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Abstract. We will state some conditions under which if a quotient of a module
M satisfies the radical formula of degree k (s.t.r.f of degree k), so does M. Especially,
we will introduce some particular modules M′ such that M′ ⊕ M′′ s.t.r.f of degree k,

when M′′ s.t.r.f of degree k. Furthermore, we will show that, under certain conditions,
if the completion of a module M s.t.r.f of degree k, then there is a non-negative integer
k′ such that M s.t.r.f. of degree k′. Moreover, we state a corrected version of Leung and
Man’s theorem (K. H. Leung and S. H. Man, On commutative Noetherian rings which
satisfy the radical formula, Glasgow Math. J. 39 (1997), 285–293) on Noetherian rings
that satisfies the radical formula.

2010 Mathematics Subject Classification. 13C99, 13A15, 13C13.

1. Introduction. In this paper all rings are commutative and with identity, all
modules are unitary, R denotes a ring and M denotes an R-module. Also, by � we
mean the set of positive integers and �* = � ∪ {0,∞}.

A proper submodule P of M is called prime when from rm ∈ P for some r ∈ R and
m ∈ M, we can conclude either m ∈ P or rM ⊆ P (see for example [1, 3, 4, 6, 9, 10,
11, 13, 15, 16]). Let (P : M) be the set of all r ∈ R such that rM ⊆ P. If P is a prime
submodule, then P = (P : M) is a prime ideal of R and we say that P is P-prime. Recall
that if R is an integral domain, then M is called torsion-free, if for every 0 	= r ∈ R and
0 	= m ∈ M, we have rm 	= 0. One can easily verify that P is a P-prime submodule of
M if and only if M

P is a torsion-free R
P

-module.
Another generalisation of prime ideals to modules was proposed in [7]. There a

proper submodule W of M is said to be weakly prime, if from rsm ∈ W for r, s ∈ R
and m ∈ M, we can conclude either rm ∈ W or sm ∈ W . One can easily see that it is
equivalent to saying that (W : m) is a prime ideal for every m ∈ M \ W . So every prime
submodule of M is weakly prime.

Recall that for an ideal I of R, the intersection of all prime ideals of R containing
I is called the radical of I and is denoted by

√
I. Similarly, if N is a submodule of

M, the intersection of prime (weakly prime) submodules of M containing N is called
the radical (weak radical) of N and we denote it by radM(N) or rad(N) (wradM(N) or
wrad(N)).

It is well known that
√

I = {
r ∈ R|rk ∈ I for some k ∈ �

}
. In order to find

a similar characterisation for rad(N), the notion of envelope of a submodule was
introduced by McCasland and Moore [13]. The envelope of a submodule N of M,
EM(N) (or E(N) if no subtlety), is the set of all x ∈ M for which there exist r ∈ R,
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m ∈ M and k ∈ � such that x = rm and rkm ∈ N. In general, E(B) is not a submodule,
so we consider RE(B) (or REM(B)) to be the submodule of M generated by E(B).

Also in [3], the kth envelope of N was defined recursively by E0(N) = N and
Ek(N) = E(REk−1(N)), where REk(N) (or REk,M(N)) is a submodule of M generated
by Ek(N). Moreover, here by RE∞(N) we mean

⋃∞
i=0 REk(N).

One can easily verify that for every submodule N of M

N = RE0(N) ⊆ RE1(N) ⊆ RE2(N) · · · ⊆ RE∞(N) ⊆ wrad(N) ⊆ rad(N).

Now if rad(N) = REk(N) (wrad(N) = REk(N)) for a k ∈ �*, then we say that N
satisfies (weakly satisfies) the radical formula of degree k, or N s.t.r.f. (weakly s.t.r.f.) of
degree k in M. A module M s.t.r.f. (weakly s.t.r.f.) of degree k, when every submodule
of M s.t.r.f. (weakly s.t.r.f.) of degree k in M. Also, we say that R s.t.r.f. (weakly s.t.r.f.)
of degree k, if every R-module s.t.r.f. (weakly s.t.r.f.) of degree k. For k = 1 we simply
drop k and write R s.t.r.f. (weakly s.t.r.f.) and write RE(N) instead of RE1(N).

In [3], it was proved that every arithmetical ring with the finite Krull dimension
k, s.t.r.f. of degree k and that an arithmetical ring with DCC on prime ideals s.t.r.f. of
degree ∞. Also, [4, Theorem 2.1] states that every arithmetical ring weakly s.t.r.f. of
degree ∞. In [16] the rings that s.t.r.f. of degree 0 were named absolutely radical, and it
was proved that a ring is absolutely radical if and only if it is the von Neumann regular
ring. Moreover, in [4] it is proved that R s.t.r.f. of degree 0 if and only if it weakly s.t.r.f.
of degree 0. Also in [9], the characterisation of Noetherian rings that s.t.r.f. is given,
which, in Section 2, we will show that it needs a small correction.

A proper submodule N of M is called semi-prime if E(N) = N. It is said that R has
the s.p.a.r. property when every semi-prime submodule N of an R-module is a radical
submodule (that is, N equals an intersection of prime submodules). One can easily see
that a proper submodule B of M is semi-prime if and only if B is of the form RE∞(N)
for some submodule N of M. Thus, having the s.p.a.r. property is equivalent to s.t.r.f.
of degree ∞. In [10], Noetherian rings with the s.p.a.r. property were characterized.

It is known that if M s.t.r.f. (weakly s.t.r.f.) of degree k and N is a submodule of M,
then M

N s.t.r.f. (weakly s.t.r.f.) of degree k. In Section 3 we state conditions on M and
N under which the converse of this is true. Especially in Sections (3.4), (3.7), (3.11),
(3.14) and (3.16), we will introduce some particular modules M′ such that M′ ⊕ M′′

s.t.r.f. of degree k, when M′′ s.t.r.f. of degree k.
Also, we will prove that if s ∈ � and I is a finitely generated ideal of R such that

I ⊆ √
(REs(0) : M) and the I-adic completion of M s.t.r.f. of degree t, then M s.t.r.f.

of degree s + t and moreover as an application of this, in (3.21) we will show that for
Noetherian rings, having the s.p.a.r. property is equivalent to s.t.r.f. of degree 2. This
result generalises Theorem 3.5 and Corollary 2.6 of [4], which state that a Noetherian
domain R s.t.r.f. of degree k for some k ∈ �∗, if and only if R is a Dedekind domain.

2. A corrected version of Leung and Man’s theorem. In [9] the following theorem
is claimed to be proved.

THEOREM 2.1. Let R be a Noetherian ring and P1,P2, . . . ,Pn be all the minimal
prime ideals of R. R s.t.r.f. if and only if R is Artinian or all of the following conditions
are satisfied:

(a) R is one dimensional and for each i = 1, . . . , n, R
Pi

is a Dedekind domain and Pi

is the only Pi-primary ideal.
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(b) For k = 1, . . . , n − 1, (
⋂k

i=1 Pi) + Pk+1 = ⋂k
i=1(Pi + Pk+1) if n ≥ 2.

(c) For all 1 ≤ i < j ≤ n, R = Pi + Pj or R
Pi+Pj

is semi-simple Artinian, if n ≥ 2.

Now we give a counter example of this theorem. Recall that a ring is called a special
principal ideal ring (SPIR) if it has a unique prime ideal which is principal. These rings
are sometimes called special primary rings (see [8]).

EXAMPLE 2.2. Let R1 be an SPIR, which is not a field, and R2 be discrete valuation
domain, which is not filed. Set R = R1 × R2. By [8, Theorem 9.10] any finite direct
sum of SPIR and Dedekind’s domains is a ZPI-ring; therefore, R is a ZPI-ring, hence
s.t.r.f. by [16, Theorem 2.10]. Also, R is clearly Noetherian and one dimensional.

Now if P1 is the maximal ideal of R1, it is easy to see that P = P1 × R2 is both a
maximal and a minimal ideal of R. Also, 0 × R2 is a P-primary ideal of R not equal
to P × R2, which contradicts condition (a) of (2.1).

THEOREM 2.3. For correcting Theorem 2.1, we need to replace condition (a) of this
theorem with the following condition:

(a′) R is one dimensional and for each i = 1, . . . , n; if Pi is not maximal, then R
Pi

is
a Dedekind domain and Pi is the only Pi-primary ideal.

Proof. First note that if R satisfies the conditions of (2.1), then by the argument
stated in [9], R s.t.r.f. Now let R be a ring that satisfies the conditions of the corrected
version of the theorem. If M is a maximal ideal of R, then RM is either Artinian or
a one-dimensional local ring that satisfies the conditions of (2.1). Thus, in both cases
RM s.t.r.f., whence by [9, Theorem 3.4], R s.t.r.f.

Now, suppose that R is a one-dimensional Noetherian ring that s.t.r.f. By a careful
reading of proof of [9, Corollary 2.3], we see that for every minimal prime ideal P of R,
which is not maximal, R

P
is the Dedekind domain and P is the only P-primary ideal

of R (in fact, in that proof its authors have assumed that if P is a minimal prime ideal
of a one-dimensional Noetherian ring, then it is not maximal, which is not generally
true). So condition (a′) holds.

Now note that if (b) (or (c)) holds locally, then it holds globally. Now if P is a
height zero prime ideal of R, then (b) and (c) hold trivially for RP. If P is a height one
prime ideal of R, then RP is a Noetherian local ring of dimension one and hence by
[9, Theorem 4.2], RP satisfies (b) and (c). Thus, R satisfies these conditions. �

COROLLARY 2.4. If R is a reduced Noetherian ring, then R s.t.r.f. if and only if R has
the s.p.a.r property.

Proof. In fact this was noted in [10, p. 33], but there [9, Theorem 1.1] was used,
which we showed is incorrect. Using (2.3) instead, one can prove the claim with a
similar argument. �

3. Quotient of modules and the radical formula. The proof of the following lemma
is easy and it is left to the reader.

LEMMA 3.1. Let k ∈ �* and N be a submodule of M. For every submodule L of M
containing N, we have

REk,M(L)
N

= REk, M
N

(
L
N

)
,

radM(L)
N

= rad M
N

(
L
N

)
and

wradM(L)
N

= wrad M
N

(
L
N

)
.
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By the above lemma if M′ is a submodule of M and M s.t.r.f. (weakly s.t.r.f.) of
degree k, then M

M′ s.t.r.f. (weakly s.t.r.f.) of degree k too. Here we study some conditions
on M and M′, under which the converse of this statement is true. Throughout this
section, we assume that M′ is a submodule of M. Consider the following properties of
M′, where k ∈ �* (note that each of (Ik) and (IIk) have two versions: one for radicals
and another for weak radicals):

(Ik) For every submodule N of M, REk,M(N + M′) = REk,M(N) + M′ and M′ ∩
radM(N) ⊆ REk,M(N) [M′ ∩ wradM(N) ⊆ REk,M(N)].

(IIk) For every submodule N of M, REk,M(N + M′) ∩ radM(N) = REk,M(N)
[REk,M(N + M′) ∩ wradM(N) = REk,M(N)].

THEOREM 3.2. The following statements are equivalent for all k ∈ �* :
(a) M s.t.r.f. (weakly s.t.r.f.) of degree k.

(b) There is a submodule M′ of M such that (IIk) for radicals (weak radicals) holds
for M′ and M

M′ s.t.r.f. (weakly s.t.r.f.) of degree k.

(c) Every proper submodule M′ of M satisfies (IIk) for radicals (weak radicals).

Proof. We prove the radical version of the statement, the proof of the statement
on weak radicals is similar.

(a) ⇒ (b), (c): Suppose that M s.t.r.f. of degree k and M′ and N are arbitrary
submodules of M. Now REk(N + M′) ∩ radM(N) = radM(N + M′) ∩ radM(N) =
radM(N) = REk(N). Thus, every submodule of M has the property (IIk) for radicals.
Also by (3.1), every quotient module of M s.t.r.f. of degree k.

(b) ⇒ (a): Since M
M′ s.t.r.f. of degree k by (3.1), REk(N + M′) = radM(N +

M′). Hence, radM(N) = radM(N + M′) ∩ radM(N) = REk(N + M′) ∩ radM(N) =
REk(N).

(c) ⇒ (a): Let N be an arbitrary submodule of M. First, suppose that radM(N) 	=
M. This means that there exists a prime submodule P of M containing N. P
being proper, P satisfies (IIk) for radicals. Thus, radM(N) = P ∩ radM(N) = REk(P) ∩
radM(N) = REk(P + N) ∩ radM(N) = REk(N). Now suppose that radM(N) = M. If
REk(N) 	= M, then let m ∈ M \ REk(N) and so Rm 	= M as radM(N) = M. Now m ∈
REk(N + Rm) = REk(N + Rm) ∩ M = REk(N + Rm) ∩ radM(N) = REk(N), which
is a contradiction. �

LEMMA 3.3. Let k ∈ �*. Then
(a) The condition (Ik) ((IIk)) for radicals implies (Ik) ((IIk)) for weak radicals.
(b) The condition (Ik) for radicals (weak radicals) implies (IIk) for radicals (weak

radicals).
(c) If (I1) holds for radicals (weak radicals), then for all 0 	= k ∈ �*, (Ik) holds

for radicals (weak radicals).

Proof. (a) Obvious.
(b) If (Ik) holds for radicals and N is an arbitrary submodule of M, then using the
modularity law, we get

REk(N + M′) ∩ rad(N) = (
REk(N) + M′) ∩ rad(N)

= REk(N) + (
M′ ∩ rad(N)

) = REk(N).

(c) This follows from a simple induction, definition of RE∞(N) and the fact that
REi(N) ⊆ REj(N) whenever i ≤ j and N is a submodule of M. �
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Let R be an integral domain. An R-module M is called divisible if rM = M for
every 0 	= r ∈ R. In [15] a module M was called generalized torsion divisible when
M = ∑

i∈I Mi for submodules Mi such that for each i ∈ I there exists a prime ideal
Pi of R such that PiMi = 0 and Mi is a torsion divisible R

Pi
-module. The following

generalises [15, Theorem 2.5].

COROLLARY 3.4. Let 0 	= k ∈ �*. Suppose that M′ is a generalised torsion divisible
submodule of M. If M

M′ s.t.r.f. (weakly s.t.r.f.) of degree k, then M s.t.r.f. (weakly s.t.r.f.)
of degree k. Particularly if M′′ is a module that s.t.r.f. (weakly s.t.r.f.) of degree k, then
M′ ⊕ M′′ s.t.r.f. (weakly s.t.r.f.) of degree k.

Proof. Let N be an arbitrary submodule of M. By [15, Lemma 2.4], E(N +
M′) ⊆ RE(N). Hence, RE(N) + M′ ⊆ RE(N + M′) ⊆ RE(N) ⊆ RE(N) + M′, that is
RE(N + M′) = RE(N). Also, M′ ∩ radM(N) ⊆ M′ ⊆ RE(N + M′) = RE(N). Thus,
M′ satisfies (I1) for radicals and the result follows from (3.3) and (3.2). �

For every prime ideal P of R and every submodule N of M, let

FP (N) = {m ∈ M|sm ∈ N for some s ∈ R \ P}.

Evidently FP (N) = NP ∩ M, where NP is the localisation of N at P.
The proof of the following lemma follows from [11, Proposition 2.5].

LEMMA 3.5. For every submodule N of M, we have radM(N) = ⋂
FP (N + PM),

where P runs through all the prime ideals of R.

A secondary module M is a non-zero module in which for every r ∈ R, either
rM = M or rnM = 0 for some n ∈ �. If M is secondary, then P = √

(0 : M) is a prime
ideal of R and we say that M is P-secondary.

A minimal secondary representation of M is an equation of the form M = ∑n
i=1 Mi,

where each Mi is Pi-secondary for distinct Pis and none of the Mis in the sum is
redundant. If M has such a representation, then M is called representable. By [12,
Theorem 6.9], the set {Pi|1 ≤ i ≤ n} is independent of the specific representation and
it is denoted by Att(M).

LEMMA 3.6. Let M′ be a P-secondary submodule of M. Then PM′ + (M′ :
PM)PM ⊆ RE(0).

Proof. We prove that the generators of the left-hand side are in RE(0). Let p ∈ P,
m ∈ M, m′ ∈ M′ and r ∈ (M′ : PM). Then pkM′ = 0 for some k ∈ �. Thus, pm′ ∈
RE(0). Also, since rpm ∈ M′, pk+1(rm) ∈ pkM′ = 0 and hence p(rm) ∈ RE(0). �

THEOREM 3.7. Suppose that M′ is a P-secondary submodule of M, 0 	= k ∈ �* and
M
M′ s.t.r.f. (weakly s.t.r.f.) of degree k. Then M s.t.r.f. (weakly s.t.r.f.) of degree k if one
of the following holds:

(a) k ≥ 2 and (M′ : PM) 	⊆ P.
(b) k = 1 and (PM′ : PM) 	⊆ P.

Proof. By (3.3) and (3.2), in each case it suffices to show that M′ satisfies (Ik) for
radicals. So let N be an arbitrary submodule of M. First we show that in both cases
REk(N + M′) = REk(N) + M′. We just need to prove this for k = 1, and for k > 1 it
is proved inductively.
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Let x ∈ E(N + M′). Then x = rx′, where r ∈ R and x′ ∈ M and there exist t ∈
�, n ∈ N and m ∈ M′ such that rtx′ = n + m. We will find an m′ ∈ M′ such that
r(x′ − m′) ∈ E(N). If r /∈ P, by M′ being P-secondary, there is an m′ ∈ M′ such that
rtm′ = m. Thus, rt(x′ − m′) = n ∈ N and this m′ has the required property. If r ∈ P,
then there is a t′ ∈ � such that rt′M = 0. In this case we choose m′ = 0, therefore
in this case rt+t′ (x′ − m′) = rt′n ∈ N and r(x′ − m′) ∈ E(N). Whence, in both cases
x = r(x′ − m′) + rm′ ∈ RE(N) + M′. Therefore, every generator of RE(N + M′) is in
RE(N) + M′ and thus RE(N + M′) ⊆ RE(N) + M′. The converse inclusion is obvious.

Now in each of the above cases we must prove that M′ ∩ rad(N) ⊆ REk(N).
Let x1 ∈ M′ ∩ radM(N). By (3.5), x1 ∈ FP (N + PM) and hence there exist r1 ∈

R \ P, n ∈ N and m ∈ PM such that r1x1 = n + m.

(a) By the assumption of this case of the theorem, there exists an r′ ∈ (M′ : MM) \
P. If we set r′′ = r1r′, then r′′ ∈ R \ P and r′′x1 = r′n + r′m ∈ N + (M′ : PM)PM.
Thus, by (3.6) r′′x1 ∈ RE(N). Now, because r′′ /∈ P and x1 ∈ M′, there is a y ∈ M′ such
that r′′y = x1. Therefore, r′′2y = r′′x1 ∈ RE(N) and so x1 = r′′y ∈ RE2(N) ⊆ REk(N).
This means M′ ∩ rad(N) ⊆ REk(N) and hence (Ik) for radicals holds for M′, which
completes the proof of this case.

(b) By our assumption, there exists an r′ ∈ (PM′ : PM)\P. If we set r′′ = r′r1, then
r′′x1 = r′n + r′m and r′m ∈ PM′. Put m′ = r′m. Then m′ = ∑t

i=1 pim′
i, where pi ∈ P

and m′
i ∈ M′. As r′′ /∈ P, for each i ≤ i ≤ t, there exists m′′

i ∈ M′ such that m′
i = r′′m′′

i .

Let m′′ = ∑t
i=1 pim′′

i ∈ PM′, which is in RE(N) by (3.6). Now r′′m′′ = m′ and whence
r′′(x1 − m′′) = r′′x1 − m′ = r′n ∈ N. Moreover, x1 − m′′ ∈ M′, thus x1 − m′′ = r′′y for
some y ∈ M′, as r′′ /∈ P. Therefore, r′′2y = r′′(x1 − m′′) ∈ N and so x1 − m′′ = r′′y ∈
RE(N), and as m′′ ∈ RE(N), we have x1 ∈ RE(N). This means M′ ∩ rad(N) ⊆ RE(N),
which completes the proof. �

Note that if R is an integral domain, then every divisible R-module is 0-secondary.
Thus, (3.7) generalises [15, Theorem 2.2], which states if M is a direct sum of a divisible
module and a module which s.t.r.f., then M s.t.r.f. Now we will state another application
of (3.7).

PROPOSITION 3.8. Let n ∈ �, and suppose for each 1 ≤ i ≤ n, Mi is a Pi secondary
R-module such that Mi = Mj if Pi = Pj. If I is an ideal of R with I 	⊆ ∪n

i=1Pi, then
M = M1 ⊕ M2 ⊕ · · · ⊕ Mn ⊕ R

I
s.t.r.f.

Proof. We use induction on n. As an application of the previous theorem, we have
the result for n = 1. Now suppose the result is correct for n − 1.

By rearranging the indices, we may suppose that P1 is a minimal element of the
set {P1,P2, · · · ,Pn}. Then for each 1 ≤ i ≤ n, either Pi = P1 or Pi 	⊆ P1. So by our
assumption either Mi = M1 or Pi 	⊆ P1. Put M′′ = M2 ⊕ · · · ⊕ Mn ⊕ R

I
. We show that

(P1M1 : P1M) 	⊆ P1, and by induction hypothesis M
M1

∼= M′′ s.t.r.f., therefore by the
previous theorem, M s.t.r.f.

For each 1 ≤ i ≤ n, if Mi = M1, then put ti = 1. Otherwise consider ri ∈ Pi \ P1.

Then ri ∈ Pi = √
(0 : Mi), and so there exists ni ∈ � such that rni

i Mi = 0. Thus, ti =
rni

i ∈ (P1M1 : P1Mi) \ P1. Let i ∈ I \ P1, and put r = t1t2t3 · · · tni. Then r ∈ (P1M1 :
P1Mi), for each 1 ≤ i ≤ n, and whence r ∈ (P1M1 : P1M) \ P1, which completes the
proof. �
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LEMMA 3.9. Suppose that M′ = ∑t
i=1 Mi is a minimal secondary representation of

M′, where Mi is Pi-secondary. Also assume that P1 is minimal in Att(M). Let I be an
ideal of R and N a submodule of M. Then (IM′ : N) 	⊆ P1, if and only if (IM1 : N) 	⊆ P1.

Proof. Assume that there exists an r ∈ (IM′ : N) \ P1. If t = 1, then the proof
of the claim is trivial. So assume that t > 1. By minimality of P1 and minimality of
the representation, no Pi is a subset of P1, for i 	= 1. Thus, P2P3 · · · Pt 	⊆ P1. Let
r′ ∈ P2 · · · Pt \ P1. Then for each 2 ≤ i ≤ t, there is a ki ∈ � such that r′ki Mi = 0. Set
k = maxt

i=2{ki}. Since r′ /∈ P1, we have r′kM′ = M1. Now r′krN ⊆ Ir′kM = IM1 and
r′kr /∈ P1. The other side of the claim is obvious. �

LEMMA 3.10. If M1 and M2 are submodules of M such that M1 	⊆ M2 and M1 is
P-secondary, then M1+M2

M2
is P-secondary.

Proof. The proof is easy and it is left to the reader. �
THEOREM 3.11. Assume that M′ = ∑t

i=1 Mi is a minimal secondary representation
of M′, where Mi is Pi-secondary. Also suppose that M

M′ s.t.r.f. (weakly s.t.r.f.) of degree
k. Then M s.t.r.f. (weakly s.t.r.f.) of degree k, if one of the following holds:

(a) k ≥ 2 and (M′ : PM) 	⊆ P, for each maximal element P of Att(M).
(b) k = 1 and (PM′ : PM) 	⊆ P, for each maximal element P of Att(M).

Proof. We state the proof for s.t.r.f., the claim for weakly s.t.r.f. is proved similarly.
(a) We use induction on t. The base step is true by (3.7)(a). One can easily check that
our assumption implies (M′ : PM) 	⊆ P, for every element P of Att(M).

Suppose P1 is a minimal element of Att(M). Thus, by applying (3.9) with I = R
and N = P1M, we see that (M1 : P1M) 	⊆ P1. So by (3.7)(a), it suffices to prove M

M1

s.t.r.f. of degree k.
By (3.10), M′

M1
= ∑t

i=2
Mi+M1

M1
is a secondary representation of M′

M1
. Also, since

M
M1

M′
M1

∼= M
M′ and

(
M′

M1
: P

M
M1

)
⊇ (M′ : PM),

for every P ∈ Att(M), we can apply the induction hypothesis and get M
M1

s.t.r.f. of
degree k as required.

(b) Similar to (a), just use (3.7)(b) instead of (3.7)(a) and apply (3.9) with I = P1

instead of R. �
In [1], it is proved that if R is an integral domain with the Krull dimension one,

then every Noetherian representable module s.t.r.f. ([1, Theorem 1.7]). The following
corollary generalises this result.

COROLLARY 3.12. Every representable module s.t.r.f.

Proof. Just apply (3.11), with M′ = M, where M is a representable module. �
According to [15] an R-module M is called special when for each maximal ideal M

of R, each a ∈ M and each m ∈ M, there exist c ∈ R \ M and k ∈ � such that cakm = 0.
Semi-simple modules (direct sum of simple modules), locally Artinian modules (modules
in which every cyclic submodule is Artinian) and semi-Artinian modules (modules every
homomorphic image of which has a non-zero simple submodule) are special (see [15,
Section 3]).

https://doi.org/10.1017/S0017089511000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000243


664 A. NIKSERESHT AND A. AZIZI

It was proved there that if M = M′ ⊕ M′′, where M′ is special and M′′ s.t.r.f., then
M s.t.r.f. ([15, Theorem 4.8]). Here we will generalise this to s.t.r.f. (weakly s.t.r.f.) of
degree k. Let M be a maximal ideal of R and k ∈ �*, consider the following property
on a submodule M′ of M:

(IIIk) For every submodule N of M, REk(N + MM′) ⊆ FM (REk(N)).

LEMMA 3.13. Let M be a maximal ideal of R and M′ a submodule of M.
(a) For each submodule N of M, RE(FM (N)) ⊆ FM (RE(N)).
(b) If M′ satisfies (III1), then it satisfies (IIIk) for each 0 	= k ∈ �*.

Proof. (a) It suffices to show that E(FM (N)) ⊆ FM (RE(N)), which one can easily
prove.

(b) We prove (IIIk) by induction on k. Let N be an arbitrary submodule
of M. For k > 1, if N ′ = REk−1(N + MM′), then by induction hypothesis we
have N′ ⊆ FM (REk−1(N)). Now REk(N + MM′) = RE(N ′) ⊆ RE(N ′ + MM′) ⊆
FM (RE(N ′)) ⊆ FM (RE(FM (REk−1(N)))). Thus, by part (a) of this lemma,
REk(N + MM′) ⊆ FM (FM (REk(N))) = FM (REk(N)). The case of k = ∞ follows
the definition of RE∞(N) and the case of k ∈ �. �

LEMMA 3.14. Let k ∈ �*. If M = M′ ⊕ M′′, where M′ is semi-simple and M′′ s.t.r.f.
(weakly s.t.r.f.) of degree k, then M s.t.r.f. (weakly s.t.r.f.) of degree k.

Proof. In [15], through a series of lemmas, the s.t.r.f. case was proved for k = 1.
In the same way, one can prove the corresponding lemmas for each k ∈ �* and weak
radicals, and hence prove the claim. �

LEMMA 3.15. If M′ is special, then for every maximal ideal M of R, (III1) holds
for M′.

Proof. This is in fact [15, Lemma 4.7]. �
THEOREM 3.16. Let k ∈ �*. If for every maximal ideal M of R, a submodule M′ of

M satisfies (IIIk) and M
MM′ s.t.r.f. of degree k, then M s.t.r.f. of degree k. In particular, if

k 	= 0 and M = M′ ⊕ M′′, where M′ is special and M′′ s.t.r.f. of degree k, then M s.t.r.f.
of degree k. The statement also holds if we replace s.t.r.f. with weakly s.t.r.f.

Proof. Let N be an arbitrary submodule of M, x ∈ rad(N) and I = (REk(N) : Rx).
We must show that R = I. If I 	= R, then it is contained in a maximal ideal of R, say
M. By our assumption, M

MM′ s.t.r.f. of degree k, hence by (3.1), for every maximal ideal
M of R, rad(N + MM′)/MM′ = REk(N + MM′)/MM′, whence

x ∈ rad(N) ⊆ rad(N + MM′) = REk(N + MM′) ⊆ FM (REk(N)).

This means that there exists an s ∈ R \ M such that sx ∈ REk(N). But then s ∈
I ⊆ M, a contradiction. Thus, M s.t.r.f. of degree k.

Now suppose that k 	= 0 and M = M′ ⊕ M′′, where M′ is an special module and
M′′ s.t.r.f. of degree k. Let M be an arbitrary maximal ideal of R. According to (3.15)
and (3.13), M′ satisfies (IIIk), for M. Thus, to complete the proof, we just need to show
that M

MM′ s.t.r.f. of degree k. But M
MM′ ∼= M′

MM′ ⊕ M′′ and M′
MM′ is semi-simple. Thus, the

result follows from (3.14). The assertion on satisfying the weak radical formula can be
proved similarly. �

Next we state a condition on M′ under which M s.t.r.f. of a higher degree than
M
M′ does. Recall that if C : M1 ⊇ M2 ⊇ · · · is a chain of submodules of M, then the
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completion M̂ of M with respect to C is the set {[(xi)]|(xi) is a cauchy sequence in
M}, where [(xi)] denotes the equivalency class of the sequence (xi) with respect to the
relation (xi) ≡ (yi) if and only if for each n ∈ � there is an n0 ∈ � such that for all
n0 ≤ i we have xi − yi ∈ Mn (see [2, Section 10]). In the particular case that Mi = IiM,
for an ideal I of R, M̂ is called the I-adic completion of M.

Clearly M̂ forms a module with element-wise operations. In the following, for each
submodule N of M, we set N̂ = {[(xi)] ∈ M̂|[(xi)] = [(yi)] for some yi’s in N}, which
is a submodule of M̂. Moreover, by m̂ for an m ∈ M we mean [(m)] ∈ M̂, where (m)
denotes a constant sequence, all terms of which equals m. Also, we denote the natural
homomorphism from M to M̂, which maps m to m̂, by f̂ .

THEOREM 3.17. Suppose that M1 ⊇ M2 ⊇ · · · is a chain of submodules of M and
M̂ is the completion of M with respect to this chain. Also let N be a submodule of M.

(a) f̂ (radM(N)) ⊆ radM̂(N̂) and if Ml ⊆ radM(N), for some l ∈ �, then radM̂(N̂) ⊆
̂radM(N).

(b) f̂ (EM(N)) ⊆ EM̂(N̂) and if Ml ⊆ REk(N), for some l ∈ � and k ∈ �*, then
EM̂(N̂) ⊆ ̂REk+1(N).

(c) If Ml ⊆ REk(N), for some l ∈ � and k, k′ ∈ �* and M̂ s.t.r.f. of degree k′, then
M
N s.t.r.f. of degree k + k′.

Proof. (a) Let x ∈ rad(N). Then by (3.5), for every prime ideal P of R there exists
an s ∈ R \ P such that sx ∈ N + PM, say sx = m + ∑t

i=1 pimi, for some mi’s in M, pi’s
in P and m ∈ N. Thus, ŝx = m̂ + ∑t

i=1 pim̂i ∈ N̂ + PM̂. Therefore, according to (3.5)
x̂ ∈ radM̂(N̂).

Now suppose that Ml ⊆ rad(N) and [(xi)] ∈ radM̂(N̂). Then for each prime ideal
P of R there is an s ∈ R \ P such that s[(xi)] ∈ N̂ + PM̂ ⊆ N̂ + P̂M. So there are nis
in N and mis in PM such that s[(xi)] = [(ni)] + [(mi)]. Hence, if i is large enough we
have sxi = ni + mi + δi, where δi ∈ Ml ⊆ rad(N). Consequently, for some si ∈ R \ P

we have siδi ∈ N + PM. Thus, ssixi ∈ N + PM and since P was arbitrary, we deduce
that xi ∈ radM(N) for all large enough is and whence [(xi)] ∈ ̂radM(N).

(b) It is obvious that f̂ (EM(N)) ⊆ EM̂(N̂). So suppose that Ml ⊆ REk(N) and
let [(xi)] ∈ EM̂(N̂). Then for some r ∈ R, [(mi)] ∈ M̂, [(ni)] ∈ N̂ and t ∈ �, we have
[(xi)] = r[(mi)] and rt[(mi)] = [(ni)]. Therefore, for large enough is we have rtmi − ni ∈
Ml ⊆ REk(N). Thus, rtmi ∈ REk(N) and hence rmi ∈ REk+1(N). But for large enough
is xi = rmi + δi, where δi ∈ Ml ⊆ REk(N). From this we conclude that xi ∈ REk+1(N)
for all large enough is, and the result follows.

(c) Let A be a submodule of M containing N and x ∈ radM(A). If k′ > 0,
then Ml ⊆ REk(N) ⊆ REk(A) ⊆ rad(A). Therefore, by (a), x̂ ∈ radM̂(Â) = REk′ (Â) =
REk′−1(RE(Â)), which according to (b) is contained in REk′−1( ̂REk+1(A)). Now if we
put B = REk+1(A), then Ml ⊆ B = RE0(B). So by repeated use of (b) (with 0 as the k
in (b)), we get

REk′−1(B̂) = REk′−2(RE(B̂)) ⊆ REk′−2( ̂RE(B)) ⊆ . . . ⊆ ̂REk′−1(B) = ̂REk′+k(A).

Therefore, x̂ = [(yi)] for some yis in REk′+k(A), and hence for a large enough i, we have
x − yi ∈ REk(N). Consequently, x ∈ REk′+k(A), as required. If k′ = 0, then x̂ ∈ Â and
by an argument similar to that of (b), we get x ∈ REk(A). �
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COROLLARY 3.18. Let I be a finitely generated ideal of R and k, k′ ∈ �*. If I ⊆√
(REk(0) : M) and the I-adic completion of M (as an R-module) s.t.r.f. of degree k′,

then M s.t.r.f. of degree k + k′.

Proof. Note that since I is finitely generated, for some n ∈ � we have In ⊆ (REk(0) :
M). Hence, the result follows from (3.17). �

PROPOSITION 3.19. If M′ ⊆ REk(0) and M
M′ s.t.r.f. (weakly s.t.r.f.) of degree k′, where

k, k′ ∈ �*, then M s.t.r.f. (weakly s.t.r.f.) of degree k + k′.

Proof. Noting that for every submodule N of M, we have M′ ⊆ REk(0) ⊆
REk(N) ⊆ wrad(N) = wrad(REk(N)), the result for weak radicals follows (3.1). The
case on radicals can be proved similarly or can be deduced from (3.17), setting Mi = M′

for all i ∈ �. �
COROLLARY 3.20. Let R be a one-dimensional ring.
(a) If R is a domain and (REk(0) : m) 	= 0 for each m ∈ M, then M s.t.r.f. of degree

k + 1. Moreover, if (REk(0) : M) is a non-zero radical ideal, then M s.t.r.f. of
degree k.

(b) If (REk(0) : M) is a prime ideal, then M weakly s.t.r.f. of degree k + 1.

Proof. (a) By our hypothesis, M
REk(0) is a torsion module. By [15, Corollary 3.6],

every torsion module over a one-dimensional domain is special and hence s.t.r.f. Now
use (3.19). For the second part, note that by [16, Theorem 2.4] if (REk(0) : M) is a
non-zero radical ideal, then M

REk(0) s.t.r.f. of degree 0.
(b) This follows from (3.19) and [5, Corollary 3.3], which states that every one-

dimensional domain weakly s.t.r.f. �
The following corollary is proved in [14] but we bring it here for completeness.

COROLLARY 3.21. Assume that R is a Noetherian ring. The following are equivalent.
(a) R has the s.p.a.r. property.
(b) R s.t.r.f. of degree k, for some 2 ≤ k ∈ �*.
(c) R s.t.r.f. of degree 2.
(d) R is an Artinian ring, or all of the following conditions are satisfied, where

P1, . . . ,Pn are all of the minimal ideals of R:
(1) dim R = 1 and for each i, R

Pi
is a Dedekind domain.

(2) If n ≥ 2, then for each k = 1, 2, · · · , n − 1, (
⋂k

i=1 Pi) + Pk+1 = ⋂k
i=1(Pi +

Pk+1).
(3) If n ≥ 2, then for each i, j, 1 ≤ i < j ≤ n, R = Pi + Pj, or R

Pi+Pj
is a semi-

simple Artinian ring.

Proof. As it was noted in the Introduction, R has the s.p.a.r. property if and only if
R s.t.r.f. of degree ∞. So (b) ⇒ (a) and also (c) ⇒ (b), are clear. Thus, we just need to
show that if M has the s.p.a.r. property, then M s.t.r.f. of degree 2. Suppose that R has
the s.p.a.r. property and M is an arbitrary R-module. Now N(R)M ⊆ RE(0), where
N(R) stands for the nil radical of R, and hence M

RE(0) is an R
N(R) -module. Since every

R
N(R) -module is an R-module, R

N(R) has the s.p.a.r. property and hence by (2.4), s.t.r.f.

Thus, M
RE(0) s.t.r.f. and by (3.19) M s.t.r.f. of degree 2.

(a) ⇔ (d) The proof is given by [10, Theorem 1.1]. �
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EXAMPLE 3.22. In [10, p. 33] it was noted that R = F [x,y]
<x2y2>

has the s.p.a.r. property
but does not s.t.r.f. So by the previous corollary R s.t.r.f. of degree 2 but does not s.t.r.f.
of degree 1.

At the end of this paper we turn our attention to a stronger form of radical
formula. In [6] we stated that M satisfies the simplified radical formula (s.t.s.r.f.) if
radM(N) = EM(N) + N, for each submodule N of M. If every R-module s.t.s.r.f., then
we say that R s.t.s.r.f. In [6, Theorem 2.15], it is proved that a Noetherian ring s.t.s.r.f. if
and only if it is a ZPI-ring. Here we consider the generalisation of the above concept.

DEFINITION 3.23. Let k ∈ � ∪ {0}. If radM(N) = kEM(N) + N (wradM(N) =
kEM(N) + N) for every submodule N of M then we say that M satisfies (weakly
satisfies) the simplified radical formula of degree k (s.t.s.r.f. (weakly s.t.s.r.f.) of degree
k). Also we say that R satisfies (weakly satisfies) the simplified radical formula of degree
k, when every R module does so.

Recall that EM(N) is not necessarily a submodule of M, and kEM(N) in the above
definition is

kEM(N) = {x ∈ M | ∃x1, x2, · · · , xk ∈ EM(N) � x = x1 + x2 + · · · + xk}.

In [5] we have proved that a valuation domain of the Krull dimension k, s.t.s.r.f.
of degree k but not of k − 1 and also we have shown that if R s.t.s.r.f. of degree k, then
dim R ≤ k.

LEMMA 3.24.
(a) Let K ⊆ N be submodules of M. Then rad M

K

(N
K

) = kE M
K

(N
K

) + N
K if and only if

radM(N) = kEM(N) + N.
(b) Let k ∈ �*. If M = M′ ⊕ M′′, where M′ is semi-simple and M′′ s.t.s.r.f. (weakly

s.t.s.r.f.) of degree k, then M s.t.s.r.f. (weakly s.t.s.r.f.) of degree k.

Proof. (a) is easy and (b) can be proved similar to [15, Lemma 4.5], using (a) instead
of [15, lemma 4.1]. �

A ring R is called weakly Bezout when every finitely generated proper ideal of R is
contained in a proper principal ideal (see [6]).

THEOREM 3.25. Let (R,M) be a local weakly Bezout ring, k ∈ � ∪ {0} and M =
M′ ⊕ M′′, where M′ and M′′ are submodules of M. If M′ is a special module and M′′

s.t.s.r.f. (weakly s.t.s.r.f.) of degree k, then M s.t.s.r.f. (weakly s.t.s.r.f.) of degree k + 1.

Proof. First suppose that x ∈ MM′, say x = ∑t
i=1 rimi for some ris in M and some

mis in M′. Then I =< r1, r2, . . . , rn >⊆ M, and since R is weakly Bezout, I ⊆ Rr for
some r ∈ M, say ri = air for some ais in R. Then x = r

∑t
i=1 aimi and because M′ is

special and r ∈ M, there is a t′ ∈ � such that rt′ ∑t
i=1 aimi = 0. Therefore, MM′ ⊆

EM(0).
Since M = M′ ⊕ M′′, M

MM′ ∼= M′
MM′ ⊕ M′′. As M′

MM′ is semi-simple, by (3.24)(b)
M

MM′ s.t.s.r.f. of degree k. Consequently if N is a submodule of M, then rad(N) ⊆
rad(N + MM′) = kE(N + MM′) + N + MM′. We will prove that E(N + MM′) ⊆
E(N) + MM′. Then rad(N) ⊆ kE(N) + N + MM′ ⊆ (k + 1)E(N) + N and the result
follows.
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Let x ∈ E(N + MM′). Then x = rm and rtm = n + r′m′ for some r ∈ R, r′ ∈
M, n ∈ N, m ∈ M, m′ ∈ M′ and t ∈ �. If r is a unit, then x ∈ N + MM′ as required.
Suppose that r ∈ M. Note that M′ is a special module, then there exists t′ ∈ � with
rt′m′ = 0. Now rt+t′m = rt′n + r′rt′m′ ∈ N, whence x = rm ∈ E(N), which completes
the assertion. The case for weak radicals is quite similar. �
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