
J. Appl. Prob. 49, 745–757 (2012)
Printed in England

© Applied Probability Trust 2012

A PÓLYA APPROXIMATION TO
THE POISSON-BINOMIAL LAW
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Abstract

Using Stein’s method, we derive explicit upper bounds on the total variation distance
between a Poisson-binomial law (the distribution of a sum of independent but not
necessarily identically distributed Bernoulli random variables) and a Pólya distribution
with the same support, mean, and variance; a nonuniform bound on the pointwise
distance between the probability mass functions is also given. A numerical comparison
of alternative distributional approximations on a somewhat representative collection of
case studies is also exhibited. The evidence proves that no single one is uniformly most
accurate, though it suggests that the Pólya approximation might be preferred in several
parameter domains encountered in practice.
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1. Introduction

The Poisson-binomial distribution is the law of the number of successes in a sequence of
independent, nonidentically distributed trials and, as such, has found utility in several modelling
applications, including Bayesian heirarchical models [24], generalized linear models [15], and
noisy threshold models [21]. What is more, as the convolution product of nonidentical two-point
distributions, the Poisson-binomial distribution is also intimately linked to several combinatorial
and occupancy problems [26], including the ‘birthday paradox’ [32].

Naturally, in some contexts it is preferable to compute the point probabilities exactly and
for this the interested reader is referred to two quadratic-time (in the worst case) algorithms
reviewed in [15]. In other contexts, explicit bounds unrelated to an approximate distribution may
be the principal interest and for this we refer the reader to [25] and the references therein. Here
however the focus is on measure-valued approximations and, more specifically, distributions
on the nonnegative integers Z

+.
The approximation of the Poisson-binomial law by more easily calculable laws on Z

+ has
a long history. The earliest work focused on the Poisson approximation, of which a detailed
account can be found in [6]. Subsequently, variations of the Poisson law were used: Poisson–
Charlier signed measures (see [6] and the references therein), (signed) compound Poisson [5],
[9], [22], shifted Poisson [4], [13]; as were the binomial law and its variations: binomial
[13], [17], [30], ‘almost’ binomial [33], signed binomial-Krawtchouk [28], (signed) compound
binomial [10], [11], [12], shifted binomial [24], [27]. Among more recent work, a class
of signed measures was introduced in [7] that yielded notably impressive approximations in
the special case of counting records in an independent and identically distributed sequence,
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a two-parameter polynomial birth–death distribution was proposed in [8], and an arbitrary
Gibbs measure approximation was developed in [18].

In this paper we propose a Pólya approximation to the Poisson-binomial law, there being
several motivating factors. For starters, it has already been noted that approximations by
signed measures (usually perturbations of common distributions) may be undesirable because
they can be time consuming to use in practice (cf. [24]) and lead to the approximation of
positive quantities with negative quantities (cf. [8]). Moreover, the three parameters of the
proposed Pólya approximation are easy to interpret, relating to the fact that its support, mean,
and variance exactly match those of the Poisson-binomial distribution—a property not shared by
any previously studied approximation. Also, the Pólya approximation is exact in the two special
cases where the Poisson-binomial distribution is in fact either binomial or hypergeometric (see
[34] for a proof that the hypergeometric distribution is a special case of the Poisson-binomial
distribution).

Under a mild restriction on the dispersion of the success probabilities of the individual
trials, our main result, Theorem 1, quantifies the error of the Pólya approximation via an upper
bound on the total variation distance between the Pólya and Poisson-binomial laws; it also
includes a nonuniform upper bound for the distance between corresponding point probabilities.
A subsequent look at the orders of known total variation approximations by distributions
(rather than signed measures) shows that the Pólya approximation is most accurate at least
when the success probabilities are sufficiently tightly clustered. A further numerical study
builds a more precise, yet less general picture. In particular, the evidence would suggest
that the Pólya approximation is preferable for the application of Bayesian hierarchical models
discussed in [24]. However, among the approximations considered, ultimately we see that none
is uniformly most accurate.

Theorem 1 is proved via Stein’s method which is now widely known and used; for a general
introduction, we refer the reader to [2] or [31]. Moreover, with the potential for generalization
we make a modest attempt to give a constructive proof highlighting the mathematical rationale
behind, firstly, the Pólya distribution as a ‘target’ measure and, secondly, the specific choice
of parameters; the essence being a deductive process used to ensure that the characterising
operator of the approximating measure closely resembles that of the Poisson-binomial law.

There are several directions in which hopefully our result can be extended. In particular,
previous total variation approximations to the sum of independent Bernoulli variables have
been extended to the Wasserstein metric [4], [36], generalised Poisson-binomial distributions
[10], [11], [12], sums of independent Bernoulli vectors [1], Bernoulli processes [35], and sums
of dependent Bernoulli variables [6], [27], [30]. In addition, the Pólya distribution is a three-
parameter, quadratic polynomial birth–death distribution as defined in [8] and also a generalized
hypergeometric factorial moment distribution as defined in [20]; thus, in combining what is
known about the apparently similar families of distributions, there is the potential to increase
the accuracy of approximations through deducing similar results for higher-order polynomials
(see [29] for a more detailed sketch).

2. Definitions and main result

We let �(n, p, θ) denote a Pólya law with parameters n ∈ N, p ∈ (0, 1), and θ ∈ R. The
probability mass function πk ≡ �(n, p, θ){k} at an arbitrary point k is given by

πk =
(
n

k

)
p(p + θ) · · · (p + (k − 1)θ)q(q + θ) · · · (q + (n− k − 1)θ)

(1 + θ)(1 + 2θ) · · · (1 + (n− 1)θ)
.
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Pólya approximation 747

Here �(n, p, θ) is a distribution with support equal to {0, 1, . . . , n} provided that

θ > −p ∧ q
n− 1

(1)

(where we use x ∧ y ≡ min(x, y), x ∨ y ≡ max(x, y), and q = 1 −p here and subsequently);
otherwise, it is a signed measure, generally with infinite support. If, for some positive integers
a and b, a + b > n, p = a/(a + b), and θ = −1/(a + b), then a hypergeometric distribution
results; if θ = 0, a binomial law is recovered. When (1) is satisfied, the mean and variance of
the Pólya distribution are np and npq((1 + nθ)/(1 + θ)), respectively. For more background
on the Pólya distribution, see [20].

Now, let I1, . . . , In be independent indicator random variables with distribution

P(Ii = 1) = pi, P(Ii = 0) = qi, pi + qi = 1, i = 1, . . . , n,

and set W = ∑n
i=1 Ii , λ = EW , σ 2 = varW . From now on, assume that

p = 1

n

n∑
i=1

pi, s2 = 1

n

n∑
i=1

(pi − p)2, θ = −ns
2

κ
, κ = λ(n− λ)− σ 2.

Denoting the total variation distance between two measures µ and ν on Z
+ by

dTV(µ, ν) = sup
A⊂Z+

|µ(A)− ν(A)|,

we may now state the main result.

Theorem 1. If (1) holds then

dTV(LW,�(n, p, θ)) ≤ sK
√
n(

√
λ02 + √

λ20)

κσ 2(1 + θ)(2−1 ∨ √
σ 2 − 1)

, (2)

|P(W = m)− πm| ≤ 2((λ ∨m)−mp + θm(n−m))−1 sK
√
n(

√
λ02 + √

λ20)

κ(2−1 ∨ (σ 2 − 2))
,

where λjk = ∑n
i=1 p

j
i q
k
i , j, k = 0, 1, 2, and

K2 = (n− 1)λ22(λ20λ02 − λ22)− (λ12λ10 − λ22)
2 − (λ01λ21 − λ22)

2 + (λ2
11 − λ22)

2.

Remarks 1. 1. Condition (1) is a restriction on the size of the sample variance of thepi relative
to the sample mean. In particular, a slightly stronger substitute condition is

s2 ≤ pq(p ∧ q). (3)

Thinking of the pi as independent samples from some parent distribution on [0, 1] helps build
a picture of when this condition should be satisfied and when it should fail. For example, if the
pi resemble a typical sample from any uniform distribution on a subinterval of [0, 1], then (3)
should be satisfied; if they resemble a typical sample from a Beta(α, β) distribution, then (3)
should be satisfied if and only if

α ∨ β
α ∧ β ≤ α + β;

if they form a harmonic sequence (as studied in [7]) then s2 = O(n−1) and p = O(n−1 ln n)
as n → ∞, so (3) cannot hold for large n. The reader may extrapolate as they wish.
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2. While Theorem 1 is only proved under assumption (1), some consideration suggests the
condition is not necessary for the approximation to be a good one, only that the approximating
measure be a distribution with support equal to {0, . . . , n} rather than a signed measure with
(generally) infinite support.

3. The bounds for dTV(LW,�(n, p, θ)) are invariant with respect to the substitutionspi → qi ,
so in some sense there is a degree of uniform applicability with respect to the magnitude of
the pis.

4. It is evident that as the pi tend towards p, θ → 0 and so LW → �(n, p, 0) = Bi(n, p) as
is appropriate.

3. Proof of the main result

Theorem 1 was the result of an explorative process aimed at deducing an approximate
characterising operator for LW . Recall that the defining property of a characterising operator A
for a measure µ is that X ∼ µ if and only if E Af (X) = 0 for all functions f in the domain
of A. Presently, we give a characterising operator for LW and state some associated properties;
the proofs are deferred to Appendix A. We will use the forward difference notation 
f (x) =
f (x + 1)− f (x) and 
2f (x) = 
(
f (x)).

Proposition 1. A characterising operator for LW is given by

Bf (x) = (λ− g(x))f (x + 1)− (x − g(x))f (x),

where

g(x) =
n∑
j=1

pj E{Ij | W = x}. (4)

Proposition 2. With g(x) defined by (4), we have

1. g(0) = 0, g(n) = λ,

2. 0 < 
g(x) < 1, x = 0, . . . , n− 1,

3. 
(g(x)/x) ≤ 0, x = 1, . . . , n− 1, with equality if and only if all the pi are equal.

Given the results above, it is intuitive to attempt to approximate LW with a distribution µ
whose characterising operator A takes the form

Af (x) = (λ− h(x))f (x + 1)− (x − h(x))f (x),

where the function h is chosen to approximate g. Unfortunately, unless all the pj = p are
equal, in which case g(x) = ∑n

j=1 p E{Ij | W = x} = px, the approximation of g(x) is not
entirely trivial. Nevertheless, we can at least require that any candidate h satisfy the three basic
properties of g listed above; as a point of reference, note that taking h ≡ 0 leads to a Po(λ)
approximation, while with h(x) = λx/m we recover a Bi(m, λ/m) approximation—neither
choice meeting the requirement.

Arguably, the simplest h that meets the stated requirement takes the form

h(x) = px + ψx(n− x),

with ψ < (p ∧ q)/(n− 1) to ensure that property 2 of Proposition 2 is satisfied and ψ ≥ 0 to
ensure that property 3 is satisfied. It is a simple exercise to verify that this latest choice implies
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that µ ≡ �(n, p,−ψ); that the natural choice for ψ is ψ = −θ will become evident shortly.
We now proceed with Stein’s method.

For any A ⊂ Z+, let fA be the solution to the Stein equation

AfA(x) = 1A(x)− µ(A),

where 1A(x) is the indicator function of the set A. It follows that

dTV(LW,µ) := sup
A⊂Z+

|P(W ∈ A)− µ(A)| = sup
f∈F

|EAf (W)|,

where F = {fA : A ⊂ Z+}—we shall proceed to bound the right-hand side. Making use of
the conventional abbreviation Wj1···jk = W − ∑

j∈{j1,...,jk} Ij and assuming that ψ = −θ , we
first show that

|EAf (W)| ≤ Cf sK
√
n(

√
λ02 + √

λ20)

κ
,

where
Cf = max

m=1,2
max
i,j,k,l

|E
2f (Wijkl +m)|.
Then, to complete the proof, we verify that

sup
f∈F

Cf ≤ (2 ∧ (σ 2 − 1)−1/2)[(1 + θ)σ 2]−1, (5)

Cf{m} ≤ 2(2 ∧ (σ 2 − 2)−1)((λ ∨m)−mp + θm(n−m))−1, (6)

provided (1) holds.
Using the fact that E Bf (W) = 0, we obtain

nE Af (W) = nE{g(W)− h(W)}
f (W)
= E

{
n

∑
piIi − λW − nψW(n−W)

}

f (W)

=
∑
i,j

E{piIi − piIj − nψIi(1 − Ij )}
f (W).

Now, by interchanging i and j then adding, we obtain

2nE Af (W) =
∑
i,j

E{(pi − pj )(Ii − Ij )− nψ(Ii − 2IiIj + Ij )}
f (W),

=
∑
i,j

E{(pi − pj )(Ii − Ij )− nψ(Ii − Ij )
2}
f (W), (7)

since I 2
j = Ij . Furthermore, since Ii + Ij = 1 whenever Ii = Ij , it follows that

(Ii − Ij )
f (W) = (Ii − Ij )
f (Wij + Ii + Ij ) = (Ii − Ij )
f (Wij + 1),

even if i = j , and so (7) may be written as

nE Af (W) =
∑
i<j

E{(pi − pj )(Ii − Ij )− nψ(Ii − Ij )
2}
f (Wij + 1).
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The independence of Ii , Ij , and Wij then implies that

nE Af (W) =
∑
i<j

(E2(Ii − Ij )− nψ E(Ii − Ij )
2)E
f (Wij + 1). (8)

Now, if we define

d
(x)
ij,kl = P(Ii + Ij = 2x)− P(Ik + Il = 2x), x = 0, 1,

then a little algebra establishes the identity

E2(Ii − Ij )E(Ik − Il)
2 − E(Ii − Ij )

2 E2(Ik − Il) = d
(0)
ik,j ld

(1)
jk,il + d

(1)
ik,j ld

(0)
jk,il .

Thus, if we choose to let

ψ =
∑
i<j E2(Ii − Ij )

n
∑
i<j E(Ii − Ij )2

,

then substitute into (8), we arrive at

nκ E Af (W) =
∑

i<j,k<l

∑
x=0,1

d
(x)
ik,j ld

(1−x)
jk,il E
f (Wij + 1),

having made use of the identity
∑
i<j E(Ii − Ij )

2 = κ . Note that our choice implies that
ψ = −θ . This time, using the symmetry of the pairs (i, j) and (k, l), we obtain

2nκ E Af (W) =
∑

i<j,k<l

∑
x=0,1

d
(x)
ik,j ld

(1−x)
jk,il E
{f (Wij + 1)− f (Wkl + 1)}.

Now, introduce f ∗
ijkl(x) := E f (Wijkl + x + 1) and xijkl ∈ {0, 1}, where xijkl = 1 if i, j , k,

and l are all mutually distinct, and xijkl = 0 otherwise. Supposing that xijkl = 1, the use of
summation by parts yields

E
{f (Wij + 1)− f (Wkl + 1)} = E
{f ∗
ijkl(Ik + Il)− f ∗

ijkl(Ii + Ij )}

=
2∑
x=0


2f ∗
ijkl(x)[P(Ik + Il > x)− P(Ii + Ij > x)]

= d
(0)
ij,kl


2f ∗
ijkl(0)+ d

(1)
kl,ij


2f ∗
ijkl(1).

A similar calculation accompanies the case xijkl = 0 and so we obtain

2nκ E Af (W) =
∑

i<j,k<l

∑
x=0,1

d
(x)
ik,j ld

(1−x)
jk,il (d

(0)
ij,kl


2f ∗
ijkl(0)+ d

(1)
kl,ij


2f ∗
ijkl(xijkl)).

In the interests of pursuing best-possible bounds, we note that, since 
2f ∗
ijkl(x) is constant

with respect to permutations of i, j , k, and l, we could rewrite the above in the form

2nκ E Af (W) =
∑

α<β≤γ<δ

∑
x=0,1

c
(x)
αβγ δ


2f ∗
ijkl(x)

for some coefficients c(x)αβγ δ dependent only on {pα, pβ, pγ , pδ}. Unfortunately, given an
arbitrary set of probabilities {pi}ni=1, it cannot be guaranteed that, for fixed x, the coefficients
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c
(x)
αβγ δ are all of the same sign for each choice of α, β, γ , and δ—this is in contrast to analogous

binomial and Poisson approximations. Thus, we must trade some accuracy to obtain bounds
computable in a single parse of the pi . Using Cauchy’s inequality, we follow one particular
route among many:

|EAf (W)| ≤ 1

2nκ
Cf

∑
i<j,k<l

∑
x=0,1

∑
y=0,1

|d(x)ik,j ld(1−x)
jk,il d

(y)
ij,kl |

= 1

4nκ
Cf

∑
x=0,1

∑
i =j, k =l

|d(x)ik,j ld(1−x)
jk,il d

(1−x)
ij,kl |

≤ 1

4nκ
Cf

[ ∑
i =j, k =l

(d
(0)
ik,j ld

(1)
jk,il)

2
]1/2 ∑

x=0,1

[ ∑
i,j,k,l

(d
(x)
ij,kl)

2
]1/2

≤ Cf sK
√
n(

√
λ02 + √

λ20)

κ
.

Here we have used
∑
i =j, k =l (d

(0)
ik,j ld

(1)
jk,il)

2 = 4K2,

∑
i,j,k,l

(d
(1)
ij,kl)

2 = 2(n2λ2
20 − λ4

10) ≤ 4n2λ20

(
λ20 − λ2

10

n

)
= 4n3s2λ20,

and, similarly,
∑
i,j,k,l(d

(0)
ij,kl)

2 ≤ 4n3s2λ02.
Now, to establish (5) and (6), we need only combine the following facts. We use the

abbreviation D(X) ≡ dTV(L(X + 1),LX).

1. Using summation by parts,

Cf ≤ 2 max
x

|
f (x)| max
i,j,k,l

D(Wijkl),

Cf ≤ 4 max
x

|f (x)| max
i,j,k,l

D(X
(1)
ijkl)D(X

(2)
ijkl),

where the X(m)ijkl, m = 1, 2, are the Poisson-binomial random variables defined below.

2. An explicit formula for f{m}(x) is given in [8, Lemma 2.3], from which it follows that

max
x

|f{m}(x)| ≤ 1

λ− h(m)
∧ 1

m− h(m)
= ((λ ∨m)−mp + θm(n−m))−1.

3. Also, since (1) implies that 
(λ − h(x)) ≤ 0 ≤ 
(x − h(x)) for x = 0, . . . , n − 1, it
follows from [8, Theorem 2.10] that

max
x

sup
f∈F

|
f (x)| ≤ max
x
((λ ∨ x)− xp + θx(n− x))−1

≤ (λ(1 − p)+ θλ(n− λ))−1

= 1

(1 + θ)σ 2 .

4. For any Poisson-binomial random variable X,

D(X) = max
x

P(X = x) ≤ 1
2 (varX)−1/2,

where the equality holds sinceX is unimodal (Newton’s inequality—cf. [19, p. 249]) and
the inequality follows from [3, Lemma 1].
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5. We may decompose Wijkl = X
(1)
ijkl +X

(2)
ijkl in such a way that

varX(1)ijkl ≥ varX(2)ijkl ≥ varX(1)ijkl − ν∗,

where ν∗ = maxk var Ik ≤ 1
4 . Thus,

min
i,j,k,l

varWijkl ≥ σ 2 − 1, min
i,j,k,l

varX(m)ijkl >
σ 2 − 1

2
, m = 1, 2.

Note that we used D(Wijkl) ≤ 1
2 (varWijkl)

−1/2 since despite a larger asymptotically non-
dominant term, it improves an analogous bound derived from [23, Corollary 1.6] (and used in
[24]) by a factor of roughly 1.6 in the asymptotically dominant term.

4. Comparison of distributional approximations

It was proved in [16] that, under a mild restriction on λ, a binomial law with parameters
n and p is a more accurate approximation in total variation distance to the Poisson-binomial
law than a Poisson law with parameter λ. However, it remains a challenging open problem
to find nontrivial subsets of the parameter domain for which an ordering on the accuracies of
known approximations to the Poisson-binomial law can be proved. In the absence of such
results, the best we can offer is an attempt (under space constraints) to give a representative
numerical comparison of the various distributional approximations to the Poisson-binomial law.
The distributions we consider, along with corresponding orders of approximation (which we
do not claim are necessarily sharp), are listed in Table 1. Three numerical case studies and a
summary of conclusions follow.

For each i = 1, . . . , 7 in the first column of Table 1, let µi denote the corresponding
distribution listed in the second column and let mi be the number of moments of LW that, by
design, are at least approximately matched to those of the approximating law µi . Furthermore,
let ei = dTV(LW,µi) and let bi be the upper bound for ei as given in the corresponding
reference. The order estimates in the table are derived from the bi and are intended to be
understood in some asymptotic regime where p → 0, l := maxk pk − mink pk → 0, but
λ → 0. We feel that the order estimates give a reasonable indication of the performance of
each approximation but that they do not tell the whole story. The numerical examples are
intended to advance a broader intuition.

Example 1. In this example we intend to convey the typical behaviour of the various ap-
proximations when applied to the Bayesian hierarchical modelling problem described in [24].

Table 1: Approximating distributions for the Poisson-binomial law. The references do not necessarily
cite the original results, merely the equations we use for the purpose of comparison. PBD means the

polynomial birth–death distribution defined in [8].

i µi mi ci : bi = O(ci) Reference

1 Poisson 1 p + l [6, Equation (1.23)]
2 Binomial 1 l2/p [24, Equation (1.1)]
3 Shifted Poisson 2 (p + l)/

√
λ [13, Equation (2.1)]

4 PBD 2 (p + l)2/
√
λ [8, Equation (3.4)]

5 Binomial 2 l2/
√
λ [24, Equation (1.2)]

6 Pólya 2 l3/(p
√
λ) Equation (2)

7 Shifted binomial 3 l2/λ [24, Equation (2.3)]
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Table 2: Approximation error when thepks are assumed to come from a beta distribution with parameters
α = 2 and β as indicated.

β = 2 β = 5 β = 8 β = 11
i

ei bi ei bi ei bi ei bi

1 0.217 75 0.599 62 0.112 90 0.374 24 0.076 65 0.271 88 0.058 08 0.213 45
2 0.053 71 0.199 03 0.032 08 0.124 00 0.022 85 0.089 95 0.017 74 0.070 55
3 0.008 92 0.039 24 0.006 34 0.029 65 0.005 22 0.022 93 0.004 75 0.024 66
4 0.004 63 0.113 15 0.001 86 0.038 56 0.001 08 0.021 56 0.000 73 0.014 32
5 0.001 81 0.048 07 0.000 77 0.020 30 0.000 46 0.012 14 0.000 32 0.008 32
6 0.000 01 0.007 36 0.000 11 0.003 45 0.000 09 0.002 14 0.000 07 0.001 49
7 0.000 19 0.015 71 0.000 25 0.010 82 0.000 71 0.018 73 0.000 76 0.015 95

Table 3: The point tabulated is − log10 bi , where the pks are assumed to come from a scaled binomial
distribution with parameters (50, 0.5).

λ
i

10 102 103 104 105 106 107 108 109 1010

1 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
2 1.80 1.72 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70
3 0.27 1.05 1.61 2.13 2.64 3.15 3.65 4.15 4.65 5.15
4 0.28 0.82 1.32 1.82 2.32 2.82 3.32 3.82 4.32 4.82
5 0.45 1.99 2.52 3.02 3.52 4.02 4.53 5.03 5.53 6.03
6 3.00 3.42 3.89 4.38 4.88 5.38 5.88 6.38 6.88 7.38
7 0 1.22 2.23 3.22 4.23 5.24 6.24 7.25 8.26 9.25

In this context, the probability pk represents the chance that patient k has an adverse event
at a given hospital, with the number of patients at a typical hospital estimated to be around
n = 1000. A reasonable comparison of the approximations ofLW might assume that thepks are
independent samples from some beta distribution. However, in the interests of reproducibility,
we instead assume that pk = F−1(k/(n + 1)), k = 1, . . . , n, where F is the cumulative
distribution function of a beta distribution, that is, pk = EX(k:n), where X(k:n) is the kth order
statistic from a random sample of size n. A summary of the results is compiled in Table 2
for a small variety of beta distributions. The results suggest that the Pólya distribution is the
preferred approximation.

Example 2. Recognizing that the number of moments (at least approximately) matched should
have a growing influence on the eis and bis as n → ∞, despite qualitative differences in ‘shape’
between the µi and LW , a comparison in this regime is also given. Specifically, so that the
empirical distribution of the pks maintains a ‘bell’ shape, we let pk = F−1(k/(n + 1))/50,
k = 1, . . . , n, where this time F is the cumulative distribution function of the Bi(50, 0.5) law.
We observe bi for λ = 10m, m = 1, . . . , 10 (due to memory overflow, the ei could not be
calculated for the larger values of λ). The results in Table 3 show that eventually the shifted
binomial approximation of [24] becomes the clear stand out as the most accurate approximation.

Example 3. Finally, we tabulate results for the example cited in both [8] and [16]. For this,
we assume that W = B1 + B2 + B3, where B1 ∼ Bi(2, 1/

√
2), B2 ∼ Bi(9, 1

3 ), and B3 ∼
Bi(70, 0.1). The results in Table 4 show that in this case e4, the PBD approximation of [8], is
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Table 4: Approximation error for the test case of [8] and [16].

i ei bi

1 0.065 91 0.236 54
2 0.029 38 0.109 96
3 0.022 74 0.245 60
4 0.000 40 0.074 69
5 0.004 80 0.235 99
6 0.003 43 0.020 14
7 0.013 10 0.669 64

smallest but b4 is not as well performing. However, since b6 = mini bi , the Pólya approximation
would be preferred if it was necessary to quantify the error.

Based on these examples and further unreported numerical exploration, we conclude that
there is no ‘one-size-fits-all’ uniformly preferable approximation. Moreover, nor can we state
categorically that any approximations have been made redundant in the face of others. Some
more detailed conclusions now follow.

• Given the range of available approximations, it would be surprising if the single moment
matching candidates were ever optimal in terms of accuracy. However, for their simplicity
of use, they may still be preferred by some practitioners.

• If the empirical distribution of the pks is highly skewed and n � 105, the double moment
matching PBD may be optimal, though the estimated approximation error for the PBD
may not reflect well the true accuracy.

• If the empirical distribution of the pks is not highly skewed and λ � 106, the double
moment matching Pólya approximation is likely to be the most accurate approximation
and accompanied by relatively sharp error estimates.

• If λ � 106, the three moment matching shifted binomial approximation is very likely to
be the most accurate approximation.

Appendix A

Proof of Proposition 1. We use Stein’s method of exchangeable pairs. The initial part of the
derivation appears in [14].

Construct an exchangeable pair (W,W ′) by choosing an index J uniformly from {1, . . . , n}
and recasting the random variable IJ . That is, we setW ′ = W−IJ +I ′, where I ′ is independent
of the {Ij } and P(I ′ = 1 | J = j) = pj = 1−P(I ′ = 0 | J = j). Now, since EF(W,W ′) ≡ 0
for any antisymmetric F (see [31]), we see that if

Bf (x) = nE{1{W=W ′−1} f (W ′)− 1{W ′=W−1} f (W) | W = x}
then B is a characterising operator for W . Evaluating the expectation, we obtain

Bf (x) = nP(W ′ = W + 1 | W = x)f (x + 1)− nP(W ′ = W − 1 | W = x)f (x)

=
n∑
j=1

E{(1 − Ij )pj | W = x}f (x + 1)−
n∑
j=1

E{Ij (1 − pj ) | W = x}f (x)

= (λ− g(x))f (x + 1)− (x − g(x))f (x).
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Proof of Proposition 2. The first statement of the proposition is immediate from the defini-
tion of g. For statement 2, note that if the result holds for arbitrary {pi} then
g(x) > 0 implies
that
g(x) < 1 through making the substitutions I ′

k = 1 − Ik , p′
k = 1 − pk = E I ′

k , andW ′ =
n−W = ∑

k I
′
k . Thus, we need only show that E{Ik | W = x} is increasing in x for arbitrary k.

Using the shorthand ax = P(Wk = x) and the identity P(W = x) = pkax−1 + (1 − pk)ax ,
simple algebra yields

E{Ik | W = x + 1} − E{Ik | W = x} = pk(1 − pk)

P(W = x + 1)P(W = x)
(a2
x − ax+1ax−1),

which is positive on account of Newton’s inequality (cf. [19, p. 249]).
Now for statement 3. If all thepi = p are equal theng(m) = pm and, clearly,
(g(m)/m) =

0 for each m. Thus, assuming that p1 ≥ p2 ≥ · · · ≥ pn with at least one pi distinct from
another, we shall now prove the strict inequality by establishing a strong stochastic ordering of
the random variables {Ym}nm=1 with distributions

P(Ym = k) = 1

m
E{Ik | W = m}, k = 1, . . . , n.

For arbitrary but fixed m ≥ 1 and each k, let

bk := P(Ym+1 = k)

P(Ym = k)
= m

m+ 1

P(Wk = m)

P(Wk = m− 1)

P(W = m)

P(W = m+ 1)
.

Clearly, bk > bj if and only if

P(Wk = m)

P(Wk = m− 1)
− P(Wj = m)

P(Wj = m− 1)
> 0. (9)

Cross multiplying and using the identity

P(Wk = m) = pj P(Wjk = m− 1)+ (1 − pj )P(Wjk = m),

it is seen that (9) is equivalent to

(pj − pk)(P(Wjk = m− 1)2 − P(Wjk = m)P(Wjk = m− 2)) > 0,

and, hence, also pj > pk (again by Newton’s inequality). Combining this with the ordering of
the pks, we conclude that b1 ≤ b2 ≤ · · · ≤ bn and at least one bk differs from another. Now,
by Lemma 1 below, this further implies that

P(Ym+1 ≥ k) > P(Ym ≥ k), k = 2, . . . , n,

from which a simple summation by parts yields

g(m+ 1)

m+ 1
= EpYm+1 < EpYm = g(m)

m
.

Lemma 1. Let a1, . . . , an and b1, . . . , bn be two sequences of positive real numbers such that
b1 ≤ b2 ≤ · · · ≤ bn with at least one bi distinct from another. Then,

∑n
i=k aibi∑n
i=1 aibi

>

∑n
i=k ai∑n
i=1 ai

, k = 2, . . . , n. (10)
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Proof. By cross multiplying and using the decomposition
∑n
i=1 = ∑k−1

i=1 + ∑n
i=k , we see

that (10) is equivalent to
n∑
i=k

aibi

k−1∑
i=1

ai >

n∑
i=k

ai

k−1∑
i=1

aibi . (11)

Now, applying the ordering of the bis, it follows that

∑n
i=k aibi∑n
i=k ai

≥ bk
∑n
i=k ai∑n

i=k ai
= bk

∑k−1
i=1 ai∑k−1

i=1 ai
≥

∑k−1
i=1 aibi∑k−1
i=1 ai

,

where at least one of the inequalities is strict if not all the bis are equal. Cross multiplying
again, we recover (11) and, thus, the lemma is proved.
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[10] Čekanavičius, V. and Roos, B. (2004). Two-parametric compound binomial approximations. Liet. Mat. Rink.

44, 443–466. English translation: Lithuanian Math. J. 44, 354–373.
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