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Classification of AF Flows

Andrew J. Dean

Abstract. An AF flow is a one-parameter automorphism group of an AF C∗-algebra A such that there

exists an increasing sequence of invariant finite dimensional sub-C∗-algebras whose union is dense in

A. In this paper, a classification of C∗-dynamical systems of this form up to equivariant isomorphism

is presented. Two pictures of the actions are given, one in terms of a modified Bratteli diagram/path-

space construction, and one in terms of a modified K0 functor.

1 Introduction

In this paper we shall discuss C∗-dynamical systems of the following form: We have a
C∗-algebra which is given as an inductive limit of a sequence of nice building blocks,
and the group acts on each of these in such a way as to make the maps in the inductive

system equivariant and result in an action on the limit algebra.

In the case that the group is compact there is already a long list of classification

results for actions of this type. In [8] and [9], Handelman and Rossmann classified
actions of a compact group on an AF algebra which left invariant an increasing se-
quence of finite dimensional subalgebras with dense union for which the action of
the group on each of the finite dimensional algebras was by inner automorphisms as-

sumed to arise from a unitary representation of the group. Such actions they referred
to as locally representable. In [10] Kishimoto considered actions of finite groups on
inductive limit algebras with more complicated building blocks (circles), and in [2]
this study was extended to still more complicated inductive systems and to general

compact groups. In both of these cases it was assumed that the action still satisfied
a local representability condition, namely that the group acted by inner automor-
phisms on the building blocks, again, arising from a unitary representation. In the
case where the group was just Z/2Z and the building blocks finite dimensional, this

local representability hypothesis was removed in [6].

The story for inductive limit actions of the reals is at a much earlier chapter. In

[3] an invariant was introduced which classified product type actions of the reals on
UHF algebras. The invariant bore some resemblance to the supernatural numbers
introduced by Glimm to classify these algebras. In this paper we shall classify AF
flows. We shall present two pictures of them, one based on a generalisation of the

Bratteli diagrams of [1], and the other based on an analogue of the dimension groups
of [4].
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2 Coloured Bratteli Diagrams

Definition 2.1 We begin with some definitions and conventions. All of our C∗-

algebras will be unital, but we do not assume that all ∗-homomorphisms preserve
the units. Let A be a C∗-algebra with an action α of the reals on it. Suppose that
there exists an increasing sequence {An} of finite dimensional sub-C∗-algebras of A

such that each An is invariant under the action and A =
⋃∞

n=1 An is norm dense

in A. Then the C∗-dynamical system (A, α) will be referred to as an AF flow. The
dense ∗-subalgebra A along with the action α|A will be referred to as a locally finite
∗-dynamical system, and we shall use the term ∗-dynamical system to refer to either a
C∗-dynamical system or a locally finite ∗-dynamical system.

Let (A, α) be a C∗-dynamical system with A a full matrix algebra. Then by Propo-
sition 2.5.5 of [11] there exists a positive operator h ∈ A such that the generator of α
is the derivation δ(x) = i[h, x]. Clearly any two positive operators with this property
differ by a scalar multiple of the identity. We shall refer to the unique such positive

operator having smallest eigenvalue zero as the minimal positive Hamiltonian of the
action.

In this section, we shall give a diagrammatic way to classify locally finite ∗-dynam-

ical systems. Our first step is the following theorem describing the injective, unital,
equivariant ∗-homomorphisms from one finite dimensional C∗-dynamical system to
another.

Theorem 2.2 (Finite Dimensional Embeddings) Let (A, α) and (B, β) be two C∗-

dynamical systems with A finite dimensional and B a full matrix algebra. Let ψ : A → B

be an injective unital equivariant ∗-homomorphism. Let A1, . . . ,An denote the minimal

direct summands of A, and let h1, . . . , hn denote the minimal positive Hamiltonians of

(A1, α|A1
), . . . , (An, α|An

) respectively. Let F1 = { f 1
1 , . . . , f 1

l1
}, . . . , Fn = { f n

1 , . . . , f n
ln
}

be the eigenvalue lists, with multiplicities, of h1, . . . , hn respectively, and, for each k,

let {ek
i j}1≤i, j≤lk be a system of matrix units for Ak consisting of eigenoperators for the

action α such that the eigenvalue for ek
i j is f k

i − f k
j . Suppose that the multiplicities of

the embeddings under ψ are m1, . . . ,mn for A1, . . . ,An respectively. Let hβ denote the

minimal positive Hamiltonian for (B, β). Then there exist real numbers c1, . . . , cn, sets

of real numbers S1 = {s1
1, . . . , s

1
m1
}, . . . , Sn = {sn

1, . . . , s
n
mn
} with |Sk| = mk for each k,

and a system of matrix units { fst} for B consisting of eigenoperators for β such that

ψ(ek
i j) =

mk−1
∑

r=0

f
((

∑k−1
u=1 lumu)+rlk+i)((

∑k−1
u=1 lumu)+rlk+ j)

and the eigenvalue of fst is

(

cw(s) + sw(s)

b s−w(s)
lw(s)

c
+ f w(s)

s−w(s)−lw(s)b
s−w(s)

lw(s)
c

)

−
(

cw(t) + sw(t)

b t−w(t)
lw(t)

c
+ f w(t)

t−w(t)−lw(t)b
t−w(t)

lw(t)
c

)

,

where w(s) is the smallest integer k such that
∑k

r=1 lrmr ≥ s.
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Proof Assume the notation in the statement of the theorem. Let C1, . . . ,Cn denote
ψ(1A1

)Bψ(1A1
), . . . , ψ(1An

)Bψ(1An
) respectively. Then, for each k, Ck

∼= ψ(Ak) ⊗
(

ψ(Ak) ′ ∩ Ck

)

, and the action β restricts to an action on Ck that respects this ten-
sor product decomposition. Let gk denote the minimal positive Hamiltonian of the
action on

(

ψ(Ak) ′ ∩ Ck

)

∼= Mmk
, and let Sk = {sk

1, . . . , s
k
mk
} be its eigenvalue list.

Let {ui j}1≤i, j≤mk
be a system of matrix units for ψ(Ak) ′ ∩ Ck consisting of eigenop-

erators such that gk = sk
1u11 + · · · + sk

mk
umkmk

. Then the set
{(

ψ(ei j)
)

⊗ uop | 1 ≤

i, j ≤ lk, 1 ≤ o, p ≤ mk

}

is a basis for Ck consisting of eigenoperators. Order the

projections ψ(eii)⊗uoo lexicographically, first by the e numbers, then the u numbers.
Next, we choose an ordering to place the blocks Ck down the diagonal of B so

that filling out the systems of matrix units we already have for the Ck to a system of
matrix units consisting of eigenoperators for all of B will result in a system satisfying

the requirements of the theorem. For each k, let pk be a minimal projection of Ck that
is a sub-projection of the spectral projection of hk ⊗ 1 + 1 ⊗ gk with eigenvalue zero.
Since the pks are also minimal projections of B, they are all Murray-von Neumann

equivalent. Let v jk be a partial isometry such that v∗jkv jk = pk and v jkv∗jk = p j . Then
since the range and support projections of v jk are in the fixed point subalgebra and
are orthogonal, v jk is an eigenoperator. Let cn denote the largest positive eigenvalue
of any of the v jks, say cn is the eigenvalue of vxy . Let c1 = 0. Place Cx first in the upper

left corner of B, C y last in the lower right corner, and the other Cks down the diagonal
in increasing order as the eigenvalue of vxk. These eigenvalues give us the other cks.
With this ordering on the projections ψ(ek

ii)⊗uk
oo, we may now use the v jks to fill out

the matrix units already found for the Cks to a system { fst} of matrix units for B that

is easily seen to satisfy the requirements of the theorem.
Perhaps the best way to picture this result is in terms of a path space construction

using a Bratteli diagram with labelled edges, as follows (cf. [7], Chapter 2, for a
discussion of the path space construction). First consider the Bratteli diagram for a

single full matrix algebra of size n × n:

•




y





y





y





y

•

We have n edges, which we may use to index a system of matrix units. Each edge
gives a projection in this system. Now suppose the minimal positive Hamiltonian of

an action is diagonal with respect to this system of matrix units. Label each edge by
the corresponding eigenvalue of the Hamiltonian:

•

a b c d

•

�� @@
HHH

?@@R ��	
�

��+

We may think of a matrix unit as a loop, starting at the top, going down to the
lower dot, and then back up. These matrix units are all eigenoperators for the action,
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and the eigenvalue is given by taking the value on the down edge and subtracting the
value on the up edge.

Next, consider the two step diagram, consisting of the labelled Bratteli diagrams
for each of the minimal direct summands of A and the multiplicity diagram for the

embedding of A into B:

F1 F2 F3 F4

c1 + S1 c2 + S2 c3 + S3 c4 + S4

We use the label Fk to mean that there are really lk edges with labels f k
1 , . . . , f k

kk
,

and the label ck + Sk to mean that there are really mk edges which we label with the
numbers ck + sk

1, . . . , ck + sk
mk

. Now we get a system of matrix units for B indexed by
two edge paths from the top dot to the bottom dot, and we again think of our matrix

units as loops formed by a pair of such paths. If we suppose that the minimal positive
Hamiltonian of B is diagonal with respect to these matrix units, we have that the
matrix units are eigenoperators and the eigenvalue of one of them is given by adding
up the labels going down and subtracting the labels going back up.

The embedding of A into B is given by the usual relations in the path space con-
struction, i.e., a loop with bottom in the middle row is set equal to the sum of the

loops obtained from it by appending the same edge down to the bottom row to both
the down and up sides of the loop. As the labels for these extra edges cancel, we see
that this indeed gives an equivariant embedding.

With this picture, the theorem above can be thought of as just a careful numbering
of the edges and paths. Clearly one may extend this to the case where B has several
direct summands, with the partial maps not necessarily all being injective.

Considering now the case of a sequence of embeddings of finite dimensional C∗-
dynamical systems giving rise to a locally finite ∗-dynamical system we are led to the
following modification of the definition of a Bratteli diagram.

Definition 2.3 (Coloured Bratteli Diagrams) A coloured Bratteli diagram consists of

a set V of vertices indexed by a subset of the pairs of positive integers, a set E of edges,
a pair of maps r : E → V and s : E → V , called the range and source maps, and a map
c : E → R+, which we shall call the colour of an edge, satisfying the following axioms:

(1) For each positive integer n, the set of vertices with first coordinate n is finite and

non-empty, and there is exactly one vertex with first coordinate zero.
(2) If x is an edge and s(x) = v(m, n) and r(x) = v(u,w), then u = m + 1.
(3) For each v(m, n) with m ≥ 1, there exists an edge x such that r(x) = v(m, n) and

c(x) = 0.
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(4) For each vertex v, the set of edges x such that r(x) = v is finite, as is the set of edges
y such that s(y) = v.
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A “black” Bratteli diagram A “coloured” Bratteli diagram

Coloured Bratteli Diagrams

Remark 2.4 (Observations on Coloured Bratteli Diagrams) We note a few facts
about these coloured diagrams.

(1) Given an inductive system of finite dimensional C∗-dynamical systems with unital
injective maps there is a unique (up to isomorphism) coloured Bratteli diagram
determined by the system, the diagram being determined by the multiplicities
alone and the colours given by the theorem above.

(2) Given a coloured diagram, the path space construction, with our convention for
assigning eigenvalues from the labels on the edges, gives us an inductive system of
finite dimensional C∗-dynamical systems having the given coloured diagram.

(3) If two inductive systems of finite dimensional C∗-dynamical systems yield isomor-

phic coloured diagrams, then the locally finite ∗-dynamical systems they give rise
to are isomorphic.

Let (C, α0) ⊆ (A1, α1) ⊆ (A2, α2) ⊆ · · · be an inductive system of finite dimen-

sional C∗-dynamical systems giving rise to a locally finite ∗-dynamical system (A, α),
and let {mk} be a strictly increasing sequence of positive integers. Then, clearly, the
inductive system (Am1

, αm1
) ⊆ (Am2

, αm2
) ⊆ · · · also defines the ∗-dynamical sys-

tem (A, α). Considering this process of “passing to subsequences” in an inductive

system leads one to a corresponding relation between coloured Bratteli diagrams. To
describe it, it will be useful to make a few more definitions. If D is a coloured Bratteli
diagram, a path in D is a finite sequence of edges such that the range of one edge is
the source of the next. We shall say that the source of the first edge is the source of

the path, and the range of the last edge is the range of the path. We define the colour
of a path to be the sum of the colours of its edges.

Definition 2.5 (Contractions of Coloured Diagrams) Let D1 = (E1,V1, s1, r1, c1)
and D2 = (E2,V2, s2, r2, c2) be two coloured Bratteli diagrams. We say that D2 is a
contraction of D1 if there are two maps, ψ : V2 → V1 and ϕ mapping a subset of the

set of paths in D1 to E2 with the following properties:

(1) The unique element of V2 with first coordinate zero is mapped by ψ to the unique
element of V1 with first coordinate zero.
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(2) There exists an increasing sequence 0 < n1 < n2, . . . of integers such that the
subset of V2 consisting of those elements with first coordinate k is mapped bijec-

tively onto the subset of V1 consisting of those elements with first coordinate nk.
A path p in D1 is in the domain of ϕ if and only if there is an integer k such that
the source of p has first coordinate nk and the range of p has first coordinate nk+1.

(3) For any two vertices v and w in V2 with the first coordinate of w one greater than

the first coordinate of v, the set of paths from ψ(v) to ψ(w) in D1 is mapped
bijectively by ϕ onto the set of edges from v to w.

(4) For any path p in the domain of ϕ, c
(

ϕ(p)
)

= c(p).

The following picture illustrates this definition on a finite piece of a coloured Brat-
teli diagram. The one step diagram on the right is a contraction of the two step one

on the left.
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Theorem 2.6 Let (A, α) and (B, β) be locally finite ∗-dynamical systems with coloured

Bratteli diagrams D1 and D2 respectively. Then (A, α) ∼= (B, β) if and only if there exist

coloured Bratteli diagrams D ′
1, D ′

2, and D3 such that D ′
1 is a contraction of D1, D ′

2 is a

contraction of D2, and D ′
1 and D ′

2 are both contractions of D3.

Proof If we have two coloured Bratteli diagrams, B1 and B2 such that B2 is a contrac-
tion of B1, then the inductive system described by B2 is isomorphic to one that arises
from the system defined by B1 by passing to subsequences, so sufficiency is clear. We
now establish necessity. If (A, α) and (B, β) are locally finite ∗-dynamical systems,

A =
⋃∞

n=1 An, B =
⋃∞

n=1 Bn, where {An} and {Bn} are increasing sequences of in-
variant finite dimensional C∗-algebras each containing the unit of A, B respectively,
and ψ : A → B and ϕ : B → A is a pair of inverse equivariant ∗-isomorphisms, then
we may, after passing to subsequences, pullψ and ϕ back to an intertwining diagram:

(An1
, αn1

) −−−−→ (An2
, αn2

) −−−−→ · · · −−−−→ (A, α)

ϕ1





y

ψ1





y

ψ2 ϕ ψ

(Bm1
, βm1

) −−−−→ (Bm2
, βm2

a) −−−−→ · · · −−−−→ (B, β)

The desired D ′
1 and D ′

2 are given by the sequences An1
⊆ An2

⊆ · · · and Bm1
⊆

Bm2
⊆ · · · respectively, and the desired D3 is given by the sequence of maps ψ1, ϕ1,

ψ2, ϕ2, . . . .
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In the next section, we shall develop an analogue of dimension groups for ∗-
dynamical systems. After proving the main result, we shall return briefly to coloured

Bratteli diagrams, and see that they actually characterise AF flows, not just locally
finite ones.

3 Classification of AF Flows

Definition 3.1 (The Ring of Hamiltonians) Let S denote the set of all finite subsets
of the non-negative real numbers, counted with multiplicity. More precisely, S =

{∅}∪
∐∞

n=1

(

(R
+)n/Sn

)

, where the symmetric group Sn acts on (R
+)n by permuting

the factors. We shall denote the element of S corresponding to an n-tuple 〈x1, . . . , xn〉
of non-negative real numbers by [x1, . . . , xn]. The element corresponding to the
empty set will be denoted [∅]. We define two operations, ⊕ and �, on S as follows:

[x1, . . . , xn] ⊕ [y1, . . . , ym] = [x1, . . . , xn, y1, . . . , ym]

[∅] ⊕ X = X ⊕ [∅] = X X any element of S

[x1, . . . , xn] � [y1, . . . , ym] = [xi + y j , 1 ≤ i ≤ n, 1 ≤ j ≤ m]

[∅] � X = X � [∅] = [∅] X any element of S

(S,⊕) is then an Abelian semi-group with neutral element [∅]. Furthermore, this

semi-group has cancellation: if x, y, z ∈ S, and x ⊕ z = y ⊕ z, then x = y. Let R

denote the Grothendieck group of (S,⊕). Since (S,⊕) has cancellation, the natural
map from S to R is an injection. We write R+ for the image of this map. Since the
multiplication operation � is associative and distributes over the addition operation

⊕ on S, we get a ring structure on R by extending � in the obvious way. The ring
(R,⊕,�) is then an ordered ring with identity with positive cone R+ and identity
element [0]. We call this ring the ring of Hamiltonians, for reasons which will become
obvious below.

There is a natural ring homomorphism, which we shall denote N , from R to Z

given by defining

N([∅]) = 0

N([x1, . . . , xn]) = n,

and extending by additivity (i.e. one just counts the number of elements in the sets).
It will be important below that this map is positive, N(R+) ⊆ (Z

+).

Definition 3.2 (The Invariant) Let (A, α) be either an AF flow or a locally finite
∗-dynamical system and let Aα denote the fixed point subalgebra of A. Let D(Aα)
denote the dimension range of Aα, i.e. the set of Murray-von Neumann equiva-
lence classes of projections in Aα. We define KR(A, α), which we shall refer to as the
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coloured K0 module of (A, α), to be the universal right R module generated by D(Aα)
subject to the following relations:

(1) If p and q are projections in Aα and p ⊥ q, then [p + q] = [p] + [q].
(2) If v is a partial isometry in A which is also an eigenoperator with eigenvalue a,

then [v∗v] = [vv∗][a], where [a] ∈ R.

We let ΣR(A, α) denote the image of D(Aα) in KR(A, α) under the natural map,
and we refer to this set as the coloured scale of (A, α). We make KR(A, α) into an
ordered R module by taking as positive cone the semi-group generated by positive
multiples of elements of the coloured scale.

If (A, α) and (B, β) are two ∗-dynamical systems, and ψ : A → B is an equivariant
∗-homomorphism, then we may define a map ΣR(ψ) : ΣR(A, α) → ΣR(B, β) by
ΣR[p] = [ψ(p)] for each projection p in Aα. This map extends to an R-module
homomorphism from KR(A, α) to KR(B, β) which we shall call KR(ψ). It is easy

to see that these definitions give a functor from the category of ∗-dynamical sys-
tems and equivariant ∗-homomorphisms to the category of right R-modules with
distinguished positive sub-semi-groups and generating subsets with R-module maps
respecting these additional structures. We shall refer to this functor as the invariant,

and denote it by Inv.

Remark 3.3 (Finite Dimensional and Locally Finite ∗-Dynamical Systems) In this
remark we collect some useful observations about KR.

(Matrix Algebras) Let (B, β) be a C∗-dynamical system with B a full matrix algebra.
Then KR(B, β) is generated as an R-module by a minimal projection subordinate to
the spectral projection of the minimal positive Hamiltonian of (B, β) with eigenvalue

zero. If p is such a projection, then the correspondence [p] 7→ 1 extends to an R-
module isomorphism of KR(B, β) with R.

(Direct Sums) We next observe that KR respects direct sums, i.e. KR(A ⊕ B,
α ⊕ β) ∼= KR(A, α) ⊕ KR(B, β). Let iA and iB denote the inclusions of A and B

into A ⊕ B and let pA and pB denote the projections of A ⊕ B onto A and B. Then
it follows just by functoriality applied to the compositions of iA, iB with pA, pB that
KR(iA)KR(A, α) ∩ KR(iB)KR(B, β) = {0} and that KR(iA) and KR(iB) are both

injective. That these two submodules generate all of KR(A ⊕ B, α⊕ β) follows from
the fact that every projection in A⊕B is the sum of a projection in A and a projection
in B.

Combining the above two observations we see that if (A, α) is a finite dimensional

C∗-dynamical system then KR(A, α) is a free R-module generated by n positive ele-
ments x1, . . . , xn, where n is the number of direct summands of A, and KR+(A, α) =

x1R+ ⊕ · · · ⊕ xnR+.

(Inductive Limits) Let (A, α) be a locally finite ∗-dynamical system and let An be
an increasing sequence of α-invariant finite dimensional subalgebras and let ϕnm

(resp. ϕn∞) denote the inclusion of An into Am (resp. An into A). Clearly, if p is
an α-invariant projection in A, then p belongs to some An, so that KR(A, α) =
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⋃∞
n=1 KR(ϕn)

(

KR(An, α|A,n)
)

, and similarly for the coloured scales and positive
cones. If [p] = [q][a] is one of the defining relations of KR(A, α), then it is im-

plemented by a partial isometry and this must belong to some An, so we see that all
relations of this kind come from finite stages in the inductive system. It is clear that
all relations of the form [p] = [q] + [r] also come from the finite stages, so we have
that

Inv(A, α) ∼= lim
→

{Inv(An, α|An), Inv(ϕnm)}.

Remark 3.4 (Recovering K0) Recall the homomorphism N : R → Z from Defini-
tion 3.1. We may use this to make Z into a left R module by defining r · z = N(r)z

for r ∈ R and z ∈ Z. We then have a functor from right R-modules and R-module
homomorphisms to Abelian groups and group homomorphisms given by just tensor-
ing: M 7→ M⊗R Z; ψ 7→ ψ⊗R idZ. We may extend this to a functor from the category
of R-modules with distinguished positive sub-semirings to the category of Abelian

groups with distinguished positive sub-semigroups by M+ 7→ M+ ⊗R Z. We shall
denote this extended functor by B. From the remarks above we see that if (A, α) is a
finite dimensional C∗-dynamical system this functor takes

(

KR(A, α),KR+(A, α)
)

to
(

K0(A),K+
0 (A)

)

, where we identify
(

K0(A)
)

with a direct sum of copies of Z us-

ing as basis the classes of minimal projections, and if (B, β) is another finite dimen-
sional C∗-dynamical system and ψ : A → B is an equivariant ∗-homomorphism,
then B ◦ KR(ψ) = K0(ψ). Furthermore, we easily see that, in this case, the image of
the coloured scale is just the usual dimension range in K+

0 .

Lemma 3.5 (The Existence Lemma) Let (A, α) and (B, β) be two finite dimensional

C∗-dynamical systems and let ψ : KR(A, α) → KR(B, β) be a positive R-module ho-

momorphism mapping ΣR(A) into ΣR(B) for which B(ψ) maps the class of the unit

in K0(A) to the class of the unit in K0(B). Then there exists a unital equivariant ∗-

homomorphism ψ̃ : A → B such that ψ = Inv(ψ̃).

Proof We shall use the coloured Bratteli diagrams of Section 2 as a convenient
method of book-keeping. Let x1, . . . , xn and y1, . . . , ym be the canonical genera-

tors of KR(A, α) and KR(B, β) respectively, i.e. the classes of minimal projections
subordinate to the zero spectral projections of the minimal positive Hamiltonians for
each simple direct summand. If we write [1A] = x1a1 + · · · + xnan, then we may use
the coefficients a1, . . . , an to construct a coloured Bratteli diagram for C1 ↪→ A. We

do this by drawing N(a j) arrows from the dot representing 1 to the dot representing
the j-th simple direct summand of A and labelling them with the elements of a j . The
C∗-dynamical system defined from this coloured Bratteli diagram is then isomorphic
to (A, α), and we identify them. Repeat the above procedure with (B, β).

Next, we use the matrix for ψ, and the coloured Bratteli diagram for Inv(A, α)
constructed above, to define a two-step coloured Bratteli diagram as follows. The top

two rows of our diagram are a copy of the diagram for Inv(A, α). The bottom row
of vertices will have m vertices, and the number of edges from the j-th dot in the
middle row to the i-th dot in the bottom row will be N(ψi j). These are then labelled
with the elements of ψi j , with the corresponding multiplicities. Applying the path
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space construction to this two-step diagram results in an embedding of (A, α) into a
C∗-dynamical system having the same KR-module as (B, β) by a map inducing ψ.

The rest of the proof may now be displayed in a diagram:

(A, α) ∼=

{

path space
Inv(A, α)

}

↪→

{

path space
Inv(A, α), ψ

}

∼=

{

path space
Inv(B, β)

}

∼= (B, β)

where the first and last isomorphisms are those constructed above and the inclusion

is that coming from the inclusion of the one-step diagram into the two-step one. The
remaining isomorphism in the picture will be given by showing that the contraction
of the two-step diagram results in a one-step diagram isomorphic to that of Inv(B, β).
To see this, note first that the condition on B(ψ) implies that there are the same

number of edges for each dot in the lower row of the two diagrams. Consider the
image in ΣR(B, β) of the class of 1A in ΣR(A, α) under ψ. Since there can not be
distinct elements of ΣR(B, β) that both map to [1B] under B, we see that ψ([1A]) =

[1B] in ΣR(B, β). In the contracted diagram the list of labels for the edges ending

in the j-th dot in the lower row is given by the coefficient of y j in ψ([1A]). In the
diagram for Inv(B, β) it is given by the coefficient of y j in [1B]. Since these are the
same, the diagrams are isomorphic. It is now easy to see that the composition of the
maps in the diagram above yields a map satisfying the requirements of the lemma.

Lemma 3.6 (The Uniqueness Lemma) Let (A, α) and (B, β) be two finite dimen-

sional C∗-dynamical systems and let ψ and ϕ be two unital equivariant ∗-homomorph-

isms from A to B. Suppose that Inv(ψ) = Inv(ϕ). Then there exists an equivariant

inner automorphism, γ, of B such that ψ = γ ◦ ϕ.

Proof It will suffice to consider the case where B has one simple summand. Let
A = A1 ⊕· · ·⊕An be the decomposition of A into simple direct summands. We shall
show that, for each j, there is a partial isometry v j in the fixed point subalgebra of B

such that v∗j v j = ψ(1A j
), v jv

∗
j = ϕ(1A j

), and for all x in A j , ϕ(x) = v jψ(x)v∗j . Our

desired unitary will then be v1 + · · · + vn.
Let {pkl}

r
k,l=1 be a system of matrix units for A j consisting of eigenoperators such

that p11 is a subprojection of the zero spectral projection of the minimal positive
Hamiltonian of α. Let e be a minimal projection in B lying in the zero eigenspace

of the minimal positive Hamiltonian for β, so that [e] is the canonical generator
of KR(B, β). We then have, for some b1, . . . , , bm, [ψ(p11)] = [ϕ(p11)] =

[e][b1, . . . , bm] = [e][b1] + · · · + [e][bm]. There exist partial isometries s1, . . . , sm

in B such that sis
∗
i = e, si is an eigenoperator with eigenvalue bi , and

∑

s∗i si =

ψ(p11). There exists a similar set t1, . . . , tm of partial isometries for ϕ(p11). Let
w = t∗1 s1 + · · · + t∗msm. Then w is a partial isometry in the fixed point subalgebra
of B such that w∗w = ψ(p11) and ww∗

= ϕ(p11). Let v j =
∑r

k=1 ϕ(pk1)wψ(p1k). It
is then easy to check that v j is a partial isometry meeting our requirements.

Lemma 3.7.13 (Inclusion of a Locally Finite ∗-Dynamical System Into Its Comple-

tion) Let (A, α) be a locally finite ∗-dynamical system. Let A denote the completion of

A, and let α̃ denote the unique AF flow determined by the inclusion of A into A. Then

Inv(inclusion) : Inv(A, α) → Inv(A, α̃) is an isomorphism.
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Proof Let An be an increasing sequence ofα-invariant finite dimensional subalgebras
of A such that 1 ∈ A1 and

⋃∞
n=1 An = A, and let αn denote α|An

. Our first step is to

define a sequence of maps Pn : A → An having the following properties:

(i) For all n, Pn|An
= id

(ii) For all n, Pn is positive and linear, and ‖Pn‖ = 1.
(iii) For all n, Pn is equivariant.

From these properties we see easily that Pn → id in the topology of norm convergence
at each point.

Let E1, . . . , Em be the minimal central projections of An, i.e. the units of the min-
imal direct summands of An, and consider E1AE1. We may express this algebra as
(E1AnE1) ⊗ (E1AnE1) ′ ∩ (E1AE1). E1 is invariant under the action α, so α restricts

to an action on E1AE1. Since E1AnE1 is invariant under this action, its relative com-
mutant is too, so we get an action of the reals by affine homeomorphisms on the
state space of (E1AnE1) ′ ∩ E1AE1. Since (E1AnE1) ′ ∩ E1AE1 is a unital C∗-algebra,
its state space is a compact convex subset of the locally convex space of all continu-

ous linear functionals on (E1AnE1) ′ ∩ E1AE1 with the weak-∗ topology, and so the
Markov-Kakutani fixed point theorem provides a fixed point for this action, i.e. it
provides an α-invariant state on (E1AnE1) ′ ∩ E1AE1. Let ϕ be such a state. Define
a map Π1 : E1AE1 → E1AnE1 by Π1 = id ⊗ϕ(·)E1. Define in a similar way maps

Π2, . . . ,Πm for each of the other minimal direct summands of An, and then define
Pn by Pn(x) = Π1(E1xE1) + · · · + Πm(EmxEm).

It is easy to see from the definition that Pn|An
is the identity on An, that Pn is linear,

and that Pn(1) is equal to 1. That Pn is positive follows from Corollary 3.5 in [12],
which states that a positive linear functional on a C∗-algebra is completely positive
(this shows that each Π j is positive). That ‖Pn‖ is equal to 1 follows from positivity
and Pn(1) = 1.

To see that Pn is also equivariant requires a little more work. Clearly we only
have to check that the maps Π j are equivariant. Notice that the restriction of α to
(E jAnE j)

′ ∩ (E jAE j) is also an AF-flow, so that the linear span of the eigenoperators

is dense in this algebra. Let {e jk} be a system of matrix units for E jAnE j consisting
of eigenoperators. It will suffice for us to check that Pn is equivariant on operators
of the form e jk ⊗ x where x is an eigenoperator of (E jAnE j)

′ ∩ (E jAE j), since the
rest follows from linearity and continuity. Suppose we have αt (x) = eiat x for all t .

Then ϕ(x) = ϕ
(

αt (x)
)

= ϕ(eiat x) = eiatϕ(x) for all t , so either a = 0 or ϕ(x) = 0.

Suppose that αt (e jk) = eibt e jk for all t . Then, if a = 0, we have Pn

(

αt (e jk ⊗ x)
)

=

Pn(eibt e jk ⊗ x) = eibt e jk ⊗ ϕ(x)E j = αt

(

Pn(e jk ⊗ x)
)

, and, if ϕ(x) = 0, we have

Pn

(

αt (e jk ⊗ x)
)

= 0 = αt

(

Pn(e jk ⊗ x)
)

. Thus we have that Pn is equivariant.

We are now ready to prove the lemma. Let p be a projection in Aα̃. Then Pn(p) is
in the fixed point subalgebra of An and Pn(p) → p in norm as n → ∞, so we may
find a projection q in the fixed point subalgebra of some An such that [q] = [p] in
D(Aα̃). Thus the map KR(inclusion) : KR(A, α) → KR(A, α̃) is surjective.

To show that the map is injective it will suffice to show that if p, q, e, f , and r are
projections in A, a ∈ R, and [p] = [q][a] and [e] + [ f ] = [r] are among the defining
relations in KR(A, α̃), then [p] = [q][a] and [e] + [ f ] = [r] in KR(A, α).
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Let v be a partial isometry in A such that vv∗ = q, v∗v = p, and v is an eigen-
operator with eigenvalue a. Choose n large enough so that p ∈ An, q ∈ An, and

‖Pn(v) − v‖ is “small”, where small just means small enough for each of the approx-
imations below to work out. Let w|Pn(v)| be the polar decomposition of Pn(v) in
An and consider the function f defined by f (t) = 0 if t < 1/2 and f (t) = 1 if
t ≥ 1/2. Then, since |Pn(v)| is close to a projection, f is continuous on the spectrum

of |Pn(v)|. Also, w is an eigenoperator with eigenvalue a. Consider the partial isom-
etry u = w f

(

|Pn(v)|
)

. We have that u is a partial isometry in An such that u is an
eigenoperator with eigenvalue a, u∗u is norm close to p and uu∗ is norm close to q.
Thus we have, in KR(A, α), [p] = [u∗u] = [uu∗][a] = [q][a], as required.

That the other relations also hold in KR(A, α) follows easily from the fact that the
dimension range respects inductive limits and the observation that the fixed point
subalgebra of A is the inductive limit of the fixed point subalgebras of the Ans, which
is easily proved using the P ′

ns.

Theorem 3.8 (The Main Result) Let (A, α) and (B, β) be two AF flows, with A and B

unital algebras, and let ψ : Inv(A, α) → Inv(B, β) be an isomorphism of their invari-

ants. Then there exists an equivariant isomorphism ψ̃ : A → B such that Inv(ψ̃) = ψ.

Proof Let {An} be an increasing sequence of α-invariant finite dimensional sub-C∗-
algebras of A each containing the unit of A and whose union, A, is dense in A, and
let {Bn} be a similar sequence for B with union B. Let imn (resp. jmn) denote the
inclusion of Am (resp. Bm) into An (resp. Bn), and let im∞ (resp. jm∞) denote the

inclusion of Am (resp. Bm) into A (resp. B). Let αn (resp. βn) denote the restriction
of α (resp. β) to An (resp. Bn). Let ϕ : Inv(B, β) → Inv(A, α) denote the inverse of
ψ.

From Lemma 3.7 we have that the inclusions A ⊂ A and B ⊂ B induce isomor-

phisms of the invariants, which we can use to pull back the isomorphisms ψ and ϕ,
to isomorphisms which we shall call by the same names. Thus we have a commuting
diagram:

(†)

Inv(A, α|A)
∼=

−−−−→ Inv(A, α)

ϕ ψ ϕ ψ

Inv(B, β|B)
∼=

−−−−→ Inv(B, β).

Using Remark 3.3 we see that Inv(A, α|A) ∼= lim→{(An, α|An
), imn}, and similarly for

Inv(B, α|B).
Let x1, . . . , xm be the finitely many minimal positive generators of KR(A1, α1)

(cf. Remark 3.3). Consider there images in KR(B, α|B). Since KR
+(B, α|B) =

⋃∞
n=1 KR(in∞)KR+(Bn, βn), there exist a k and elements y1, . . . , ym ∈ KR+(Bk, βk)

such that yi is mapped to the image of xi by KR( jk∞) for i = 1, . . . ,m. Since
KR(A1, α1) is freely generated by x1, . . . , xm, the correspondence x1 7→ y1, . . . , xm 7→
ym extends to a positive R-module homomorphism ψ1 : KR(A1, α1) → KR(Bk, βk)
which sends the positive cone of KR(A1, α1) into the positive cone of KR(Bk, βk). At
this point, ψ1 need not, a priori, send the coloured scale ΣR(A1, α1) into ΣR(Bk, βk).
However, since ΣR(B, α|B) is the increasing union of the images of the ΣR(Bn, βn)’s
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and ΣR(A1, α1) is a finite set, we may push forward in the lower inductive system to
achieve this too. We now have a commuting diagram:

Inv(A1, α1)
Inv(i1∞)
−−−−−→ Inv(A, α|A)





y

ψ1 ϕ ψ

Inv(B ′
k, β

′
k)

Inv( jk ′∞)
−−−−−→ Inv(B, α|B)

Referring to Remark 3.4, we push forward in the inductive system one last time,
to Bk ′′ say, to ensure that the K0 map, B( jk ′,k ′ ′ ◦ ψ1) sends the class of the unit in
K0(A1) to the class of the unit in K0(Bk ′ ′).

We now repeat this process with the map from Inv(Bk ′ ′ , βk ′′) to Inv(A, α|A), with

one more step included: we push forward one more time until the triangle

Inv(A1, α1) −−−−→ Inv(Ar, αr)




y

Inv(Bk ′ ′ , βk ′ ′)

commutes. That this may be done follows from the observations in Remark 3.4 that
KR(A1, α1) is finitely generated as an R-module, so that only finitely many relations
have to be killed, and that Inv(A, α|A) is the inductive limit of the Inv(An, αn)s.

We continue this process to get a commuting diagram:

Inv(A1, α1) −−−−→ Inv(A2, α2) −−−−→ · · · −−−−→ Inv(A, α|A)




y





y ϕ ψ

Inv(B1, β1) −−−−→ Inv(B2, β2) −−−−→ · · · −−−−→ Inv(B, α|B)

(after passing to subsequences and relabelling). Next, we use Lemma 3.5 to lift the
ϕns and ψns to equivariant ∗-homomorphisms, to arrive at a diagram

(A1, α1) −−−−→ (A2, α2) −−−−→ · · · −−−−→ (A, α|A)




y





y

(B1, β1) −−−−→ (B2, β2) −−−−→ · · · −−−−→ (B, α|B)

for which the diagram above (excluding the limit maps) is the image under the in-
variant. At this point, this diagram need not commute, but we may apply Lemma 3.6
to each triangle, moving left to right through the diagram, to alter the vertical maps
by equivariant inner automorphisms of their target algebras to get a diagram that

does commute and still has the same image under the invariant.
It is well known (cf. [4]) that such a diagram gives rise to a pair of inverse iso-

morphisms between the locally finite algebras A and B that make the whole diagram
commute. Since all of our maps are equivariant, it follows that these isomorphisms
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are also equivariant. Commutativity of the diagram of invariants implies that these
isomorphisms induce the maps ϕ and ψ on the invariants. Finally, these equivariant
∗-isomorphisms between A and B extend uniquely to a pair of inverse equivariant
∗-isomorphisms between A and B, and it follows from the commutativity of the dia-
gram (†) that these extensions induce the original maps ϕ and ψ.

Remark 3.9 (Coloured Bratteli Diagrams Again) It follows from the above theorem
that two locally finite ∗-dynamical systems are isomorphic if and only if their com-
pletions are, so we see that the coloured Bratteli diagrams actually characterise AF
flows, not just locally finite ∗-dynamical systems.
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