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Torsion codimension 2 cycles on
supersingular abelian varieties
Oliver Gregory

Abstract. We prove that torsion codimension 2 algebraic cycles modulo rational equivalence on
supersingular abelian varieties are algebraically equivalent to zero. As a consequence, we prove that
homological equivalence coincides with algebraic equivalence for algebraic cycles of codimension 2
on supersingular abelian varieties over the algebraic closure of finite fields.

1 Introduction

Let k be a field, and let X be a smooth and projective variety over k. Write Zn(X)
for the group of codimension n algebraic cycles on X, and let Zn

rat(X) ⊆ Zn
alg(X) ⊆

Zn
hom(X) be the subgroups of Zn(X) consisting of those cycles which are rationally

(resp. algebraically, resp. homologically (with respect to a fixed Weil cohomology
theory; see Remark 2.1)) equivalent to zero. Let CHn(X) ⊇ CHn

hom(X) ⊇ CHn
alg(X)

denote the quotients of Zn(X) ⊇ Zn
hom(X) ⊇ Zn

alg(X) by Zrat(X). Let Griff n(X) ∶=
CHn

hom(X)/CHn
alg(X) be the Griffiths group of codimension n cycles on X.

Griffiths [Gri69] was the first to show that smooth projective varieties can have
nontrivial Griffiths groups—Griff 2(X) ⊗Q is nontrivial for a very general quintic
hypersurface X ⊂ P4

C. Clemens [Cle83] later showed that such hypersurfaces have
dimQ(Griff 2(X) ⊗Q) = ∞, and then Voisin [Voi00] generalized this by proving that
dimQ(Griff 2(X) ⊗Q) = ∞ for any very general Calabi–Yau threefold X overC. Since
we are interested in abelian varieties, let us also point out that Ceresa [Cer83] has
shown that, for a very general curve C of genus ≥ 3, the Ceresa cycle is a nontrivial
element in Griff 2(J(C)). In fact, it was shown in [Sch22] that the torsion subgroup
of Griff n need not even be finitely generated (at least for n ≥ 3, with the situation for
n = 2 currently open). This phenomena is not specific to “large” base fields either:
Harris [Har83] has given an explicit abelian threefold defined over Q with nontrivial
Griffiths group—the Ceresa cycle on the Jacobian of the Fermat quartic is not
algebraically equivalent to zero. Bloch [Bl84, Theorem 4.1] gave a different proof of
Harris’ result on the Jacobian of the Fermat quartic, and showed moreover that the
Ceresa cycle is nontorsion. In general, for a smooth projective variety defined over a
number field, it is part of the Bloch–Beilinson conjectures that the dimensions of the
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Torsion codimension 2 cycles on supersingular abelian varieties 459

Griffiths groups tensor Q are finite, and the dimensions are controlled by the orders
of vanishing at integers of appropriate L-functions [Bl85, p. 381].

In this note, we are interested in the situation where the base field has positive
characteristic. In this setting, again the Griffiths groups of smooth projective varieties
can be nontrivial and even infinite. For example, Schoen [Sch95, Theorem 0.1] showed
that if k is a finite field of characteristic p ≡ 1mod 3 and E denotes the Fermat cubic,
then Griff 2(E3

k
) is nontrivial and has a nontrivial divisible part. Here, k denotes the

algebraic closure of k, and subscript k means the base change to k.
Now, let k be a perfect field with char(k) = p > 0. The positive characteristic analog

of the Bloch-Beilinson philosophy says that cycles on varieties, at least after tensoring
withQ, are controlled by the slopes of the Frobenius on crystalline cohomology. Recall
that a smooth proper variety X over k is called ordinary if Hm(X , dΩr

X/k) = 0 for all
m, r. When the crystalline cohomology groups Hn

cris(X/W(k)) of X are torsion-free,
X is ordinary if and only if, for each n, the Newton polygon of X coincides with the
Hodge polygon [BK86, Proposition 7.3]. If A is an abelian variety, then A is ordinary
if and only if A(k)[p] = (Z/pZ)dim A. For example, the condition that p ≡ 1mod 3 in
Schoen’s theorem forces E3

k
to be an ordinary abelian threefold. Generalizing Schoen’s

result, under the rubric of the Tate conjecture for surfaces over finite fields, Brent
Gordon and Joshi [BGJ02, Proposition 6.2] proved that the codimension 2 Griffiths
group of ordinary abelian threefolds over the algebraic closure of a finite field are
nontrivial, and contain a nontrivial divisible part.

At the opposite extreme to ordinarity is supersingularity, and in this situation, the
Bloch–Beilinson philosophy suggests that Griffiths group should be smaller because
of the extreme degeneracy in the slopes of Frobenius. Recall that a smooth projective
variety X over k is said to be supersingular if the Newton polygons of X are isoclinic.
If A is an abelian variety, then A is supersingular if and only if Ak is isogenous to
the self-product of an (any!) supersingular elliptic curve, where an elliptic curve E is
supersingular if and only if E(k)[p] = 0 (see [Oor74, Theorem 4.2]). Schoen [Sch95,
Theorem 14.4] showed that if k is a finite field of characteristic p ≡ 2mod 3 and E
denotes the Fermat cubic, then Griff 2(E3

k
) is at most a p-primary torsion group.

The condition that p ≡ 2mod 3 implies that E3 is a supersingular abelian threefold.
Using the work of Fakhruddin [Fak02], Brent Gordon and Joshi [BGJ02, Theorem 5.1]
generalized Schoen’s result to all supersingular abelian varieties—the codimension 2
Griffiths groups of supersingular abelian varieties defined over the algebraic closure
of a finite field are at most p-primary torsion. The question of whether these groups
possess nontrivial p-torsion was left open.

In this note, we prove the following (see Theorem 4.1(1)).

Theorem 1.1 Let k be an algebraically closed field of characteristic p > 0, and let A be
a supersingular abelian variety over k. Then the inclusions

CH2
alg(A)tors ⊆ CH2

hom(A)tors ⊆ CH2(A)tors

are equalities. (Here, Gtors denotes the torsion subgroup of the group G.)
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It was already shown in the proof of [BGJ02, Theorem 5.1] that CH2
alg(A)[�∞] =

CH2
hom(A)[�∞] = CH2(A)[�∞] for each prime � ≠ p (where G[�∞] denotes the �-

primary torsion subgroup of the group G). Our only new result is that this is also
true for p-primary torsion. To handle the � = p case, we initially follow the proof of
Brent Gordon and Joshi, but then conclude using an inductive argument based on the
Bloch–Srinivas method [BS83].

As a consequence of Theorem 1.1, we settle the p-primary torsion case of [BGJ02,
Theorem 5.1]. Indeed, we have the following corollary (see Theorem 4.1(2)).

Theorem 1.2 Let k be a finite field of characteristic p > 0, and let A be a supersingular
abelian variety over k. Then Griff 2(A)[p∞] is trivial.

Together with [BGJ02, Theorem 5.1], this shows that Griff 2(A) is trivial. That
is, homological equivalence coincides with algebraic equivalence for codimension 2
cycles on supersingular abelian varieties over the algebraic closure of finite fields.

2 Chow groups of supersingular abelian varieties

We repeat the discussion from [BGJ02, Sections 2 and 3]. Let A be an abelian variety
of dimension g over a field k, and let n be a nonnegative integer. Then, by the work of
Mukai [Muk81], Beauville [Bea86], and Deninger–Murre [DM91], the rational Chow
groups of A admit a direct sum decomposition

CHn(A) ⊗Q =⊕
i

CHn
i (A),

where CHn
i (A) ∶= {Z ∈ CHn(A) ⊗Q ∶ m∗A(Z) = m2n−i Z for all m ∈ Z} and m∗A

denotes the flat pullback by multiplication-by-m on A.
Now, suppose that k is an algebraically closed field of characteristic p > 0. Then

Fakhruddin [Fak02] has proved that if A is a supersingular abelian variety over k,
CHn

i (A) = 0, for i ≠ 0, 1. Moreover, the �-adic cycle class map induces an isomor-
phism

CHn
0(A) ⊗Q�

∼
�→ H2n

ét (A,Q�(n))

for all primes � ≠ p. The same proof shows that the crystalline cycle class map induces
an isomorphism

CHn
0(A) ⊗ K ∼

�→ H2n
cris(A/W(k)) ⊗W(k) K ,

where K = W(k)[1/p] is the fraction field of the Witt vectors W(k) of k. In particular,
CHn

1 (A) = CHn
hom(A) ⊗Q, where CHn

hom(A) is the kernel of the cycle class map.

Remark 2.1 A priori, the definition of the group CHn
hom(X) of codimension n cycles

homologically equivalent to zero on a smooth projective variety X depends on the
choice of Weil cohomology theory for X. Of course, it is a consequence of the stan-
dard conjectures (specifically that homological equivalence coincides with numerical
equivalence) that CHn

hom(X) is independent of the choice of Weil cohomology theory.
Notice, though, that Fakhruddin’s result shows that CHn

hom(A) is independent of
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Torsion codimension 2 cycles on supersingular abelian varieties 461

any choice when A is a supersingular variety over an algebraically closed field of
characteristic p > 0. Since this is the setting that we are interested in, there is no
ambiguity in the definition.

As pointed out in [BGJ02, Section 2], if k is moreover the algebraic closure of a
finite field, then it is known by the results of Soulé [Sou84] and Künnemann [Kün93]
that CHn

1 (A) = 0. In particular, CHn
hom(A) is torsion.

Remark 2.2 Beilinson [Bei87, 1.0] has conjectured that CHn
hom(X) is torsion for any

smooth projective variety X over the algebraic closure of a finite field.

3 Abel–Jacobi maps

In this section, we fix notation involving �-adic Abel–Jacobi maps, for primes �
(including � = p).

Let X be a smooth projective variety over an algebraically closed field k of
characteristic p ≥ 0. Let � be a prime. Define

H i(X ,Z�( j)) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

H i
ét(X ,Z�( j)), if � ≠ p

H i− j(Xét , WΩ j
X ,log), if � = p

and

H i(X ,Q�/Z�( j)) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H i
ét(X ,Q�/Z�( j)), if � ≠ p,

lim�→
r

H i− j(Xét , Wr Ω j
X ,log), if � = p,

where Wr Ω j
X ,log denotes the logarithmic Hodge–Witt sheaf of X (see [Ill79, Chapter I,

5.7]) and the limit is taken over the maps p ∶ Wr Ω j
X → Wr+1Ω j

X [Ill79, Chapter I,
Proposition 3.4]. Let

λn ,X ∶ CHn(X)[�∞] → H2n−1(X ,Q�/Z�(n))

be Bloch’s �-adic Abel–Jacobi map [Blo79] if � ≠ p, and the Gros–Suwa p-adic Abel–
Jacobi map [GS88] if � = p. Here, CHn(X)[�∞] denotes the �-primary torsion sub-
group of CHn(X).

4 The result

Theorem 4.1 Let k be an algebraically closed field of characteristic p > 0, and let A be
a supersingular abelian variety over k. Then:
(1) We have

CH2
alg(A)tors = CH2

hom(A)tors = CH2(A)tors .

(2) If k is the algebraic closure of a finite field, then Griff 2(A) is trivial, i.e.,

CH2
alg(A) = CH2

hom(A).
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Proof (1) Let � be a prime. Consider the following commutative diagram:

(4.1)

CH2(A)[�∞] H3(A,Q�/Z�(2))

CH2
alg(A)[�∞],

λ2,A

λ′2,A

where λ′2,A denotes the restriction of λ2,A. It is known that λ2,A is injective (as
a consequence of the Merkurjev–Suslin theorem [CTSS83, Corollary 4] for � ≠ p,
[GS88, Section III, Proposition 3.4] for � = p), and hence λ′2,A is injective. It therefore
suffices to show that λ′2,A is surjective, since then all maps in (4.1) are isomorphisms
and in particular

CH2
alg(A)[�∞] = CH2

hom(A)[�∞] = CH2(A)[�∞]

for each prime �.
For any n ≥ 0, consider the following diagram:

CHn(A)[�∞]

0 H2n−1(A,Z�(n)) ⊗Z�
Q�/Z� H2n−1(A,Q�/Z�(n)) H2n(A,Z�(n)).

λn ,A

Up to a sign, the induced map CHn(A)[�∞] → H2n(A,Z�(n)) is the restriction of
the cycle class map ([CTSS83, Corollary 4] for � ≠ p, [GS88, Section III, Propositions
1.16 and 1.21] for � = p). The bottom row of the diagram is exact (see [GS88, (3.33)] for
exactness when � = p). Therefore, the restriction of λn ,A to CHn

hom(A)[�∞] has image
in H2n−1(A,Z�(n)) ⊗Z�

Q�/Z�. In particular, λ′2,A has image in H3(A,Z�(2)) ⊗Z�

Q�/Z�. Therefore, the cokernel of λ′2,A is divisible. Note that H3(A,Z�(2)) is torsion-
free (the nontrivial case when � = p follows from H3

cris(A/W(k)) being torsion-free
[GS88, Lemme 3.12], which is because H1

cris is always torsion-free and H3
cris = ∧

3H1
cris

for abelian varieties), and hence H3(A,Z�(2)) ⊗Z�
Q�/Z� is a direct sum of a finite

number of copies of Q�/Z�.
We are therefore reduced to showing that coker(λ′2,A) is annihilated by a positive

integer. (Indeed, coker(λ′2,A) is a quotient of the divisible group H3(A,Z�(2)) ⊗Z�

Q�/Z� ≅ (Q�/Z�)
r for some r. If coker(λ′2,A) is finite, then it must be trivial since any

finite divisible group is trivial. So we must rule out the case that coker(λ′2,A) is infinite,
in which case it is a finite number of copies of Q�/Z�. However, this group is not
annihilated by a positive integer.) We shall prove this by induction on the dimension
g of A. Of course, the entire theorem is trivial if g = 1, so suppose that g > 1 and
suppose that λ′2,B is surjective for supersingular abelian varieties of dimension ≤ g − 1.
By [Fak02, Lemma 3] and its proof, there exist g-dimensional abelian subvarieties
Y1 , . . . , Yn ⊂ A× A such that the class of the diagonal ΔA decomposes as

ΔA = ∑
i

c i[Yi] ∈ CHg(A× A) ⊗Q
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for some c i ∈ Q, and such that, for each i, the image of Yi under at least one of the
projections pr1 , pr2 ∶ A× A→ A has dimension ≤ g − 1. By clearing denominators, we
see that there exists an integer N > 0 such that

NΔA = ∑
i

d i[Yi] ∈ CHg(A× A)

for some d i ∈ Z. Label the Y1 , . . . , Yn so that A i ∶= pr1(Yi) has dimension ≤ g − 1
for i = 1, . . . , m, and A i ∶= pr2(Yi) has dimension ≤ g − 1 for i = m + 1, . . . , n. Let
V1 ∶= A1 ∪⋯∪ Am and V2 ∶= Am+1 ∪⋯∪ An , and let j1 , j2 ∶ V1 , V2 ↪ A be the natural
inclusions. Then

NΔA = Z1 + Z2 ∈ CHg(A× A),

where Supp(Z1) ⊂ V1 × A and Supp(Z2) ⊂ A× V2. Let Ṽ1 ∶= A1 ⊔⋯⊔ Am and Ṽ2 ∶=
Am+1 ⊔⋯⊔ An be the disjoint unions, and let τ1 ∶ Ṽ1 → V1, τ2 ∶ Ṽ2 → V2 be the natural
morphisms. We claim that there is a correspondence Z̃1 ∈ CHg−1(Ṽ1 × A) such that

Z1 = Z̃1 ○ γ1 ,

where γ1 ∈ CHg(A× Ṽ1) is the correspondence given by the transpose of the graph of
j̃1 ∶= j1 ○ τ1. Indeed, let V sm

1 denote the smooth locus of V1, and consider the pullback
square

Ṽ1 × A V1 × A

τ−1
1 (V sm

1 ) × A V sm
1 × A.

τ1 × idA

τ1 × idA

Since V sm
1 , τ−1

1 (V sm
1 ), and Ṽ1 are smooth, the morphisms in the diagram admit refined

Gysin pullbacks (see [Ful84, Section 6.6]). Set Z̃1 to be the closure in Ṽ1 × A of the
pullback of Z1 along τ−1

1 (V sm
1 ) × A→ V sm

1 × A→ V1 × A, where consider Z1 as a cycle
on V1 × A. Then Z1 = ( j1 ○ τ1 × idA)∗Z̃1 = Z̃1 ○ γ1 by [Ful84, Proposition 16.1.1], as
desired. The same argument applied to the transpose of Z2 shows that there exists
a correspondence Z̃2 ∈ CHg−1(A× Ṽ2) such that

Z2 = � j̃2
○ Z̃2 ,

where � j̃2
∈ CHg(Ṽ2 × A) is the correspondence given by the graph of j̃1 ∶= j2 ○ τ2.

Hence,

NΔA = Z1 + Z2 = Z̃1 ○ γ1 + � j̃2
○ Z̃2

and the self-correspondence NΔ∗A ∶ CH2(A) → CH2(A) factors as

CH2(A)
Z̃∗1 ⊕ j̃∗2���→ CH1(Ṽ1) ⊕CH1(Ṽ2)

j̃1∗+Z̃∗2���→ CH2(A).

Since the �-adic Abel–Jacobi maps are compatible with correspondences ([Blo79,
Proposition 3.5] for � ≠ p, [GS88, Proposition 2.9] for � = p), we get a commutative
diagram
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(4.2)
CH2

alg(A)[�∞] H3(A,Z�(2)) ⊗Z�
Q�/Z�

CH1
alg(Ṽ1)[�∞] ⊕CH2

alg(Ṽ2)[�∞] H1(Ṽ1 ,Z�(1)) ⊗Z�
Q�/Z� ⊕H3(Ṽ2 ,Z�(2))) ⊗Z�

Q�/Z�

CH2
alg(A)[�∞] H3(A,Z�(2)) ⊗Z�

Q�/Z� ,

Z̃∗1 ⊕ j̃∗2 Z̃∗1 ⊕ j̃∗2

j̃1∗ + Z̃∗2 j̃1∗ + Z̃∗2

λ′2,A

λ′1,Ṽ1
⊕ λ′2,Ṽ2

λ′2,A

where the composition of the vertical arrows is NΔ∗A. However, Δ∗A is the identity, so
NΔ∗A is multiplication-by-N.

The map λ′1,Ṽ1
∶ CH1

alg(Ṽ1)[�∞] → H1(Ṽ1 ,Z�(1)) ⊗Z�
Q�/Z� is a bijection

[ACMV21, Proposition A.28]. We claim that the map λ′2,Ṽ2
∶ CH2

alg(Ṽ2)[�∞] →

H3(Ṽ2 ,Z�(2)) ⊗Z�
Q�/Z� is also a bijection. Indeed, it is injective by the same

reasoning that showed that λ′2,A is injective. To see that λ′2,Ṽ2
is surjective, recall

that Ṽ2 ∶= Am+1 ⊔⋯⊔ An and λ′2,Ṽ2
is the direct sum

n
⊕

i=m+1
CH2

alg(A i)[�∞]
⊕λ′2,Ai���→

n
⊕

i=m+1
H3(A i ,Z�(2)) ⊗Z�Q�/Z� .

The A i are supersingular abelian varieties of dimension≤ g − 1 (they are supersingular
since they are subvarieties of A), so the induction hypothesis implies that λ′2,Ṽ2

=
⊕λ′2,A i

is surjective as claimed.
In particular, we see that the middle horizontal arrow in (4.2) is a bijection. A

diagram chase shows that coker(λ′2,A) is annihilated by N.
(2) We have seen in Section 2 that CH2

hom(A) is a torsion group when k is the
algebraic closure of a finite field. Therefore, the subgroup CH2

alg(A) is also torsion.
We may then conclude by part (1). ∎

Remark 4.2 It was already shown in [BGJ02, Theorem 5.1] that Griff 2(A)[�∞] = 0
for all primes � ≠ p, so the only new result is that Griff 2(A)[p∞] = 0 as well. The
proof strategy in Theorem 4.1 of reducing to showing surjectivity of λ′2,A is the same
as [BGJ02, Theorem 5.1]. When � ≠ p, surjectivity of λ′2,A is due to Suwa [Suw88,
Théorème 4.7.1]. Suwa’s proof proceeds by considering the following commutative
diagram:

(4.3)

CH1(A) ⊗Z� ×CH1
alg(A)[�∞] CH2

alg(A)[�∞]

H2(A,Z�(1)) ×H1(A,Q�/Z�(1)) H3(A,Q�/Z�(2)).

cl × λ′1,A λ′2,A

⋅

∪

The cycle class map cl is surjective for supersingular abelian varieties by [Shi75,
Appendix], and we have already seen that λ′1,A is a bijection. The cup-product map
along the bottom of the square is a surjection as a consequence of H i(A,Z/�Z) =
⋀i H1(A,Z/�Z) for abelian varieties. This forces λ′2,A to be surjective.
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In the case � = p, we have the commutative square analogous to (4.3). Unravelling
notation, the square is as follows:

CH1(A) ⊗Zp ×CH1
alg(A)[p∞] CH2

alg(A)[p∞]

H1(Aét , WΩ1
A,log) × lim�→

r
H0(Aét , Wr Ω1

A,log) lim�→
r

H1(Aét , Wr Ω2
A,log).

cl × λ′1,A λ′2,A

⋅

∪

The cup-product map along the bottom horizontal is rarely surjective when A is not an
ordinary abelian variety. Indeed, we have CH1

alg(A) = Pic0
A/k(k), so if A is an abelian

variety with p-rank 0 (if A is supersingular, for example), then CH1
alg(A)[p∞] ≅

lim�→r
H0(Aét , Wr Ω1

A,log) is the trivial group. This is why we must use a different
argument for the � = p case of Theorem 4.1 than the argument for � ≠ p used in
[BGJ02, Theorem 5.1]. Notice that the proof of Theorem 4.1 treats all primes �
(including � = p), and in particular gives a new proof of [BGJ02, Theorem 5.1].

Remark 4.3 The proof of Theorem 4.1 shows that the inclusion

H3(A,Z�(2)) ⊗Z�
Q�/Z� ↪ H3(A,Q�/Z�(2))

is an equality for all primes �. This was known for � ≠ p as a consequence of the proof
of [BGJ02, Theorem 5.1].
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