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Abstract

We provide necessary and sufficient conditions for a minimal upper semicontinuous mul-
tifunction defined on a separable Banach space to be the subdifferential mapping of a
Lipschitz function.

1. Introduction and preliminaries

A set-valued mapping <I> from a topological space A into subsets of a linear topo-
logical space (Y, r) is referred to as a r-cusco on A if:

(i) for each x e A, 0>(x) is non-empty, convex and compact;
(ii) for each open subset W of Y, [x e A : 4>(x) c W] is open in A.

(Set-valued mappings satisfying only (ii) are called upper or outer semi-continuous.)
A cusco mapping <t> from a topological space A into subsets of a linear topological

space {Y, r) is said to be a minimal z-cusco if its graph does not strictly contain the
graph of any other r-cusco defined on A.

Let X be a Banach space with norm dual X*. We use (•, •) to specify the pairing
between X and X*. A real-valued function / defined on a non-empty open subset
A of X is locally Lipschitz on A if for each x0 e A there exists a K > 0 and a
neighbourhood U oixQ such that

ff||*-;yll for all x,yeur\A.

For functions in this class, the Clarke generalized directional derivative at x € A, in
the direction y, is defined by
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Associated with the Clarke generalized directional derivative is the Clarke subdiffer-
ential mapping, which is defined by

df(x) = {x* eX* : (x\y) <f\x;y) foreach y e X}.

The Clarke subdifferential mapping, x —> df (x), has played a crucial role in non-
smooth analysis. It is well-known that the Clarke subdifferential mapping of a real-
valued locally Lipschitz function denned on a non-empty open subset of X is a weak*
cusco, with images in X*. While not every locally Lipschitz function gives rise
to a minimal cusco, a very large proportion of non-pathological functions do. A
notable example is given by the class of essentially smooth functions (those whose
subdifferentials are singleton almost everywhere; see [4,6]), which form a lattice
algebra including the convex and C1 functions. In this paper we concern ourselves
with the converse problem: when can a given (minimal) weak* cusco be represented
as the the Clarke subdifferential mapping of a real-valued locally Lipschitz function?

There has been some considerable work on the subgradient representation of mul-
tifunctions. An early result is due to Rockafellar, who proved that a multifunction is
the subdifferential of a lower semicontinuous proper convex function if and only if
the multifunction is maximal cyclically monotone; see [12]. Janin further showed in
[10] that a multifunction is cyclically submonotone if and only if this multifunction is
the Clarke subdifferential mapping of a lower-C1 (locally Lipschitz) function in the
sense of Rockafellar [14]. Recently Poliquin [13] proved that a multifunction is the
proximal subdifferential mapping of a lower semicontinuous function bounded below
by a quadratic if and only if it satisfies a monotone selection property. Finally, in one
dimension, a full characterization of when a multifunction is the Clarke subgradient
of a Lipschitz function may be found in [3].

In this paper we develop, in terms of line integrals (as in the classical Green's
theorem), necessary (and sufficient) conditions for a given minimal weak* cusco to be
the Clarke subdifferential mapping of a locally Lipschitz function. However, it is not
our intention to provide a deep or thorough investigation of this problem, but rather, to
present some ideas and results that will facilitate further research in this area. Indeed,
our main goal has been to present results which we feel may have wide-spread utility.
We first provide in Section 2 a sufficient condition ensuring that a minimal weak*
cusco is the Clarke subdifferential mapping of a Lipschitz function. This condition
is subsequently applied to recapture the Hilbert space case of Rockafellar's cyclic
monotonicity theorem. Moreover, we also derive from this condition a necessary
and sufficient condition for a Lipschitz vector-field to be the gradient mapping of a
real-valued Lipschitz function. Ultimately, in Section 3 we provide a characterization
for a minimal weak* cusco to be the Clarke subdifferential mapping of a Lipschitz
function.
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Let us now make precise some basic tools for use in the sequel. A line segment
[a, b] in a Banach space X is defined as

[a, b] = [tb + (1 - t)a | 0 < t < 1}.

We define the line integral on [a, b] of a single-valued mapping a : X —>• X*,
f[a b] a(z) dz, as the Lebesgue integral

f (cj(tb + (l-t)a),(b-a))dt,
Jo

where we implicitly assume that the function T : [0, 1] -> K, defined by T(t) =
(a(tb + (1 — t)a), (b — a)), is Lebesgue-measurable. It can easily be seen that

I a(z)dz = - f cr(z)dz.
J[a,b] J[b,a]

A polygonal path C in X is an ordered collection of line segments {[ait ai+\\ \
1 < / < n — 1} for some positive integer n. Such a path is said to be closed
when a\ = an. We write — C to denote the ordered collection of line segments
{[an_,+i, an_,] | 1 < i < n — 1). The line integral fco(z) dz on a polygonal path C
is defined as

~~ r a(z)dz. (1)

We say that a multifunction <J> : X -> 2X* is locally bounded, provided that for each
x0 € X there exists a positive number L and a neighbourhood U of ;c0 such that

l ly l < *. (2)

for all y* e 4>(M) with u e U. Moreover, <J> is said to be bounded by L if inequality
(2) is satisfied by all y* in the image of <t>.

Our other notation is standard. For example, B(X) (B(X*)) denotes the closed unit
ball of X (resp. X*), while S(X) denotes the unit sphere of X.

2. A sufficient condition and its applications

In this section we first provide in an arbitrary Banach space a sufficient condition
for a minimal weak* cusco to be the Clarke subdifferential mapping of a Lipschitz
function. We illustrate the use of this result by recapturing, in Hilbert space, Rockafel-
lar's cyclic monotonicity theorem. Additionally, we obtain a necessary and sufficient
condition for a Lipschitz vector-field to be the gradient mapping of a Lipschitz function
inK2.
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THEOREM 2.1. Assume that X is a Banach space and A is a non-empty connected
open subset ofX. Let <t> : A —> 2X' be a locally bounded weak* cusco. Suppose O
possesses a selection a : A —>• X* such that

£tx(z)dz<0 (3)

for every closed polygonal path C in A. Then there is some locally Lipschitz function
f on A with df c <1>. Moreover, if<t> is minimal, then 4> = 3/ .

PROOF. Let us note first that open connected sets are actually polygonally con-
nected. We define / : A -> 0& by

= f/(*) = / a(z)dz,
Jr

where F is some polygonal path in A from a given point a e A to x e A. Observe
that (3) holding for each closed polygonal path C in A implies

a(z)dz = 0
c

for every closed polygonal path Cm A. As in the classical case, we see that/ is well
defined. Let us now verify that / is locally Lipschitz on A. Given any x e A, since
<t> is locally bounded, there exists a positive number L such that 4>(f/) c LB(X*) for
some convex neighbourhood U of x contained in A. Thus, for any ylt y2 € U, one
has

I/C2) -/(>-.)! = / a
J\yi.n)

(z)dz {\-t)yx),y2-yx)dt

< / \{cr(ty2 + (1 -t)yi),y2 -y\)\dt < L\\y2 -
o

Finally, we show that 3/(z) c <t>(z) for any z € X. We assume, to obtain a
contradiction, that for some z, 3/ (z) 2 *(z)- Then we may find an x* € 3/(z)
and an x e S(X) such that {x*,x} > a > max(4>(z),x). This implies/°(Z;JC) >
a > max(4>(z),*). By the upper semicontinuity of 4>, we can select a convex
neighbourhood V of z such that max(4>(V), JC) < a. On the other hand, we may
select v e V such that/ '(u; x) > or. Hence there exists a positive number e such that
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The definition of/ allows us to conclude

f(v + €x)-f(v)= [ a(z)dz.

Then, employing the mean value theorem and Lebesgue's differentiation theorem, we
obtain a(w)(€x) > ore for some w e [v, v + ex], which gives o(w)(x) > a. This
is impossible since we have w € V and o(w) € <J>(io) c 4>( V). In consequence we
have 3/ (z) c 4>(z) for all z e A.

It is now immediate that 3/ = <J> whenever 4> is minimal, since 3/ is a weak*
cusco.

We illustrate the first application of Theorem 2.1 by recapturing the Hilbert space
case of Rockafellar's cyclic monotonicity theorem [12] as follows. Recall that a
multifunction T : X -*• 2X' is cyclically monotone if given (*,-, x*) € gph T, (i =
0, 1, 2 , . . . , n, where n is arbitrary) and gph T denotes the graph of T, we have

{XQ,X{ -X0) + {x*,x2 —Xi)-\ 1- (x*,xo-xn) < 0.

COROLLARY 2.1. Let H be a Hilbert space and T : H -*• 2H be maximal and
cyclically monotone. Then there exists a proper convex {closed) function f defined
on H such that T = df.

PROOF. (Special case: D{T) = H.) [ In this case the reasoning applies in arbitrary
Banach spaces.] Recall that T is a locally bounded minimal weak* cusco on H. Let
a be any selection of T. We claim that fco(x)dz < 0 for any closed polygonal path
C. Notice that for [a, b] C H the function t ->• a{tb + (1 — t)a)(b — a) is monotone,
and hence Riemann integrable. Also,

f a{z)dz
J[a.b)

= s u p j ^ o i f i - x b + ( 1 - t , . i ) a ) ( ( b - a)(t, - f , _ , ) ) | 0 = *, < t2 < • • • < tn = 1 [

^CTOCJ-IXJC,- — JC,-_I) I P = {[*,_!,*,] : 1 < i < n] polygonal from a tob\.
i=i >

Hence fc a (z) dz < 0 for any closed polygonal path C in H because

o(xn)(x0 - xn) + a(xn-i)(xn -*„_,) H \-<T(XO)(XI - X0) < 0

for any finite set of points {x0, xt,... ,xn] C H. We see from Theorem 2.1 that the
conclusion holds whenever D(T) = H.
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(General Case.) Since T is maximal monotone, so is T~l. Using Minty's theorem
[11] we then know that the range R{T~l + I) is the whole space H. This means that
the domain D(TX) of the resolvent Tx = (T~l + / ) - ' is H. Observe that the cyclical
monotonicity of T~l follows from that of T. This implies the cyclical monotonicity
of T~l + / and then that of T\. Thus applying the assertion just proved above for
the special case that D(T) = H, we obtain a locally Lipschitz function g such that
T\ = dg. By virtue of Theorem 5 of [9] we deduce that g is convex from the
monotonicity of Tx. We thus infer that Tf1 = dg*, where g* is the conjugate of g.
This allows us to conclude that

T~l = dg*-i =d(g*-\\-\\2/2)

by virtue of the subgradient sum rule in non-smooth analysis. We again appeal to
Theorem 5 of [9] to see that h* — g* — \\ • \\2/2 is convex since T~x is monotone. We
have determined that T = dh with h given as the conjugate of h*. This ends the proof
of the Corollary.

We conclude this section by applying Theorem 2.1 to get a necessary and sufficient
condition for a Lipschitz vector-field in K2 to be the gradient mapping of a real-valued
Lipschitz function. To this end, we need to modify the classical Green's theorem as
follows.

LEMMA 2.1. Let P and Q be two real-valued functions in K2 defined and continuous
on a Jordan region R bounded by a rectifiable Jordan curve V. Assume that the partial
derivatives | ^ and | ^ exist almost everywhere on R and are essentially bounded on
the interior of R. Suppose further that a = (ai,a2) 6 r(/?), where T(R) is the
positively oriented boundary of R. Then the line integral fr{R) Pda{ + Qda2 exists
and satisfies

Pdax + Qda2.

The proof of the above lemma is j ust a modification of that of Theorem 10-43 of [ 1 ].
The definitions of a Jordan region and a rectifiable Jordan curve can also be found
in [1]. To derive die following consequence, we also have to employ Rademacher's
theorem which states that real-valued locally Lipschitz functions defined on R" are
Frechet differentiable almost everywhere (in their domain), in particular, the partial
derivatives exist almost everywhere.

PROPOSITION 2.1. Suppose that F = (P, Q) is a locally Lipschitz vector-field
defined on open simply connected region R in K2. Then F = V/ for some locally
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Lipschitz function f on R if and only if

oQ dP
a a (4)
dx dy

almost everywhere on R.

PROOF. Let us assume first that F = V/ for some locally Lipschitz function / .
Then

(of df\
\ax ay J

Since F is locally Lipschitz, F is differentiable on R almost everywhere, according to
Rademacher's Theorem. This means that V2/ exists on R almost everywhere. Notice
that

ay

By virtue of Theorem 12.12 in [2], we see that (5) holds wherever V2/ exist. Therefore
(4) must hold almost everywhere in R.

Conversely, we assume that (4) holds on R almost everywhere. Invoking Lemma
2.1 and using (4), we can show, as in the classical case, that

Fda = [
c Jc

Pdat + Qda2 = 0

for any closed polygonal path C in R. Observe that (x, y) -»• {F(x, y)} is single-
valued and so minimal. Thus by Theorem 2.1 there exists a locally Lipschitz function
/ defined on R such that 3/ = {F}. Consequently Proposition 2.2.4 of [8] allows us
to conclude that F = V/ holds on the whole R. This ends the proof of the proposition.

REMARK 2.1. We should note here that Proposition 2.1 may be extended to any
finite-dimensional Banach space in the following way: "Let R be an open rectangle
in K". Then a locally Lipschitz vector-field F on R is the derivative of a real-valued
locally Lipschitz function defined on R if and only if the Clarke generalized Jacobian
of F is symmetric."

Below we give a simple application of Proposition 2.1, by considering the two
regions* > \y\y and* < \y\y.

EXAMPLE 2.1. For each X e K define Fx : K
2 -+ D52 by Fk(x,y) = (Pi(x,y),

Qx(x,y)) where

Pk(x,y) = k/2\x + \y\y\ and Qx(x,y) = \x+ \y\y\\ky\.

Then by Proposition 2.1 we see that Fk is the derivative of some real-valued locally
Lipschitz function on K2 if and only if A > 0.

https://doi.org/10.1017/S0334270000010924 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010924


308 J. Borwein, W. B. Moors and Y. Shao [8]

3. A subgradient characterization

In this section we characterize, in line integral terms, when a minimal cusco is the
Clarke subdifferential mapping of a Lipschitz function. Let us start by recalling some
additional definitions and assertions.

Let X be a Banach space. A Borel subset N C X is a Haar-null set if there exists
a (not necessarily unique) Radon probability measure p on X such that p(x +N) = 0
for each x € X. (In this case, we call p a test-measure for N.) More generally, we
say that a subset N c X is a Haar-null set if it is contained in a Borel Haar-null set.
Below are some of the basic properties enjoyed by Haar-null sets.

PROPOSITION 3.1. ([6], Proposition 2.1) Let X be a Banach space.

(i) IfM^N^X and N is a Haar-null set, then so is M\
(ii) IfN is a Haar-null set, then x + N is also a Haar-null set for each x e X;

(iii) IfN C l i s a Haar-null set, then X\N is dense in X;
(iv) If{Nj c X : j e N] are Haar-null sets, then so is{J{Nj : j eJV);
(v) Infinite dimensions, the Haar-null sets and Lebesgue-null sets coincide.

The following "Fubini" result, regarding Haar-null sets, will also be utilized later.

PROPOSITION 3.2. ([6]) Let X be a Banach space and N a Haar-null subset in
X x R". Then for almost every b e X, that is, except for b in a Haar-null subset in
X, the set

Nb = {zeRn\(b,z)eN]

is a Lebesgue-null subset of K".

Using the language of Haar-null sets, Christensen provided the following general-
ization of Rademacher's theorem. A slightly more general version of this result may
be found in [5].

PROPOSITION 3.3. ([7], Theorem 7.5) Assume that X is a separable Banach space.
Let f be a real-valued locally Lipschitz function defined on a non-empty open subset
AofX. Then there exists a Borel subset D c A such that A\D is a Haar-null set
and f is Gateaux differentiate at each x € D.

The assertions below regarding the Clarke generalized directional derivative and
subdifferential are due to Thibault and generalize results originally proven in W by
Clarke [8]. For the most general form of these results, see [6].
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PROPOSITION 3.4. ([15]) Let X be a separable Banach space and g be a locally
Lipschitz function on X. Suppose that M is a subset of X on which g is Gateaux
differentiable and such that X \M is Haar-null in X. Then we have

(i) g°(x, v) = max{(|, v) | § e LM(g,x)} for every v € X;
(ii) dg(x) = cl* co[LM (g, x)], where

LM(g, x) = {weak* - lim Vg(xn) | lim xn = x, xn e M]
n-»oo n->oo

and "cl* co" denotes the weak* closure of the convex hull.

We now further discuss polygonal paths. Let X be a Banach space, and A be a
non-empty open connected subset of X. Suppose also that B c A is a Borel set. For
a fixed e > 0 we will call an ordered collection of line segments P(e) = {[a,-, £>,] |
1 < i < n — 1} an e-path from a to b provided that

n - l

\\a - "ill +

Such a path is said to be closed \ia = b. Moreover, we write —P(e) = {[&,, a,] | 1 <
i < n — 1}. Furthermore, we say that P is a B-admissible e-path from a to & if P is
an e-path from a to b and

A.({f € [0, 1] | tb, + (1 - Ofl.- ^ S}) = 0

for each 1 < / < n — 1. Line integrals on a e-path are defined similarly to (1). Here
'X' denotes Lebesgue measure on the line.

We are now ready for our main result.

THEOREM 3.1. Let X bea separable Banach space, and let A bea non-empty open
connected subset of X. Then for a minimal weak* cusco <t> : A —*• 2X' to be the
Clarke subdifferential mapping of a locally Lipschitz function (with uniform rank L)
it is necessary and sufficient that (i) <t> be bounded by L and (ii) that there exist a
Borel set B C A with A\B Haar-null and a measurable selection a : B —> X* such
that for each e > 0 and each closed B-admissible e-path P(e) in A, one has

l£ o(x)dx < Le. (6)

PROOF, (a) "only if. Let us assume that <J> = 3/ for some Lipschitz function /
with rank L. Then it is evident that $ is bounded by L. Now we verify (6) for every
e > 0 and each closed B-admissible e-path P(e) in A. Letting

B = {x 6 A | / is Gateaux differentiable at x],
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we know from Proposition 3.3 that the set N =; A \ B is Haar-null. We define
a : B —> X* by o(x) = V/ (*). It follows that the mapping a is Borel measurable.
Given any e > 0, let P = {[ah fc,] | 1 < i < n] be a closed 5-admissible e-path in A.
Then by virtue of Lebesgue's differentiation theorem, we obtain

/ (bi) — f (ad = I (V/(ffe,-+ (1 — f)af), fe,-— a,-)^ = / o(z)dz-
JO J\a,.b,\

We may now derive (6) from the following chain of the inequalities:

Jp(
a(x)dx - / (b n ) \

U.

(b) "if". Let us now prove the converse. We first define the function

/(jc)=5lim / o(z)dz for all xe A,
f ^ 0 +

 JP«)
(7)

where P(e) is any B-admissible e-path in A from some fixed a e A to x. Then/ is
well defined. Indeed, for any et, e2 > 0, let P,(e,) be S-admissible €,-paths from a
to x, i = 1, 2. Then P, (e{) + (-P2(e2)) is a closed fi-admissible (et + e2)-path. By
assumption we then deduce

\ [ a(z)dz- f cr(z)dz = \ f a(z)dz - e 2 ) .

Therefore we see that the limit on the right of (7) does exist, and then / is well defined,
as claimed.

Next let us verify that the function/ is locally Lipschitz with rank L. Let x0 be any
point in A and let U be any convex neighborhood of x0 contained in A. Consider any
two points x, v € U and fix S > 0. By the definition of/ we may choose S > e0 > 0
sufficiently small so that if P(e) is any 5-admissible e-path (0 < e < e0) from a to
x, then

! / ( * ) - /" o{z)dz <&,

and if P'(e) is any 5-admissible e-path from a to y, then one has

/GO - f
JP'(e)

a(z)rfz <S.
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Now suppose P(e) = {[a,, b{\ | 1 < i < n] is a fl-admissible e-path from a to x
(with 0 < e < e0). By Proposition 3.2 we may extend P(e) to a fi-admissible e-path
(P'(e), say) from a to y, where P'(e) = [[ait bt] | 1 < i < n + 1}. It follows that

1/00-/<*)!< f(y)- [ <r(z)dz

L
+ \f <r(

\jP\e)
(z)dz- [ <r(z)dz

a{z)dz-f(x)

<S f (z)dz + 8

<L\\an+l-bn+1\\+28

< L(\\an+i -x\\ + \\x - y\\ \\y - bm+l\\) + 25

This gives \f (y) — / (x)\ < L\\x — y || as 8 is arbitrary.
Finally, let us show that 3/ (x) c O(x) for all x € A. Define

D = [x e X | / is Gateaux differentiable at x}.

We know from Proposition 3.3 that X \ D is Haar-null. So in view of Proposition 3.4
it is sufficient to show that V/(.x) € 0>(x) for all x € D. Assume, for the purpose
of obtaining contradiction, that V/ (x) & ®(x) for some x € D. Thus, by the Mazur
separation theorem, we can choose an a € K and a y e 5(X) such that

(V/(*),y) > a > max((D(x),y>.

Using the upper semicontinuity of <I>, we can find a convex neighbourhood U of x
such that sup{<t>(U), y) < a. Moreover, since / is Gateaux differentiable at x, we
may select an e > 0 such that

f(x+€y)-f(x)
> a.

€

Let G s D D B. Then we know from Proposition 3.1(iv) that A \ G is also Haar-null.
By Proposition 3.2 we can find v € X close to x such that [v, v + ey] is G-admissible
and

(v + ey)-f(v)
> a.

Moreover, we can assume without loss of generality that [v, v + ey] c U. From the
definition of/ we may deduce the equality

ey)-/(u) = a{z)dz.
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Thus, it follows from Lebesgue's differentiation theorem that there exists a z € [v, v +
ey] n G such that (CT(Z), €y) > ae, which immediately gives us that (<r(z), y) > a.
This is a contradiction, since z € f/and a(z) e <J>(z) c $(£/)> while max (<£(£/)> y)
< a. We consequently have 3/ c cj>, and then 3/ = <& due to the minimality of 4>.

We note here that from Theorem 2.5 in [4] it follows that the function/ constructed
in the second half of Theorem 3.1 is in fact D-representable in the sense that for each
dense subset D of {x e A : V/ (x) exists } we have,

3/ (x) = co^f**: x* = weak* - Jim V/ (xn)}.
J/i6D

COROLLARY 3.1. Let X be a separable Banach space, and let A be a non-empty
open connected subset ofX. Then for a minimal weak* cusco C> : A -» 2X' to be the
Clarke subdijferential mapping of a D-representable locally Lipschitz function (with
uniform rank L) it is necessary and sufficient that (i) <J> be bounded by L and (ii)
that there exist a Borel set B d A with A \ B Haar—null and a measurable selection
o : B —> X* such that for each e > 0 and each closed B-admissible e-path P(e) in
A, one has

o(x)dx
P(e)

< L€.

One of the disadvantages of Theorem 3.1 is that a priori it is not clear how to
test whether a given set-valued mapping has a well-behaved selection. There is one
situation however where this problem is resolved, namely, the situation in which the
set-valued mapping is single-valued almost everywhere. In this case the selection is
essentially uniquely defined. Moreover, we have the following.

THEOREM 3.2. Let A be a non-empty open connected subset of a separable Banach
space X. Then any minimal weak* cusco <t> : A —> 2B( ; r ) for which N = {x € A :
<i>(x) is not single-valued} is Haar-null is the Clarke subdifferential mapping of a
unique (up to an additive constant) locally Lipschitz function f provided that for each
€ > 0 and each closed (A\N)-admissible e-path P(e) in A we have

<P(x)dx < €.

PROOF. From Theorem 3.1 we have that there exists a locally Lipschitz function/
such that 3/ = <t>. The uniqueness of/ follows from the fact that since 3/ is single-
valued almost everywhere it must be essentially smooth (see [4]) and so integrable on
A.
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