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Abstract

Pharmaceutical companies have to face huge risks and enormous costs of production
before they can produce a drug. Efficient allocation of resources is essential to help in
maximizing profits. Yu and Gittins (2007) described a model and associated software for
determining efficient allocations for a preclinical research project. This is the starting
point for this paper. We provide explicit optimal policies for the selection of successive
candidate drugs for two restricted versions of the Yu and Gittins (2007) model. To some
extent these policies are likely to be applicable to the unrestricted model.
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1. Introduction

The pharmaceutical industry has been expanding rapidly in the past 40 years. Its growth is
currently estimated to be 9–15% per year. A very large initial investment is needed to produce
a new drug. The combined cost of research and development and market introduction for
a significant product exceeds £700 million, extending over a period of around 15–30 years
(see [8]). At most 20% of new chemical entities (otherwise known as candidate drugs or
development compounds) survive the clinical trials and become marketable. Thus, the whole
process of producing a drug is characterized by great uncertainty and the risks involved are
huge.

Pharmaceutical companies strive to increase the probability of success of their research
projects, and above all to maximize profitability. In order to achieve this, the resource allocation
in the research and development process leading to a drug may be modeled, and optimality
criteria used so that resources are allocated to the most profitable projects.

An important stage in a pharmaceutical research project is the discovery of a lead compound.
This is a compound which has sufficiently interesting characteristics to be used as the starting
point of a lead series (LS) of similar compounds for testing in the search for a compound which
is worthy of submission for clinical trials as a development compound (DC), or candidate drug.
LS are series of compounds with similar chemical structure. Thus, a lead compound is a lead in
the investigation, like a piece of evidence in police work. Most DCs fail at some point during
clinical trials, so typically further DCs are in due course identified. These may be from one or
more LS.
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The work described in this paper is part of a research program developing models and
software for resource allocation in pre-clinical pharmaceutical research, which Gittins and
co-workers in Oxford have been working on for the past twelve years. Gittins [6], [7] set
up a stochastic model to investigate the relationships between profitability and the number
of scientists allocated to the different stages of a pharmaceutical research project. Chen [5]
extended this model by incorporating internal rate of return and the option valuation approach
as additional project evaluation criteria. An important general conclusion is that larger project
teams than those which are typical would be much more profitable in some cases. Yu and
Gittins [15] extended the earlier models to take specific account of the number of distinct LS
from which the DCs in a project should be selected. An important conclusion is that it is often
worth incurring the additional cost of optimizing more than one LS in the search for backup
DCs, so as to reduce the risk of a string of DCs which all fail for similar reasons.

Some good sources describing models as aids in the determination of plans for pharma-
ceutical research and development expenditure are the journals Pharmacoeconomics and R&D
Management. Good review papers have been written by Miller [11] and Poh et al. [12]. Bergman
and Gittins [1] described the research and development resource allocation methods which at
that time had been applied in the pharmaceutical industry. Halliday et al. [9] invited the world’s
top 45 pharmaceutical companies in terms of sales revenue and research and development
expenditure to complete a questionnaire concerning their research and development activity,
including their strategies employed to speed up the process of drug development. The survey
divided the companies into top ten companies by research and development expenditure,
other western companies, and Japanese companies. An important finding was that the top
ten companies in research and development to sales ratio send more DCs into clinical trials.
Jacob and Kwak [10] reviewed the recent changes in the pharmaceutical industry regarding
costs, technology, risks, and environmental changes and described how real option theory,
based on the Black and Scholes [2] methodology for valuing financial options, has been used
in pharmaceutical research and development in the last few years. Major improvements in
technology management can be achieved by using options, such as the option to wait and the
option to abandon (see also [5]).

In this paper we derive explicit optimal policies for the selection of successive candidate drugs
in the pre-clinical stages of research. This is done by means of detailed stochastic modeling.
We are not aware of any other similar work. The comment by Miller [11], for example, that
there is currently very little use of pharmacoeconomics in the early phases of drug development
and that much more can be done, supports this impression. (Pharmacoeconomics is the science
of relating the costs and benefits, both to individuals and to society, of therapeutic regimes,
including drugs (see [15]). Analysis along these lines is becoming routine in the planning of
clinical trials.)

2. Aims
This paper introduces Models 2 and 3 which are restricted and simplified versions of the

more realistic model considered by Yu and Gittins [15], which we will call Model 1. The three
models differ in their criteria for optimality and in other ways. For Model 1, there are two
alternative optimality criteria for assessing the profitability of an allocation plan for a project.
These are the project’s profitability index and its internal rate of return, both of which are
standard criteria for the evaluation of capital projects (see, e.g. [3]). The model for a research
project includes the features described in this section for Model 3, together with more detailed
modeling of the successive stages of the research process, of the rate at which effort is applied
at each stage, and of the effect of obsolescence.
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In Section 3 we set out some of the general theory which is needed to work out the expected
value generated by different policies for the selection of DCs. An expression for the expected
value of the next DC chosen, conditional on the LS from which previous DCs were chosen, is
derived in Section 3.2.2.

In Section 4 we explore suitable policies for selecting DCs from more than one LS using
Models 2 and 3. For these models, the standard theory of semi-Markov decision processes, as
described, for example, in [13], is applicable. As we will see, for Models 2 and 3, the optimal
policy takes a simple form. For Model 2, it is optimal to select DCs repeatedly from each LS in
turn, and, for Model 3, it is optimal to select a fixed number of DCs from one LS after another,
never coming back to a previously sampled LS. For these policies, it is straightforward to derive
expressions for the total expected reward (TER) and, hence, to examine its dependence on the
various project parameters.

In Section 5 the general conclusions of this report and possible future extensions are
discussed.

For Model 2, our aim is to maximize the TER from a number n of DCs selected from a fixed
number m of LS. The state space consists of m-vectors which give the number of DCs which
have so far been selected from each of the m LS. The action w which is chosen indicates the
LS from which the next DC is selected.

Formally, Model 2 is as follows.

Model 2. A typical state i = (i1, i2, . . . , im), where i1, i2, . . . are nonnegative integers.
Action w ∈ {1, 2, . . . , m}. Action w causes transition to state j = (j1, j2, . . . , jm) with
probability P(i, j, w), where

P(i, j, w) =
{

1 if jw = iw + 1; jv = iv, v �= w,

0 otherwise.

The transition time t (i, w) needed to move from state i to the next state when action w is chosen
is 1, for all i and w. There is no discounting. The expected reward R(i, w) when action w

is chosen in state i is the expected value of the resulting DC. As we will see, this is given by
Theorem 2, below, with s = iw.

For Model 3, our aim is to maximize the total expected discounted reward (TEDR) from an
infinite number of available LS, from any of which we can choose an infinite number of DCs;
we assume an infinite time horizon, that rewards are discounted with time, and that there is a
nonzero probability that a given LS will not produce a DC. Model 3 also allows for the fact
that looking for a DC in a new LS takes longer, and is more likely to fail, than looking for
further DCs from an LS that has already produced a DC. The state is again an m-vector, now
representing the m LS from which we have so far selected at least one DC.

Formally, Model 3 is as follows.

Model 3. Initial state i = 0. Otherwise state i = (i1, i2, . . . , im), where i1, i2, . . . are positive
integers. Action w ∈ {1, 2, . . . , m, �}, where w = � means we look for a DC from an LS in
which no DC has been found and carry on looking in different new LS until a DC is found. Let

P(search of an LS finds a DC) =

⎧⎪⎨
⎪⎩

p on the first search,

1 on each later search if the first search is successful,

0 on each later search if the first search is unsuccessful.
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Action w causes transition to state j = (j1, j2, . . . , jm) with probability P(i, j, w), where

P(i, j, w) =

⎧⎪⎨
⎪⎩

1 if n = m + 1; jv = iv; v = 1, 2, . . . , m; jm+1 = 1; w = �,

1 if n = m; jw = iw + 1; jv = iv, v �= w; w ∈ {1, 2, . . . , m},
0 otherwise.

The transition time

t (i, w) =
{

Kt1 if w = �,

t2 if w �= �.

Here t1 and t2 are fixed times and P(K = k) = p(1 − p)k−1, k = 1, 2, . . . . A reward at time
t is discounted by the factor e−γ t . The reward R(i, w) occurs after the transition time t (i, w)

and is as for Model 2 unless w = �, in which case it is given by Theorem 2 with s = 0.

The action space A(i) is defined by the set of available LS. Thus, the set of available actions
is different for different states. Since LS from which no attempt has so far been made to find a
DC are assumed to be indistinguishable, this means that the set of available actions is always
finite.

Actions are chosen according to some policy. A policy is any rule for choosing actions. At
any stage the action chosen could be random and depend on time and on the previous history
of the process. Important classes of policies are the classes of deterministic Markov (DM)
policies, and of deterministic stationary Markov (DSM) policies.

• Deterministic policies involve no randomization.

• Stationary policies involve no explicit time dependence.

• Markov policies are those for which each decision taken depends only on the current
state and point in time.

Thus, a DSM policy is equivalent to a function from the state space to the action space.
The following theorem gives the results which we need from the standard theory of semi-

Markov decision processes.

Theorem 1. For a semi-Markov decision process with countable state space and finite action
space,

(i) with a finite time horizon and optimality criterion TER, there is an optimal policy which
is DM; and

(ii) with an infinite time horizon and optimality criterion TEDR, there is an optimal policy
which is DSM, provided that the TEDR is bounded and that Condition 1, below, holds.

Condition 1. For every state i and action a, there is a positive probability that the transition
time is greater than some fixed positive δ.

Theorem 1(ii) is part of Theorem 7.2 of Ross [13] with different notation. Theorem 1(i) is
a simpler result which follows from the discussion given by Ross, and is explicitly stated as
Result 2.3 of [14]. Note that the proofs still work if the set of available actions is different for
different states, even if the union of all these sets is infinite.

Model 2 is a Markov decision process with optimality criterion TER and Theorem 1(i)
applies. Model 3 is a semi-Markov decision process with infinite time horizon and optimality
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criterion TEDR and Theorem 1(ii) applies. We will therefore restrict attention to DM policies
for Model 2 and to DSM policies for Model 3. One consequence is that, for Model 3, we only
consider policies which, after unsuccessfully looking for a first DC from an LS, immediately
look for a first DC in another LS.

3. The values of a sequence of candidate drugs

3.1. Assumptions and notation

A good LS is an LS from which we can get a successful DC. A DC is successful if it passes
through clinical trials and becomes marketable. Different LS are good or bad independently
and with the same probability conditional on the target being achievable. DCs are successful
or unsuccessful independently and with the same probability conditional upon them coming
from good LS.

3.1.1. General notation.

• Sj : the j th available LS, j = 1, 2, . . . .

• Cij : the ith DC from LS Sj , i, j = 1, 2, . . . .

• U : the therapeutic target.

3.1.2. Events.

• Aij : Cij passes successfully through clinical trials and becomes a marketable drug. In
brief, Aij is the event {Cij is successful}.

• B: therapeutic target U is in principle achievable.

• Ci : LS Si has no systematic defect which makes it impossible to reach the target U . In
brief, Ci is the event {Si is good}.

• X̄: the complement of the event X, for any X.

3.1.3. Probabilities.

• Conditional on B, the events Ci are independent.

• Conditional on B, Cj , and Cn, the events Aij and Amn are independent (including the
case in which j = n), where (i, j) �= (m, n).

• P(Ci | B̄) = 0.

• P(Aij | B̄) = P(Aij | C̄j ) = 0.

• P(Aij ) = a > 0.

• P(B) = b > 0.

• P(Ci | B) = c, 0 < c < 1.

•
P(Aij | B, Cj ) = P(Aij ∩ B ∩ Cj )

P(B ∩ Cj )
= P(Aij )

P(Cj | B) P(B)
= a

bc
= α.

In the above i, j, m, and n are any positive integers.
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3.1.4. Values.

• V : the value of the first DC if it was available now. In principle, this is the expected net
present value of all the cash flows directly attributable to the compound.

• λnV, 0 < λ < 1: the value of the (n+1)th successful DC in a project, ignoring discount-
ing because of the need to wait until the compound is available. The factor λ represents
the diminishing returns associated with a sequence of compounds all competing for the
same target.

• V (r): the value of the rth DC. Note that this depends on the success or failure of the
r − 1 previous DCs.

3.2. Evaluation of probabilities and expected values

3.2.1. Two LS, S1 and S2. Assume that the DCs are selected alternately from S1 and S2. Let
A(r, m, n) be the event that the rth DC is successful and is preceded by m successful DCs from
S1 and n successful DCs from S2 (together with a total of r − 1 − m − n unsuccessful DCs).
Bearing in mind that the (2r + 1)th compound is chosen from the first LS we find that, for
n > 0,

P(A(2r + 1, m, n)) =
(

r

m

)
P(A11 | B, C1)

m+1︸ ︷︷ ︸
successful compounds

from 1st LS

P(Ā11 | B, C1)
r−m︸ ︷︷ ︸

unsuccessful compounds
from 1st LS

·

×
(

r

n

)
P(A12 | B, C2)

n︸ ︷︷ ︸
successful compounds

from 2nd LS

P(Ā12 | B, C2)
r−n︸ ︷︷ ︸

unsuccessful compounds
from 2nd LS

P(B) P(C1 | B) P(C2 | B)

=
(

r

m

)
αm(1 − α)r−m

(
r

n

)
αn(1 − α)r−nac.

The case when the (2r + 1)th DC is successful and is preceded by m successful DCs from S1
and no successful DCs from S2 requires separate consideration. It is now uncertain whether
LS S2 is good or bad. We have

P(A(2r + 1, m, 0)) = P(A(2r + 1, m, 0 | B, C1, C2)) P(B) P(C1 | B) P(C2 | B)

+ P(A(2r + 1, m, 0 | B, C1, C̄2)) P(B) P(C1 | B) P(C̄2 | B)

=
(

r

m

)
αm(1 − α)r−m(1 − α)rac

+
(

r

m

)
αm(1 − α)r−ma(1 − c).

Thus,

E[V (2r + 1)] = V

r∑
m=0

r∑
n=0

λn+m P(A(2r + 1, m, n))

= V

( r∑
m=0

r∑
n=0

(
r

m

)
(λα)m(1 − α)r−m

(
r

n

)
(λα)n(1 − α)r−nac

+
r∑

m=0

(
r

m

)
(λα)m(1 − α)r−ma(1 − c)

)
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= V (ac(1 − (1 − λ)α)2r + a(1 − c)(1 − (1 − λ)α)r)

= aV (cη2r + (1 − c)ηr),

where η = 1 − (1 − λ)α.
Similarly, for m > 0,

P(A(2r, m, n)) =
(

r

m

)
αm(1 − α)r−m

(
r − 1

n

)
αn(1 − α)r−1−nac,

and, when m = 0,

P(A(2r, 0, n)) =
(

r − 1

n

)
αn(1 − α)r−1−n(1 − α)rac

+
(

r − 1

n

)
αn(1 − α)r−1−na(1 − c).

Thus,

E[V (2r)] = V (ac(1 − (1 − λ)α)2r−1 + a(1 − c)(1 − (1 − λ)α)r−1)

= aV (cη2r−1 + (1 − c)ηr−1).

3.2.2. Arbitrary set of LS, arbitrary selection rule. The following notation is assuming that we
are given the numbers of DCs which have so far been selected from each of the available LS,
and that we do not know whether they are going to be successful or not. In particular, the
distribution of V (C) is conditional on the current state.

• C: the next DC chosen at a given point in the sequence.

• V (C): the value of the next DC.

• S: the LS from which we will choose the next DC.

• C: the event {S is good}.

• �: the set of all LS from which DCs have been selected prior to DC C, excluding LS S,
where C ∈ S.

• θ : any subset of � and the event {θ is the set of all good LS in �}.
• pθ = P(θ | B).

• rθ : number of DCs selected from any LS in θ before C is selected.

• s: number of DCs selected from LS S before C is selected.

• 1(i): the indicator random variable for the event that the ith DC from {θ}∪S is successful.

• η = 1 − (1 − λ)α.

Theorem 2. For any C ∈ S,

E[V (C)] = aV ηs
∑
θ⊂�

pθη
rθ .
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Proof. We have

E[V (C)] =
∑
θ⊂�

E[V (C) | B, C, θ ] P(B, C, θ). (1)

Now E[V (C) | B, C, θ ] = E[λg 1(r + 1)V | B, C, θ ], where g = ∑r
i=1 1(i) and r = rθ + s.

Since the random variables 1(i) are independent, conditional on B, C, and θ , it follows that

E[V (C)] = V E[1(r + 1)] E[λ1(i)]r ,
all expectations being conditional on B, C, and θ . We have E[1(r + 1) | B, C, θ ] = α

and E[λ1(i) | B, C, θ ] = αλ + 1 − α = η, so that E[V (C) | B, C, θ ] = V αηrθ+s . Also,
P(B, C, θ) = P(B) P(C | B) P(θ | B, C) = bcpθ .

Substituting into (1), it follows that

E[V (C)] = aV ηs
∑
θ⊂�

pθη
rθ ,

where now the expectation is unconditional, as required.

Alternatively, we may write E[V (C)] = aV E[ηρ | B], where ρ denotes the number of DCs
selected before C which belong either to S or to a good LS.

Corollary 1. We have

E[V (C) | B, C] = αV ηs
∑
θ⊂�

pθη
rθ .

Proof. We have

E[V (C) | B, C] =
∑
θ⊂�

E[V (C) | B, C, θ ]pθ .

Using the proof for Theorem 2, we know that E[V (C) | B, C, θ ] = V αηrθ+s . Therefore,

E[V (C) | B, C] =
∑
θ⊂�

E[V (C) | B, C, θ ]pθ =
∑
θ⊂�

V αηrθ+spθ = αV ηs
∑
θ⊂�

pθη
rθ ,

as required.

4. Optimal selection policies

4.1. Model 2 (undiscounted)

4.1.1. Background. Consider a finite number of LS m from which we are going to take a finite
number n of DCs. There are mn possible policy schedules (or, equivalently, DM policies), each
consisting of a string of n integers specifying the order in which the m LS are to be used to
produce successive DCs. We look for a schedule that maximizes the total reward from the n

DCs. As the number of possible schedules is finite, this maximum must be attained.

4.1.2. Optimal policy derivation. We will show that the optimal policy is to divide the n DCs
selected as nearly equally as possible between the m LS. To prove this, we use the following
four lemmas.
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Lemma 1. If DCs are to be selected from m LS, with ri DCs to be selected from LS Si, i =
1, 2, . . . , m, the total number of successful DCs does not depend on the order of selection.

Proof. This is an immediate consequence of the fact that none of the probabilities described
in Section 3.1.3 depends on the order of selection.

Lemma 2. The TER from fixed numbers of DCs from each LS does not change with the order
of selection.

Proof. From Lemma 1, it follows that all functions of the number of successful DCs, such
as the total reward, do not depend on the order of selection, and the lemma follows.

Lemma 3. At any stage the expected value of the next DC is maximized by choosing it from
an LS from which the minimum number of compounds have so far been selected.

Proof. We will show that, for any two LS, we will get a higher expected value if we choose
the one from which the lower number of DCs have so far been selected. Recall that Theorem 2
gives E[V (C)] = aV E[ηρ | B], where ρ denotes the number of DCs selected before C which
belong either to S or to a good LS, S being the LS from which the DC C is chosen.

We will consider selection from two different LS, Si and Sj . Assume that we have so far
selected ri DCs from Si and rj DCs from Sj .

Let ρ = ρi if we select from Si and let ρ = ρj if we select from Sj .
Let νij denote the number of DCs which have been selected from good LS other than Si and

Sj . Thus,

ρi = νij + rj 1j +ri,

ρj = νij + rj + ri 1i ,

where 1k is the indicator random variable for the event Ck, k = 1, 2, . . . , m.
Let Ck denote the next DC to be chosen if this is from Sk, k = 1, 2, . . . , m. Thus,

E[V (Ci )] − E[V (Cj )]
aV

= E[ηρi ] − E[ηρj ]
= E[ηρi − ηρj ]
= E[ηνij +rj 1j +ri − ηνij +rj +ri 1i ]
= E[ηνij (ηrj 1j +ri − ηrj +ri 1i )],

where all expectations on the right-hand side are conditional on B, the event that the target is
in principle achievable. Now, noticing that, conditional on B, νij is independent of Ci and Cj ,
we have

E[ηνij (ηrj 1j +ri − ηrj +ri 1i )] = E[ηνij ] E[ηrj 1j +ri − ηrj +ri 1i ]
and

E[ηrj 1j +ri − ηrj +ri 1i ] = cηri+rj + (1 − c)ηri − cηri+rj − (1 − c)ηrj

= (1 − c)(ηri − ηrj ),

and this is positive if ri < rj , since c < 1 and 0 < η < 1. Hence, E[V (Ci )] − E[V (Cj )] > 0
if ri < rj . Thus, the expected value of the next DC is maximized by choosing it from an LS
from which the minimum number of compounds have so far been selected, as required.
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Lemma 4. Given any selection of DCs which includes two LS for which the numbers of DCs
selected differ by two or more, there is an alternative selection for which the expected reward
is larger.

Proof. Suppose that the two LS are Si and Sj . Without loss of generality, it therefore follows
from Lemma 2 that after n−1 of the n selections have been made we may assume, in the notation
of the proof of Lemma 3, that ri < rj , and that the last DC is selected from Sj . From Lemma 3,
it follows that the expected reward would be greater if this last selection was switched from Sj

to Si , completing the proof.

4.1.3. Optimal policy.

Theorem 3. The optimal selection policy is to choose compounds from the available LS in as
nearly equal numbers as possible.

Proof. From Lemma 4, it follows that any optimal policy must have the property stated. From
Lemma 2, and because of the exchangeability of LS labels, every policy with that property leads
to the same TER, completing the proof.

From Theorems 2 and 3, it follows that the maximum TER when n/m is an integer is

aV

(n/m−1∑
j=0

m−1∑
k=0

(cηn/m + 1 − c)kηj

)
.

4.2. Model 3 (discounted)

4.2.1. Background. For this model, our aim is to choose an infinite sequence of DCs so as to
maximize the TEDR. There are potentially an infinite number of LS from which we will choose
an infinite number of DCs. The time t1 taken in looking for the first DC from each LS is longer
than the time t2 taken for each subsequent (backup) DC. The probability of success in the search
for a first DC from any particular LS is p, 0 < p < 1. For all searches other than for the first
DC from an LS, the probability that we will find a DC is 1. We know from Theorem 1(ii) that
there is an optimal policy which is DSM. For such a policy, the next LS from which we select
is a deterministic function of the current state. We restrict attention to policies of this form. It
follows that a DSM policy is defined by a predetermined infinitely long list of symbols defining
the sequence of successive choices. Each of these symbols tells us from which LS to look for
the next DC, identifying an LS by the number of DCs which it has so far produced. (There may
be more than one LS from which we have selected the same number of DCs. This is a benign
ambiguity, as our model behaves in the same way whichever LS is chosen from this equivalent
group.) When an LS is selected for the first time it may not yield a DC. As noted in Section 2,
in that case a DSM policy selects another LS for the first time, and it continues to do so until
one of them does yield a DC. Thus, in this case too our infinite list of symbols defines every
choice. We call this list a policy schedule.

4.2.2. Optimal policy derivation. Together with the notation in Sections 3.1 and 3.2.2, we will
use some new notation.

• �: look for a DC in a new LS and continue doing so with a succession of new LS until
we have found a DC.

• i: select the next DC from an LS from which we have so far selected i (>0) DCs.
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• (Shorthand notation.) L(i) = � 1 2 . . . i − 1 (i = ∞ is possible) and L(1) = �. Thus,
every policy schedule starts with L(i) for some i.

• �: ‘is preferred to’ or ‘is better than’ in terms of the expected reward. This can be for any
two policy schedules, or partial schedules (�PS), or in the sense of adjacent interchange
(�AI), where i �AI j means that the order of selection ij is preferred to ji.

• X �PS Y means that the partial schedule X is preferred to the partial schedule Y . Thus,
i �AI j is equivalent to ij �PS ji.

• ∼: as ‘�’, but now referring to no preference between the two policies.

• R denotes the TEDR.

• R(i) denotes the total additional expected discounted reward starting from a point when
we have already selected i DCs all from the same LS. Thus, R = R(0).

• p denotes the probability of finding a first DC from an LS, q = 1 − p.

• t1 denotes the time taken to look for a first DC from any LS.

• t2 denotes the time taken to choose a DC other than the first one from an LS (a backup
compound).

• T denotes the time taken from starting to optimize a new LS until finding the first DC in
that LS or another new LS under the partial schedule �.

• G denotes the time which elapses up to the point in a schedule at which we are considering
alternative partial schedules.

• M denotes the number of successful DCs prior to the same point in the schedule from
LS which are not included in any of the alternative partial schedules.

• γ denotes the discount rate in real terms. (In general, a sum of money has different values
on different dates. Using continuous compounding (see [3]), for some γ , £1 now is worth
the same as £eγ t after t years. We assume that both these sums of money are measured
with the effect of inflation removed, thus, representing actual purchasing power.)

• V (X) denotes the value of policy schedule X.

• V (ij) denotes the value of choosing the ith DC from an LS Si followed by choosing the
j th DC from an LS Sj at some stage in a policy schedule.

Convention. If L(i)j occurs in any policy and L(i) ∼AI j and jL(i) is a feasible alternative
policy then we always choose the jL(i) alternative. The sequence jL(i) will not be feasible if,
for example, L(i) is at the start of a policy schedule. Thus, if L(i)L(i +1) = L(i)L(i)i occurs
and L(i) ∼AI i then we choose instead L(i)iL(i) = L(i + 1)L(i), leaving the total expected
value unchanged.

To derive the optimal policy, we will use the following lemmas.

Lemma 5. If i < j then i �AI j , or, equivalently, ij �PS ji.
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Proof. Using Theorem 2,

E[V (ij)]
aV

= E[e−γG] E[ηM ](cηi+j + (1 − c)ηi + exp(−γ t2)(cη
i+j+1 + (1 − c)ηj )),

E[V (ji)]
aV

= E[e−γG] E[ηM ](cηi+j + (1 − c)ηj + exp(−γ t2)(cη
i+j+1 + (1 − c)ηi)),

E[V (ij)] − E[V (ji)]
aV E[e−γG] E[ηM ] = cηi+j + (1 − c)ηi + exp(−γ t2)(cη

i+j+1 + (1 − c)ηj )

− (cηi+j + (1 − c)ηj + exp(−γ t2)(cη
i+j+1 + (1 − c)ηi))

= (1 − c)(ηi − ηj ) + (1 − c) exp(−γ t2)(η
j − ηi)

= (1 − c)(ηi − ηj )(1 − exp(−γ t2))

> 0,

as required, since c < 1, i < j, and 0 < η < 1.

Lemma 6. If XY is a complete optimal schedule (so that Y is an infinite list), and no LS forms
part of both X and Y , then Y is also a complete optimal schedule.

Proof. We start by introducing some additional notation.

• � denotes the set of all policy schedules.

• �X̄ denotes the set of all policy schedules which involve none of the LS included in
partial schedule X.

• GX denotes the time taken to complete X.

• rX denotes the number of successful DCs in X.

Thus, using Theorem 2,

E[V (XY)] = E[V (X)] + E[e−γGX ] E[ηrX ] E[V (Y )].

Since XY is optimal, it follows that

E[V (Y )] = sup
{H∈�X̄}

E[V (H)].

Since an infinite number of exchangeable LS is available, for any schedule in �, there is a
schedule in �X̄ with the same TEDR. Thus, Y is an optimal schedule, as required.

Lemma 7. If L(i) �AI j then L(i) �AI k, k > j .

Proof. Applying Theorem 2 to each of the DCs listed in L(i)j we have

E[V (L(i)j)]
aV

= E[e−γG] E[e−γ T ] E[ηM ]
× ((1 + η exp(−γ t2) + η2 exp(−2γ t2)

+ · · · + ηi−1 exp(−(i − 1)γ t2))(cη
j + 1 − c)
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+ ηj exp(−iγ t2)(cη
i + 1 − c))

= E[e−γG] E[e−γ T ] E[ηM ]

×
(

(cηj + 1 − c)

(
1 − ηi exp(−iγ t2)

1 − η exp(−γ t2)

)
+ (cηi + 1 − c)ηj exp(−iγ t2)

)
.

Also, applying Theorem 2 to each of the DCs listed in jL(i) we have

E[V (jL(i))]
aV

= E[e−γG] E[ηM ]
(

ηj exp(−γ t2) + E[e−γ T ](cηj+1 + 1 − c)

×
(

1 − ηi exp(−iγ t2)

1 − η exp(−γ t2)

)
exp(−γ t2)

)
.

Now let

� = E[V (L(i)j)] − E[V (jL(i))]
aV E[e−γG] E[e−γ T ] E[ηM ]

=
(

1 − ηi exp(−iγ t2)

1 − η exp(−γ t2)

)
(cηj (1 − η exp(−γ t2)) + (1 − c)(1 − exp(−γ t2)))

+ ηj exp(−γ t2)((cη
i + 1 − c) exp(−(i − 1)γ t2) − (E[e−γ T ])−1).

The factor multiplying ηj is

c(1 − ηi exp(−iγ t2)) + cηi exp(−iγ t2) + (1 − c) exp(−iγ t2) − exp(−γ t2)

E[e−γ T ]
= c + (1 − c) exp(−iγ t2)︸ ︷︷ ︸

<1

− exp(−γ t2)

E[e−γ T ]︸ ︷︷ ︸
>1

< 0.

Thus, � increases with j , and it follows that if L(i) �AI j then L(i) �AI k, k ≥ j + 1, as
required.

Lemma 8. The policy L(∞) is not optimal.

Proof. The policy L(∞) means that we choose DCs from one LS for ever. To prove that
L(∞) cannot be optimal, we will show that there is a finite N for which

E[V (L(N)L(∞))] > E[V (L(∞))].
The TEDR under any policy may be written as

R = R(0) = exp(−γ t1)(p(aV + R(1)) + qR(0)),

since with probability p, we will find a DC from the first LS we choose to optimize, and with
probability q = 1 − p, we will not find a DC. Thus,

R =
(

p exp(−γ t1)

1 − q exp(−γ t1)

)
(aV + R(1)).
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For the policy L(∞), using Theorem 2,

R(1) = aV

∞∑
m=1

ηm exp(−mγ t2). (2)

For the policy L(N)L(∞),

R(1) = aV

N−1∑
m=1

ηm exp(−mγ t2) + exp(−(N − 1)γ t2)(cη
N + 1 − c) E[V (L(∞))]. (3)

Note that (2) and (3) differ for m ≥ N , and, hence, we need to show that

ηN−1aV

∞∑
r=1

ηr exp(−rγ t2) = aV ηN exp(−γ t2)

1 − η exp(−γ t2)
< (cηN + 1 − c) E[V (L(∞))].

This is true for large enough N , as the left-hand side tends to 0 as N → ∞ and the right-hand side
tends to (1−c) E[V (L(∞))] as N → ∞. Thus, for sufficiently large N , L(N)L(∞) � L(∞),
as required.

In the following we use the notation

L(m, n, l) = m m . . . m︸ ︷︷ ︸
n

(m + 1) (m + 1) . . . (m + 1)︸ ︷︷ ︸
n

(m + 2) (m + 2) . . . (m + 2)︸ ︷︷ ︸
n

. . . (m + l) (m + l) . . . (m + l)︸ ︷︷ ︸
n

.

Lemma 9. The infinite partial schedule L(m, n, ∞) is not optimal.

Proof. We measure time from the point when the partial schedule L(m, n, ∞) starts. We
will show that, for all sufficiently large values of m,

E[V (L(∞))] > E[V (L(m, n, ∞))].
This proves the lemma since, for any k ≥ m, L(m, n, ∞) finishes with L(k, n, ∞).

Now

E[V (L(m, n, ∞))] ≤ E[total additional value if all further selections are

from just one LS from which m DCs have so far

been selected, and that LS is good]

= αV
∑
θ⊂�

pθη
rθ

∞∑
k=1

ηm+k exp(−kγ t2) (using Corollary 1)

= Wηm, where W > 0 and does not depend on m.

Also,
E[V (L(∞))] ≥ E[V (L(∞)) | Z] P(Z),

where Z is the event {no sampled LS is good except possibly the one sampled by L(∞)}.
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Now recall from (2) that

E[V (L(∞)) | Z] =
(

p exp(−γ t1)

1 − q exp(−γ t1)

)(
aV

1 − η exp(−γ t2)

)
> 0,

and note that P(Z) = cz, where z is the number of other sampled LS. Hence, it is sufficient to
show that E[V (L(∞)) | Z] P(Z) > E[V (L(m, n, ∞))]. This holds if(

p exp(−γ t1)

1 − q exp(−γ t1)

)(
aV

1 − η exp(−γ t2)

)
cz > Wηm.

This is true for all sufficiently large m, as the left-hand side is greater than 0 and does not depend
on m and the right-hand side tends to 0 as m → ∞. This completes the proof.

Lemma 10. If the infinite partial schedule D does not include � then D is not optimal.

Proof. From Lemma 5, it follows that if D is optimal and does not include � then it must
finish as L(m, n, ∞) for some m and n. However, from Lemmas 8 and 9, we know that
L(m, n, ∞) is not optimal, completing the proof.

From Lemma 10, it follows that any optimal schedule may be written in the form L(i1)

L(i2)D2L(i3)D3 . . . L(ik)Dk . . . , where (ik) is an infinite sequence and Dk, k = 2, 3, . . . , is
a partial schedule which does not include �, does not start with ik , cannot be infinite, and may
be ∅.

Lemma 11. If an optimal policy has a partial schedule of the form L(i)DL(j), where D is a
partial schedule which does not include �, does not start with i, and is not ∅, then j < i.

Proof. Consider a partial schedule of the form L(i)DL(j), and suppose that j ≥ i. Now,

L(i)DL(j) = L(i) f . . . m︸ ︷︷ ︸
=D

L(i) i (i + 1) . . . (j − 1),

where m ≥ f (by Lemma 5) and f L(i) is a feasible alternative to L(i)f as f �= i. However, it
is impossible to have L(i) �AI f and m �AI L(i) (by Lemma 7). This is a contradiction, and
it follows that j < i as required.

In the following we use the notation

L(i)L(i) . . . L(i)︸ ︷︷ ︸
j times

= L(i, j).

When j = ∞, we have a cyclic policy L(i, ∞).

Lemma 12. Any optimal schedule which is not cyclic either

(a) has a start of the form L(i, h)L(i + 1)i for some i and h; or

(b) includes a partial schedule of the form Q = L(i)L(j)x, where j < i and x �= j .

Proof. Assume that the optimal policy starts with L(i, h)L(j)x, where h ≥ 1, j �= i, and
x �= j . It is easy to see that any acyclic policy schedule must start in this way. We will consider
the following three cases, one of which must occur.

Case 1: j < i. We have a partial schedule L(i)L(j)x, which is of the form Q.
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Case 2: j > i + 1. We have a partial schedule of the form L(i)L(j)x = L(i) L(i) i (i +
1) . . . (j − 1) x. The possible values of x are either � (choose a DC from a new LS) or i. If
x = i, we have a partial schedule of the form

L(i)L(j)x = L(i) L(i) i (i + 1) . . . (j − 1) i.

However, i �AI j − 1 (Lemma 5) as j − 1 > i, so this is impossible. Hence, x = � and we
have a partial schedule of the form L(i)L(j)L(k)y, y �= k. If k ≥ i, this may be written as

L(i) L(i) i (i + 1) . . . (j − 1) L(i) i (i + 1) . . . (k − 1) y.

The underlined parts of the schedule contradict Lemma 7 as j − 1 > i. Hence, we must have
k < i which gives a partial schedule L(j)L(k)y, where k < j , which is of the form Q.

Case 3: j = i + 1. We have a partial schedule of the form L(i)L(j)x, where x can be
equal to either i or �. If x = i, the partial schedule has the form L(i)L(i + 1)i and the optimal
schedule is as in (a). If x = �, the schedule starts as L(i)L(i + 1)L(y)z, where y < i so as not
to contradict Lemma 7 as in case 2. Here L(i + 1)L(y)z is of the form Q.

This completes the proof.

Lemma 13. It is impossible for the sequential pairs L(i)L(j), where i > j , and L(k)L(m),
where m > k and k ≤ j , to both occur in an optimal schedule.

Proof. Let an optimal policy schedule contain both sequential pairs L(i)L(j), i > j , and
L(k)L(m), m > k and k ≤ j . The optimal schedule is of the form

. . . L(i)L(j) . . . L(k)L(m) . . .

= . . . L(i − 1) (i − 1)︸ ︷︷ ︸
=L(i)

L(k) k . . . (j − 1)︸ ︷︷ ︸
L(j)

. . . L(k) L(k) k . . . (m − 1)︸ ︷︷ ︸
L(m)

. . . .

For this to be optimal, it follows from our convention that i − 1 �AI L(k) and L(k) �AI k.
However, k ≤ i − 1, so this contradicts Lemma 7, completing the proof.

Lemma 14. If an optimal policy includes the partial schedule Q = L(i)L(j)x with j < i and
x �= j , then it must finish with L(k, ∞) for some k.

Proof. First note that it follows from Lemma 13 that if an optimal policy includes Q then
it does not also include L(k)L(m) with m > k and k ≤ j . This observation together with
Lemma 11 implies that the sequence (ir ) is decreasing for r ≥ l, where il = i and il+1 = j .
Since (ir ) is a sequence of nonnegative integers it follows that, for some k and N , ir = k for
all r ≥ N . Because of the strict inequality in Lemma 11, it also follows that Ds = ∅, s ≥ r ,
and the optimal schedule therefore finishes with L(k, ∞), as required.

Lemma 15. If an optimal policy schedule starts with L(i, h)L(i + 1)i then it must finish with
L(k, ∞) for some k.

Proof. Suppose that an optimal policy schedule starts as L(i, h)L(i + 1)i. It must continue
as L(i, h)L(i + 1)DL(k) . . . , where k < i + 1 (Lemma 11) and D is a finite partial schedule
starting with i, and not including �.

We next note that it is impossible for the optimal policy to include L(m)L(n) with m ≤ k

and n > m, because this would mean that we had both lL(m), l ≥ i, and L(m)L(m)m as
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partial schedules. This would contradict our convention (if m = l), or Lemma 7 (if m < l) as
shown underlined below.

L(i, h)L(i + 1) i . . . l︸ ︷︷ ︸
=D

L(m) m . . . k − 1 . . . L(m) L(m) m . . . (n − 1) . . . .

This observation, together with Lemma 11, means that the sequence

ih+1︸︷︷︸
(=i+1)

, ih+2, ih+3, . . .

is decreasing. The rest of the proof is the same as for Lemma 14.

4.2.3. Optimal policy.

Theorem 4. There is an optimal policy schedule which is cyclic.

This is an immediate consequence of Lemmas 6, 12, 14, and 15.
Using Theorem 2, it may be shown that the TEDR for a cyclic policy L(k, ∞) is

aVp exp(−γ t1)(1 − (η exp(−γ t2))
k)

(1 − η exp(−γ t2))(1 − exp(−γ t1)(q + p exp(−(k − 1)γ t2)(cηk + 1 − c)))
.

The derivation is given by Charalambous [4], who also investigated numerically the relation-
ships between the optimal TEDR and k and the various parameters of our model.

5. Conclusions

In this paper we investigated the optimal allocation of resources throughout a pre-clinical
pharmaceutical research project. It is based on the model and software described by Yu and
Gittins [15] (Model 1). We derived optimal selection schedules for a sequence of DCs using
two restricted versions of the basic model. This was done for the undiscounted finite horizon
case (Model 2), and for the more realistic discounted infinite horizon case (Model 3). For
Model 2, a finite number of LS is available and there is no setup cost which penalizes switches
between LS; it turns out that optimal policies select as nearly as possible the same number of
DCs from each LS. For Model 3, an infinite number of LS is available and there are additional
costs in switching to a new LS; it turns out that optimal policies never switch back to an earlier
LS once a switch has been made from that LS.

The setup for Model 1 is more complex, but it seems likely that if we again assume that an
infinite number of LS is available, an optimal policy will progress from one series to another
with no switching back, as for Model 3. If, on the other hand, there is just a finite number of
promising LS available, it seems likely that after choosing DCs from one LS after another with
no switching back, as for Model 3, an optimal policy then moves to a phase in which one DC is
selected from each LS in turn, as for Model 2. Policies along these lines are being investigated
numerically for Model 1, and will be reported separately.

Further plans involve taking account of the feedback that is provided from clinical trials on
a DC in the future selection of DCs. As this information comes in, the scientists reevaluate
what to do next. They must decide whether to carry on with the selection schedule as was
originally planned, stop the project immediately, or work on an alternative selection schedule.
For example, a DC might turn out to have unfortunate side effects which would significantly
reduce the expected value of the next DC if it were to be taken from the same LS. This might
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cause a modification in the original selection schedule. A Bayesian formulation will be needed
to carry out this plan.
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