Dk ∈ R for all k and D ⊆
∞⋃

k=1

Dk

}
, i = 1, 2, D ∈ 2Y .

Obviously, µ1 ≥ µ2 on R implies that µ∗
1 ≥ µ∗

2 on the power set 2Y . Since µ1 and µ2 are the
restrictions of µ∗

1 and µ∗
2 to Y, respectively, the result follows.

A subset D of J 2 is called a measurable rectangle if it can be expressed as D = S × T for
some measurable subsets S and T of J . The collection of all measurable rectangles that are
contained in A will be denoted as RA. Lemma 6, below, demonstrates some properties of RA.
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Lemma 6. The collection RA is a semiring in A and it generates the σ -field (B(J )⊗B(J ))∩
A = B(J 2) ∩ A.

Proof. The semiring property is obvious. The last equality follows from the second count-
ability of the topology J. It is also clear that

σ {RA} ⊆ (B(J ) ⊗ B(J )) ∩ A.

To obtain the reverse inclusion, it is enough to note that J 2 with the product topology is second
countable, and, hence, any open subset G of J 2 contained in A can be expressed as a union of
countably many measurable rectangles Sn × Tn ∈ RA, where each Sn and Tn is open in J .

The following result provides a characterization of the likelihood ratio order. For each
i = 1, 2, . . . , n, we denote the distribution of Mi on (J, B(J )) by Mi .

Lemma 7. We have M1 ≤lr M2 if and only if M1 ⊗ M2(D) ≥ M2 ⊗ M1(D) for any D ∈
B(J 2) ∩ A.

Proof. Let D = S × T be an arbitrary measurable rectangle contained in A. Then S � T

and, hence,

M1 ⊗ M2(D) ≥ M2 ⊗ M1(D) ⇐⇒ P((M1, M2) ∈ D) ≥ P((M2, M1) ∈ D),

⇐⇒ P(M1 ∈ S) P(M2 ∈ T ) ≥ P(M2 ∈ S) P(M1 ∈ T ),

⇐⇒ M1 ≤lr M2 as S � T are arbitrary.

This proves the if part and also the only if part when D ∈ RA. In other words, M1 ≤lr M2
implies that M1 ⊗ M2 ≥ M2 ⊗ M1 on RA. Combining Lemmas 5 and 6, we conclude that
M1 ⊗ M2 ≥ M2 ⊗ M1 on B(J 2) ∩ A.

Using the above characterization, we can prove the following result, which is basically the
probabilistic version of the well-known Hardy–Littlewood–Pólya rearrangement inequality.

Lemma 8. Let x = {xj : j ∈ J } be an increasing and measurable real-valued function on J ,
and let a1 ≤ a2 be two nonnegative numbers. Then M1 ≤lr M2 implies that

a1xM1 + a2xM2 ≥st a2xM1 + a1xM2 .

Proof. Let u be any fixed real number. To simplify the notation, we will denote the left-
hand side and the right-hand side by L and R, respectively; moreover, L(x, a1, a2; u) and
R(x, a1, a2; u) will be simplified as L(u) and R(u), respectively. We note that both L(u) and
R(u) are measurable subsets of J 2 because x = {xj : j ∈ J } is measurable. Hence,

P(R < u) = P((M1, M2) ∈ R(u))

= M1 ⊗ M2(R(u))

= M1 ⊗ M2(R(u) ∩ A) + M1 ⊗ M2(R(u) ∩ B) + M1 ⊗ M2(R(u) ∩ C).

Similarly, we have

P(L < u) = M1 ⊗ M2(L(u) ∩ A) + M1 ⊗ M2(L(u) ∩ B) + M1 ⊗ M2(L(u) ∩ C).
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Then, by Lemma 4,

P(R < u) − P(L < u) = M1 ⊗ M2(R(u) ∩ A) + M1 ⊗ M2(R(u) ∩ B)

− M1 ⊗ M2(L(u) ∩ A) − M1 ⊗ M2(L(u) ∩ B)

= M1 ⊗ M2((R(u) \ L(u)) ∩ A) − M1 ⊗ M2((L(u) \ R(u)) ∩ B)

= M1 ⊗ M2((R(u) \ L(u)) ∩ A) − M2 ⊗ M2((L(u) \ R(u)) ∩ B)

= M1 ⊗ M2((R(u) \ L(u)) ∩ A) − M2 ⊗ M2((R(u) \ L(u)) ∩ A)

≥ 0,

where the last inequality follows from Lemma 7. The proof is complete.

We remark that the probabilistic rearrangement inequality presented in [9, Theorem 4.9] is a
special case of Lemma 8 when J is the real line equipped with the usual order on R and xj = j .

Proof of Theorem 1. Suppose that M1 ≤lr M2. Fix any a = (a1, . . . , an) ∈ S(W) with
a1 ≤ a2. Define a′ = (a′

1, a
′
2, a

′
3, . . . , a

′
n) = (a2, a1, a3, . . . , an) ∈ S(W). We also fix

x = {xj : j ∈ J } as a realization (sample path) of {Xj : j ∈ J }. Then x = {xj : j ∈ J } is an
increasing and measurable real-valued function on J . By Lemma 8 we obtain

a1xM1 + a2xM2 ≥st a2xM1 + a1xM2 .

As the increasing concave order is weaker than the usual stochastic order and as it is closed
under convolution with independent variables, we obtain

n∑
i=1

aixMi
≥icv

n∑
i=1

a′
ixMi

,

which implies that

E

[
U

( n∑
i=1

aixMi

)]
≥ E

[
U

( n∑
i=1

a′
ixMi

)]
.

By taking the expectation conditional of {Xj : j ∈ J } to both sides of this inequality, we
conclude that

E

[
U

( n∑
i=1

aiXMi

)]
≥ E

[
U

( n∑
i=1

a′
iXMi

)]
.

The result follows from this inequality.

If we examine the whole argument carefully, the following is clear: in order to compare the
size of the optimal amount invested in two different securities, say the ith and the j th, we do
not need a total order on the whole index set J or, equivalently, we do not need a total order on
{Xj : j ∈ J }. It is sufficient to have a total order on Range(Mi) ∪ Range(Mj ). It should also
be remarked that the concavity of the utility function U is only used in establishing the worst
dependence structure.

We close this section by presenting a simple illustrating example.

Example. Suppose that J = {1, 2} such that 1 ≺ 2, where {1} corresponds to a ‘bad’
environment and {2} corresponds to a ‘good’ environment. Assume that X1 ∼ log N(µ, σ) and
X2 ∼ log N(ν, σ ), where µ ≤ ν, and assume that they have unknown dependence structure.
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It can be checked that X1 ≤st X2. Consider the independent securities M1 = (0.7, 0.3) and
M2 = (0.4, 0.6). Obviously, the second security is better because it has a higher probability
(0.6) of being in a good environment to enjoy a better investment return. In fact, direct
calculation shows that M1 ≤lr M2. Hence, by Theorem 1, we should invest more in the
second security than in the first.

6. Special cases

The model studied in this paper is indeed quite general in the sense that it includes several
models studied in the literature before as special cases. In the next two examples we will explain
this relationship, which serve as applications of our current model.

Example 1. Suppose that J is a finite set, say J = {1, 2, . . . , n}. Then there are n fundamental
risks X1, . . . , Xn. Furthermore, suppose that all the mixing variables are degenerate such that
Mi ≡ i for all i. Then it is trivial to show that M1, . . . , Mn are independent of each other and
independent of X1, . . . , Xn. Therefore, the setting here satisfies all the assumptions required
in our mixture model. The optimization problem becomes

max
a∈S(W)

min
X

E

[
U

( n∑
i=1

aiXi

)]
.

The interpretation of this model is that the return of securities is regarded as the fundamental
risk in the market. This problem was studied in [2]. By applying our analysis we obtain the
same conclusion as in that paper: Xi ≤st Xj ⇒ a∗

i ≤ a∗
j .

Example 2. Suppose that J = R is endowed with the usual order of real numbers. One way to
introduce the system of fundamental risks {Xj : j ∈ R} that is totally ordered and is consistent
with the usual order on R is to set Xj ≡ j for all j . Since every Xj is degenerate, the worst
dependence structure among them is meaningless. Moreover, we note that the topology J
on J (induced from the weak topology on X) is the same as the usual Euclidean topology
because (Xjn) converges in distribution to Xj if and only if (jn) converges to j in the Euclidean
topology. Hence, the optimization becomes

max
a∈S(W)

E

[
U

( n∑
i=1

aiMi

)]
.

Since there is no need to establish the worst dependence structure, the concave assumption on U

can be relaxed. This problem was studied in [9]. By applying the bivariate characterization of
the likelihood ratio order, they first obtained a stochastic version of the rearrangement inequality,
and then deduced that Mi ≤lr Mj ⇒ a∗

i ≤ a∗
j , which is consistent with Theorem 1.
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