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ANNIHILATOR GRAPHS AND SEMIGROUPS OF MATRICES

S.J. QUINN

Matrices provide essential tools in many branches of mathematics and matrix semi-
groups have applications in various areas. In this paper we give a complete description
of all infinite matrix semigroups satisfying a certain combinatorial property defined
in terms of annihilator graphs.

1. INTRODUCTION

Research on combinatorial properties of words in groups originates from the following
well-known theorem due to Bernhard Neumann [11], which was obtained as an answer
to a question of Paul Erdos: a group is centre-by-finite if and only if every infinite
sequence contains a pair of elements that commute. Combinatorial properties of groups
and semigroups with all infinite subsets containing certain special properties have been
considered by many authors, including de Luca, Hall, Justin, Kelarev, Okniriski, Pirillo
and Varricchio (see [2, 3, 6, 7, 10]).

The following combinatorial property was introduced in [9] using annihilator graphs.
The annihilator graph Ann (5) of a semigroup S has all elements of 5 as vertices and it
has edges (u,v) for all u,v € S such that uv — 0 and u / » . Let D be a directed graph.
We say that an infinite semigroup S is annihilator D-saturated if and only if, for every
infinite subset T of S, the annihilator graph of S has a subgraph isomorphic to D with
all vertices in T. In [8] a complete description was given of all commutative semigroups
that were annihilator £>-saturated. A natural question that arises concerns the structure
of other classes of semigroups that satisfy this combinatorial property. In this paper we
describe all pairs {D, S), where D is a directed graph and S is a matrix semigroup, such
that S is annihilator .D-saturated.

2. PRELIMINARIES

The reader is referred to [1, 4] and [13] for standard graph, semigroup and group
theoretic terminology, respectively. By the word 'graph' we mean a directed graph with-
out loops or multiple edges. A complete symmetric graph Kx is a graph such that
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(u, v) € E(G) and (v, u) e E{G) for all distinct u,v E G. An infinite ascending (re-

specively descending) chain AQO (respectively £><») is the graph with the set of all positive
integers as vertices and with edges (i,j) such that i < j (respectively i > j).

We refer to [12, 14] for preliminaries on matrix semigroups and fields, respectively.
For a skew field K, the set of all n x n matrices with entries in K is denoted by Mn(K).

A linear semigroup is a subsemigroup of Mn(K), for some n, K. The semigroup structure
of Mn(K) is given in the next lemma, where GLj(K) is the maximal group of matrices
of rank j over K, and Mj — {a € Mn{K) | rank(a) < j} for 0 ^ j ^ n.

LEMMA 1 . ([12, Theorem 2.3].) T ie sets

{0} = Mo C Mx C ••• C Mn = Mn{K)

are the only ideals of the monoid Mn(K). Each Rees factor Mj/Mj-i is isomorphic to
the completely 0-simple semigroup M{GLj{K), Xj, Yj, Qj), where the matrix Qj = (qyx)
is defined for x € Xj,y €Yj, by qyx = yx ifyx is of rank j and 0 otherwise.

A matrix is said to be monomial if every row and column contains at most one
nonzero entry. If G is a group, then the set of all n x n monomial matrices over
G° = GU {0} forms an inverse semigroup denoted by Mn(G). The structure of monomial
matrix semigroups is well known. Put

Mj = {s G Mn(G) | s has at most j nonzero entries}.

LEMMA 2 . ([5].) Let G be a group. Then Mn(G) is an inverse semigroup with

the only ideals

{0} = Mo C Mi C • •• C Mn = Mn(G),

where Mj = {s | s has at most j nonzero entries } . Moreover,

where Gj is an extension ofGj = Gx-xGby the symmetric group Sj and A is the

identity matrix. All idempotents of Mn(G) are diagonal and a power of every element is

diagonal.

The next result is also needed in the proofs of the main theorems.

LEMMA 3 . ([8, Lemma 4.3].) Every infinite graph contains an inSnite set of ver-
tices which induces a null subgraph, an infinite ascending chain, an infinite descending
chain or an inGnite complete symmetric graph.

For a subset T of a semigroup 5, let

T* = {uv € 5 | u, v e T, u ^ v}.
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THEOREM 4 .

has ideal series

3. MAIN THEOREMS

Let S be an infinite matrix subsemigroup of Mn(G), where Mn(G)

and each factor

{0} = Mo C Mi C • • • C Mn = Mn(G)

j-i is isomorphic to the completely 0-simple semigroup
M°(Gj\ Ij, Aj] Pj), for all 1 ^ j ' ^ n. Let Gs be the set of all elements contained in
subgroups of S and let D be a finite graph with at least one edge. Then the following
statements are equivalent:

(i) S is annihilator D-saturated;

(ii) S is periodic, Gs is finite and s2 = 0, for all but a finite number of elements

ofS;

(iii) for every infinite subset T of S, 0 6 T*.

The following example shows that for a linear semigroup 5 the conditions in Theo-
rem 4(ii) are not sufficent to imply that 5 is annihilator D-saturated.

EXAMPLE 5. Let 5 = {ux \ x e R} U {vx \ x € R}, where

0 \
1

-xux =

( 0 x 1
0 0 0
0 0 0

V o o o o )
and vx =

( 0 0 0 x \

0 0 0 0
0 0 0 0

V 0 0 0 0 )

Since s2 = 0 for all s G S it is clear that 5 is periodic and that Gs = $• However, 5 is
not annihilator D-saturated since uxuy ^ 0 for x ^ y.

This leads to the following theorem.

THEOREM 6 . Let 5 be an infinite matrix subsemigroup ofMn(K), where Mn(K)

has ideal series

{0} = Mo C Mi C • • • C Mn = Mn(K).

Let Gs be the set of all elements contained in subgroups ofS and let D be a finite graph
with at 7east one edge. Then S is annihilator D-saturated if and only if the following
conditions hold:

(i) 5 is periodic;

(ii) s2 — 0, for all but a finite number of elements of S;

(iii) Gs is finite;

(iv) for every infinite subset TofS,0€T*.
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4. PROOFS

P R O O F OF T H E O R E M 4: (i) => (ii): If S contains an element s of infinite order,
then the vertices s, s2, s3,... are not adjacent in Ann(S). Since D has edges, we see that
the subgraph induced by the vertices s, s2, s3 , . . . does not contain a subgraph isomorphic
to D, a contradiction. Thus S is periodic.

Suppose to the contrary that Gs is infinite. Each Rees factor Mj/Mj-i contains a
finite number of ^-classes and hence a finite number of maximal subgroups. Therefore
Gs contains an infinite maximal subgroup. The subgraph induced by this subgroup is null
and so D does not embed in this subgraph. Therefore 5 is not annihilator £>-saturated,
contradicting (i). Thus Gs is finite.

Suppose that the set T = {s G 5 | s2 / 0} is infinite. Then T contains an infinite
subset U whose elements all belong to the same "H-class of Mn(G). Pick two elements
v,w G U. There exists t G Mn(G) such that v = wt. Therefore the element vwt = v2 / 0
and so vw ^ 0. Similarly, wv is nonzero and so the elements of U induce an infinite null
subgraph in Ann(S). This contradicts (i) again and so we conclude that T is finite.

(ii) => (iii): Take any infinite subset T of 5 . There exists an infinite subset U of T

whose elements all belong to the same W-class of Mn(G). Since the set {s G S | s2 ^ 0} is
finite, we can find two elements v,w €U such that v2 — w2 = 0. There exists t G Mn(G)

such that u = wt. Thus wv = w2a — 0 and so 0 € T*.

(iii) => (i): Take any infinite subset T of S and consider the infinite subset U of T in
(ii) as before. Since 0 G U*, there exist two distinct elements v,w G U such that vw — 0.
For any other pair of elements x, y 6 U, there exist t,s G Mn(G) such that x = tv and
y = ws. Therefore xy = tvws = 0. Similarly, yx = 0 and so the elements of U induce an
infinite complete symmetric subgraph in Ann(S). The graph D embeds in this subgraph
and hence 5 is annihilator Z)-saturated. D

P R O O F OF THEOREM 6: The 'only if part. Suppose that 5 is annihilator
/^-saturated.

The argument used in the proof of Theorem 4(i) demonstrates that S is periodic.
Thus (i) holds.

Suppose to the contrary that there exists an infinite subset T of 5 such that t2 ^ 0,

for all t G T. By Lemma 3, there exists a countably infinite subset U = Ui, u2,... of T

such that the subgraph H of Ann(S) with all vertices of U is null, or isomorphic to either

•^oo.-Doo or ^oo-

If H is null, then S is not annihilator D-saturated, a contradiction.

If H = AQO or H = /Too, then we may assume that

(1) muj = 0,

for all uitUj G U and 1 < i < j . The elements of U are contained in a vectorspacc

(see [14, Section 4.1]) of dimension n2. Therefore there exists a set uSl,uS2,.. .,us 2 tha t
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spans U, where Si < Sj for 1 ^ i < j ^ n2. Then

uSn2+i — aiusi -\ 1- an2U,n2,

where a* G A". Hence

(2) uln2+\ = (aiu»i + ' • • + aniuSn2)uSn2+l.

The left-hand side of (2) is nonzero, since u5 2 + i € T. The right-hand side of (2) is zero,

by (1). This contradiction shows that H ^ A^ and H ^ K^.

If H = Doa, then we may assume that muj = 0, for all 1 ^ j < i and that

uSl,u3j,...,u5n2 spans U as before. Therefore

for some a>i S K. Hence

which yields the same contradiction.

This contradicts Lemma 3 and so we conclude that T is finite. Therefore (ii) holds.

It follows immediately that Gs is finite, since s2 ^ 0, for all s € Gs- Thus (iii) holds.

Take any infinite subset T of 5 . Again, Lemma 3 implies that T contains an infinite

subset W such that the subgraph H of Ann(S) induced by the vertices of W is null, or

isomorphic to A^, D^ or K^. The first possibility is impossible by our hypothesis. In

the remainining cases H contains edges. If (a, b) is an edge in H, then ab = 0 and so

0 € T*. Hence (iv) holds.
The 'if part. Take any infinite subset T of 5 . Applying Lemma 3, T contains a

countably infinite subset U — U\, u2,... such that the subgraph H of Ann(S) induced by
the elements of U is null, or isomorphic to A^, DQQ or K^.

The first case implies that 5 is not annihilator D-saturated and so is impossible.

If H = Aoo, then we may assume that the elements of U have been indexed such that
U{Uj = 0 (and UjUi ̂  0), for all 1 ^ i < j . Choose a spanning subset uSl,uS2,...,us 2 of
U, where S{ < Sj for 1 ^ i < j ^ n2. We get

for some at € K. Hence

( 3 ) uSn2+2uSn7+i = (aiU,! +••• + an2USn2)uSn7+1.

The left-hand side of (3) is nonzero. The right-hand side of (3) is zero. Therefore

H?Aoo.
If H = Doo, then a similar argument yields the same contradiction and shows that

We deduce from Lemma 3 that H = K^. The graph D embeds in this subgraph.
Hence D embeds in Ann(S) and 5 is annihilator D-saturated in this case, too. D
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