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INTRODUCTION OF A BASIC THEORY OF OBJECTS

KATUZI ONO

Introduction
In constructing various kind of mathematical theories on the basis of

a common basic theory, it has been very usual to take up the set theory as
the common basic theory. This approach has been already successful to a
certain extent and looks like successfully developable in the future not only
in constructing mathematical theories standing on the classical logic but also
in constructing formal theories standing on weaker logics. In constructing
mathematical theories standing on the classical logic, it has been successful in
most cases only by interpreting mathematical notions in the set theory without
defining any special interpretation of logical notions. In constructing any
mathematical theory standing on weaker logics such as the intuitionistic logic,
however, we have to give a special interpretation for logical notions, too.

As it has been my opinion that the basic theory should be as simple and
natural as possible, I have tried another approach. I have taken up an ex-
tremely simple logic called the primitive logic as our basic theory. It was
amazing for me to know that any finitely axiomatizable formal theory standing
on either the classical logic or the intuitionistic logic can be constructed on the
primitive logic without presupposing any assumption such as axioms. (See
my paper [1].) We can establish even intermediate logics in the same way
if we restrict ourselves to the proposition logics. (See my paper [2].) This
looks like to suggest that more vast class of formal theories including almost
all the important mathematical theories are reducible to the primitive
logic. Simply speaking, our only problem is how to axiomatize each formal
theory in a finite number of axioms.

According to my opinion, however, we are trying to construct formal
theories in some basic theory because we are seeking after something universal
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186 KATUZI ONO

behind various kind of formal theories. It is true that the primitive logic

can be regarded as a universal basis of all the really important formal theories,

but it looks like undesirable to try to axiomatize finitely each formal theories

case by case. We should rather proceed as far as possible following a common

high-way in axiomatizing them finitely. Can we not proceed a common high-

way a little further than the primitive logic before branching into special

formal theories ? Is not there a big mile-stone theory at the end of this common

high-way? I believe, I have found out one, which is a basic theory of objects

standing on the minimal logic.

This theory resembles formal set theories, but much weaker than the

usual set-theory. The new theory of objects can be regarded as an improve-

ment of the theory which I have developed in my very old paper [3].

The new theory is so formulated that it can give a common basis for finite

axiomatizations of so-called axiom-schematic formal theories. As we usually

develop formal theories by making use of logical notions "implication",

"universal quantification", "conjunction", "disjunction", "negation", and

"existential quantification", I have adopted the minimal logic as the

weakest logic among logics having all these logical notions.

A typical example of an axiom-schema would be the defining axiom of

functions in any theory Φ having equality notion. Namely, if equality is

assumed or defined in Φ, we can define function f(x, , z) by any

proposition A{w, x, , z) satisfying the conditions

(α?) -(z)(lw)A(w,x, •••,«),

(x) (z){u)(v){A(u, x, , z) A A(v, x, , z). — > u = υ).

For any proposition of this kind, we assert

(3/X&) (z)(w)(w = f{x, , z). Ξ= A{w, x9 , z)).

What kind of propositions are admissible in place of A(w, x, , z) becomes

clear only after we know what kind of notions can be used in Φ. I will

call the whole class of primitive notions of a theory the primitive vocabulary

of the theory. To axiomatize any axiom-schematic theory, it is desirable

to introduce such kind of formula p(x, •••,«) that satisfies

(A) (ap)(s) (z)(p(x, , z) ΞΞ A(x, , z))

for any proposition A(x, •••,&) expressible in terms of the primitive voca-
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A BASIC THEORY OF OBJECTS 187

bulary of the theory. Naturally, p{x, ,z) would not be expressible in

terms of the primitive vocabulary.

Taking up this situation into our consideration, I will introduce our

object theory depending on a certain primitive vocabulary. Namely, I will

call here any finite set of relations R19 , Rs primitive vocabulary only

when the number of places, say n^i = 1, , 5), of each relation Ri is fixed.

The relations Rt are called primitive notions of the primitive vocabulary

[R19 9Rg}. Now, let V be any primitive vocabulary. Then, any

proposition expressible exclusively in terms of the primitive vocabulary V

is called a V-proposition, and any theory dealing with exclusively F-proposi-

tions is called a V-theory.

Now, let W be a richer primitive vocabulary than F, i.e. W 2 F.

Then, any IF-theory Φ is called a literal extension of a F-theory 2 if and

only if the following condition holds : "Any F-proposition is provable in 2

if and only if it is provable in Φ".

Any F-theory Φ is called axiomatically stronger than another F-theory

2 if and only if Φ is stronger than 2 by a finite number of axioms. Any

F-theory Φ is called axiom-schematically stronger than another F-theory 2 if

and only if Φ is stronger than 2 by a finite number of axiom-schemata

which are expressible in terms of the metanotations of the form A{x, , z)

for F-propositions together with the usual notations. For expressions of this

kind, we assume here that A{x9 « ,z) is defined by a F-proposition

Λ{u, •••,«;) for a suitable sequence of mutually distinct variables u, ,w

which do not occur in A(x9 •••,«). (See Remarks 2.9 and 2.13.) Any

F-theory is called purely logical if and only if it has no axiom. Any V-

theory which is axiomatically (or axiom-schematically) stronger than the purely

logical F-theory is called axiomatic (or axiom-schematic.)

Naturally, the notion "purely logical" depends on what kind of logic we

are adopting. In this paper, I adopt the minimal predicate logic LM.

The logic LM is nicely interpreted by taking up a proposition constant λ

and by regarding ~A as A—>λ. According to this interpretation, any

F-theory standing on the intuitionistic predicate logic LJ without having

further axioms is stronger than the purely logical F-theory by the axiom-

schema

U) λ—*A,
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188 KATUZI ONO

and any F-theory standing on the classical predicate logic is stronger than

the purely logical F-theory by the axiom-schemata U) and

(P) ((A—>B)—>4)—>Λ.

The basic theory of objects for any primitive vocabulary V to be

introduced in this paper is an axiomatic theory for which the followings

are expected:

(El) This basic object theory is an extension of the purely logical

F-theory,

(E2) Any axiom-schematic F-theory has a literal exterdion which is

axiomatically stronger than this basic object theory.

According to the terminology introduced here, my former result (cf.

[1]) can be stated as follows:

Any axiomatic F-theory can be purely logically constructed on the

primitive logic.

If the basic object theory can be introduced just as we have expected, it

would be a remarkable milestone on the common high-way at the branching

point for various places constructing axiom-schematic theories on the minimal

logic LM. We can introduce any axiom-schematic theory standing on the

classical logic or the intuitionistic logic by taking up the axiom-schema (X)

or, by taking up simultaneously the axiom-schemata (λ) and (P), respectively.

In (1), the basic theory of objects depending on a certain vocabulary

V is introduced. The object theory is denoted by B(V). To introduce

the basic theory B(V)9 we take up two more primitive notions S and T

from outside of the vocabulary F, where S represents a binary relation of

the form φ{x) (read: "x is p") and T represents a three-placed relation of

the form x<y,z> (read: "x is the ordered pair of y and z"). Now, let

us denote by F + the union set of V and {S, T}. The basic object theory

B{V) is a F+-theory, which is expected to be a literal extension of the

purely logical F-theory. B{V) is also expected to have an axiomatically

stronger F+-theory for any axiom-schematic F-theory, the former being

a literal extension of the latter.

The relations p{x) and x(y, z> are introduced for the purpose of expres-

sing any F-proposition of the form A{u, , w) by a proposition of the

form p(u, 9w), which stands for p{<u, 9w>) as usual. However,

we have to interpret further what <u9 , w> means here. Surely, it
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can be interpreted as <u9 <• 9w», but we have to introduce a usage

of terms of the form <u,w>, where u and v stand for some other terms. I

use this kind of symbols, for example, p{u, w) as standing for (az)(p(z) Λ

z<u,w>). We need only ordered pairs of the form <u9v> as our terms,

but, to develop the basic object theory B{V) nicely, it is far more convenient

to use term symbols. In (2), I describe the same basic object theory by

making use of terms in introducing even some suitable inference rules for

proposition containing terms. I will denote this basic theory by B[V].

The object theory B[V~\ deals with generalized ^-propositions contain-

ing terms. Any generalized F+-proposition can be interpreted by a V+-

proposition in such way that any generalized F+-proposition is provable in

BtV] if and only if its interpretation is provable in B(V). This theorem

is proved also in (2). According to this result, we have no need to deal

with these theories separatedly. We denote them by the same notation B{V)

thereafter.

In (3), we describe a theory which makes it clear in B{V) that there

exists such p that

(u) (w)(p{u, , w) Ξ= A(u, , w))

for any F-proposition A{u, 9w).

According to this result, we can embed any axiom-schematic F-theory

in a theory which is axiomatically stronger than B{V). This is explained

in (4) by some examples. However, our description of (4) and (5) of this

paper is merely suggestive. Indeed, we have introduced B{V) expecting the

followings:

(A) B(V) is an extension of the purely logical F+-theory,

(B) Any axiom-schematic F-theory has a literal extension which is

axiomatically stronger than B(V).

We do not prove these completely in this paper. In fact, in F-theories,

we might have the equality notion and the notion of ordered pairs already*

In such cases, it is desirable that the newly defined equality notion and

the newly introduced ordered pair notion would match very well with the

original ones. These are problems to be discussed later.

In (5), I will give some concluding remarks, especially in connection

with tabooistic construction of mathematical theories. According to the

conclusion of my paper [1], any theory can be constructed on the primitive

https://doi.org/10.1017/S0027763000013623 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013623


190 KATUZI ONO

logic tabooistically if the theory can be introduced by a finite number of

axioms standing on the intuitionistic logic, the classical logic, or the minimal

logic. However, I believe that there is a good reason to proceed axioma-

tically in a unified way as far as possible in constructing mathematical

theories. I will discuss these matters in the concluding remarks.

(1) The theory B(V)

Let V be any finite set of predicates which is regarded as a primitive

vocabulary. I will denote it by

V={R19 . . . , * . } ,

where Rt is an ^-place predicate for each i (^>:0), and a 0-ary predicate

λ is assumed to belong to V. Let us further assume that a binary predicate

5 and a three-place predicate T are taken from outside of the vocabulary

V. The notation p(x) is used mostly in place of S(p9 x) and the notation

x<y,z> in place of T(x9 y, z). I will define the vocabulary by

¥+ = {R19 . - . 9 R n 9 S 9 T } .

Any proposition expressible in terms of the primitive notions of a vocabu-

lary W is called a W-proposition.

The theory we are going to introduce here is an axiomatic F+-theory

standing on the intuitionistic predicate logic of the first order without

assuming the negation notion. I will denote this logic hereafter by LP

(positive logic). Before introducing the axioms of the theory B{V), however,

I will define the term and term expression notions (terms and term expressions

are denoted by lower case underlined letters) and the equality notion (nota-

tion: =) used in this theory to make the description simpler.

DEFINITION 1.1. Any finite sequence of symbols is called a term if

and only if it can be confirmed to be a term by the following two rules:

Tl. Any variable is a term.

T2. For any pair of terms x and y9 <x, y> is also a term.

DEFINITION 1.2. Any sequence of symbols is called a term expression

if and only if it can be confirmed to be a term expression by the following

rules:

TEl. Any term is a term expression.
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TE2. For any sequence of term expressions t19 , tn{n>l)9

<t19 9tn> is a term expression.

DEFINITION 1.3. Any term expression t is called reducible to a
sequence s of symbols if and only if either of the following conditions holds
for s and t:

RTEl. The sequence 5 of symbols is obtained from the term
expression t on replacing its term expression part of the form <u> for
any term expression u by the term expression u itself.

RTE2. The sequence of symbols is obtained from the term expres-
sion t on replacing its term expression <u19 u29 , un> for any sequence
U19 'tUn of term expressions by the term expression <ui9 <u29 ••• '9un»

THEOREM 1.4. If any term expression t is reducible to a sequence s of

symbols, s is also a term expression.

DEFINITION 1.5. Any (finite or infinite) sequence tl9129 of term
expressions is called a reduction sequence if and only if ti+1 is a reduced term
expression of the term expression tt for every /.

THEOREM 1.6. The chain condition holds for reduction sequences of term

expressions. In other words, every reduction sequence of term expressions is finite.

DEFINITION 1.7. Any reduction sequence is called complete if and only
if it ends with a term.

THEOREM 1.8. For any term expression t9 there is a complete reduction

sequence beginning with t.

DEFINITION 1.9. Any pair of term expressions s and t are called
cofinal if and only if there is a pair of complete reduction sequences
beginning with 5 and t9 respectively, and ending with a common term.

THEOREM 1.10. Any term expression is confinal with one and only one term.

DEFINITION 1.11. The number of pairs of the brackets "< >"
occurring in a term is called the rank of the term. By the rank of a term
expression, we understand the rank of the term which is cofinal with the
term expression.

It is convenient to use terms as well as term expressions in describing

https://doi.org/10.1017/S0027763000013623 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013623


192 KATUZl ONO

the basic object theory B{V). Accordingly, I will define here the notion

[F+]-propositions containing term expressions.

DEFINITION 1.12. Any finite sequence of symbols is called a [F+]-

proposition if and only if it can be confirmed to be a [F+]-proposition by

the following two rules:

[Y+]l. For any sequence of term expressions t19 , tni, the expression

RiiL, J tn.) is a [V^-proposition. For any variable φ and a term

expression p(t) is a [F+]-proposition. For any variable x and a pair of

term expressions y and z, the expression x<y, z> is a [F+]-proposition.

[7+]2. For any [F+]-proposition F, any expression of the forms (x)(F)

and (lx)(F) is a [F+]-proposition, x being any variable. For any pair of

[Tf+l-propositions F and G, any expression of the forms {F)—KG), (F) Λ (G),

{F) V (G), and (F) Ξ= (G) is a [F+]-proposition. Parentheses can be spared

if there is no fear of ambiguity.

DEFINITION 1.13. For any pair of term expressions x and y, x = y

is defined by

% = y ^

DEFINITION 1.14. Any formula of the form p(^, •••,£) for any variable

3? and any sequence of term expressions x, ,g stands for p(<«, •,£>).

As we deal with [F+]-propositions having term expressions in the theory

B[V], we can not say that we deal with exclusively V+ -propositions in

B[V], To every [F+]-proposition F in B[V], however, we can associate a

F+-proposition F'. Accordingly, we can regard F as standing for Ff, and

we can regard B[V~\ as a F+-theory by this interpretation. To introduce

the association of [F+]-propositions to ^-propositions, we introduce here

the notation of the form (u,t) for any variable u and any term U

DEFINITION 1.15. For any variable u and any term w9 the notation

{u,w) is defined recursively by

{u, v) ^ . u = v for any variable v9

and {u, <s, t>) Ξ=.. {3s)(zt){u<s, t> Λ {s, s) Λ (t, t))

for any pair of terms 5 and t, assuming that 5 and t do not occur free

in the term 5 nor in the term t.

Now, we define our association of [F+]-propositions F having term
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expressions to V+ -propositions. At first, we replace each term expression of

F by a term which is cofinal with the term expression, so we can assume

without loss of generality that F does not contain any term expression other

than terms.

DEFINITION 1. 16. The interpretation of [F+]-propositions by ^-propo-

sitions is word-for-word. Namely,

II. Any proposition of the form Ri{xί9 >#Λί) for any sequence

of terms x19 , xni is interpreted by

(3a?!) (lxni){Ri{xί9 , xnι) Λ (a?!, xj Λ Λ (α?Λί, xnt)),

where the variables xί9 , xnt are assumed to have no occurrence in

12. Any proposition of the form p(x) for any variable p and any

term x is interpreted by

where the variable x is assumed to have no occurence in p(x).

13. Any proposition of the form x<y,z> for any variable x and

any pair of terms y and z is interpreted by

(*y)(*z){x<y, z> Λ {y, y) Λ {z, *)),

where the variables y and z are assumed to have no occurrence in

x<y9 z>.

14. Let us denote our interpretation by supplying a prime. Then,

(4—>BY is A'—>Br

9 (A Λ By is 4 ' Λ B',

{A V £) ' is A1 V 57, (4 = BY is 4 r = J5',

((x)AY is (α XAO, and ((3^)4)' is (aαθ(4').

Now, we state the axiom system of B{V).

AXIOM SYSTEM 1. 17. The axioms of the theory B[V) are the following

15 + 5 propositions.

OPl. (x)(y)(*z)z<x,y>.

OP2. {x){y)(z){u){v){w){z<x, y> A w<u9 v>.

— > (z = w. = . x = u Λ y = v)).
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"P"^Jlx (Ώ/n\(Ύ \ (Ύ \(Tif sp * . Ύ \ — /? (Λ Λ ^
.li>XV,£. \^P)\^\) K ̂ ni)\lr \ 1̂> > * '̂»(/ — -*»-i\**/l> > ^ihil)

Γ ) P T? / T /v) W /y» V ΛI\( /y\( n\ ( Λ* /}/ "̂̂  0* <Γ''ί/ ^'^~>N|
v^/x i v , \3pj\*bj\y)\6)\]Jv *'? ί/> ^y — Λ ' ^ ί / j Λ ̂ -^/

ER. (3p)(ίB)(3/Xp(a5.2/) =• * = 2/)

G P i .

GP2.

GP3. (p)ί3q)(χ)(y)(q(χ, y) = p(y, x)).

GP4. (p)(3«Xa!)(»Xήr(as, 2/) = p(as, a;, 2/)).

GP5. (ί))(39)(a;)(2/)(2)(?(<a;> 2/>»«) = P(*» 2/»«)).

GP6. (p)(3ς-){ίB)(ίf)(β)(gr(as, y, z) = 3>(<aj, 2/>, 2)).

G P 7 . (P)(iq)(x)(s)(t)(y)(q(x, s, t, y) = p(x, t, s, y)).

GPI. (p)(q)(3r)(x)(r(x) =. p(x) -»• q(x)).

VJI v, \jfJ)\(J)\df A /̂V' \*^/ JrK"') ι\ H\"/))

GPD. (p)(ί)(3r)(ίc)(r(ίί) = . p(x) V «(»)),

G P U . (p)(3^)(ίc)(^(α;) = (y)v(y9 a?)).

GPE. (p)(ag)(iB)(g(a5) = (iy)p{y, x)).

Hereafter, I will refer to this axiom system simply by

(2) On the theories B{V) and B[V].

Every axiom of B{V) can be interpreted as a ^-proposition, so we

can develop a Tf+-theory starting from the axiom system Σ(F) and standing

on the usual positive logic LP, or on the minimal logic LM regarding

A —> λ as ~A. However, we can also choose another way in developing

a theory starting from the same axiom system Σ(F) but standing on a

modified logic so as to match with our system which has adopted term

expressions. Namely, we adopt in the modified logic the following two

inference rules together with the usual inference rules of LP or LM.

(UT) Any Tf+-proposition of the form A(t) for any term expression t

can be deduced from (x)A(x).

(E*T) (ix)A(x) is deducible from any V+ -proposition of the form A(t)

for any t rm expression t.

I will refe: to this logic hereafter by LPT (intuitionistic positive logic
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admitting term expressions) or LMT, and I will refer to the theory

starting from the same axiom system Σ(Y) but developed' in the logic LPT

or LMT by B[Vl

I will show in the following that the theories B(V) and B[V] are

essentially the same theory.

THEOREM 2.1. ilt){t,t) for any term expression t is deducible in B(V),

assuming that the variable t does not occur in the term expression t.

Proof. According to Definitions 1.13 and 1.15, {lt){t,s) is provable in

L P (or LM) for any variable s. Next, let us assume (as)(s,s) and (af)(*»ί)

So, let s and t satisfy {s,s) and (t9t)9 respectively. Then, we can find

out such u satisfying u<s,t> according to O P l . Consequently, we have

(iu){is){it)(u<s, t> Λ (s, s) Λ U, t)),

which is nothing but (lu){u9<s,t>) by Definition 1.15. According to the

recursive Definition 1.1 of terms, we have thus proved that (lt)(t,t) holds

for every term t.

THEOREM 2.2. Reflexivity, symmetricity, and transitivity of equality among

term expressions are deducible in B(V).

THEOREM 2.3. (u){v){{u9 w) Λ {v9 w). — > u = v) is deducible in B{V) for

any term expression w.

Proof Without loss of generality, we can assume that w is a term.

I will prove this theorem by complete induction with respect to the rank

P of the term w. In the case p = 0, we can prove this theorem by

Theorem 2.2.

In the case 0 < p = r, the term w must be of the form <s, t>9 and

we have to prove

{u)(v)((is)(it)(u<s, t> Λ (s, s) Λ (f, ί» Λ

(3s')(an(</<s', t'> Λ (s', s) Λ (f,ί)). —>u = v).

For any s,s',t,tr satisfying (s,s),(s',s), (£,*), and U',ί), we have s = s' and

t = V by our induction assumption. Hence, we have u = υ from u<s91>

and v<s, t> according to Axiom OP2.
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THEOREM 2.4. u<s9t> is identically equivalent to {u,<s9t>) for any

variable u and any pair of term expressions s and t9 in B{V).

Proof By Definitions 1.15 and 1.16.

THEOREM 2.5. {u, w) is equivalent to u = w for any variable u and any

term expression w9 in B{V).

Proof Without loss of generality, we can assume that w is a term.

We will prove this theorem by complete induction with respect to the rank

p of the term w.

In the case p = 0, the term w is a variable, say w. {u9w) is surely

equivalent to u — w by Definition 1.15.

Now I will prove the equivalence of {u, w) and u = w for the case

0 < p = r. Then, w is a term of the form <s, t> for two terms 5 and t,

whose ranks are both less than r.

At first, let us assume (u9 w) for the case 0 < p = r. Then, u — w9

i.e. {p)(p{u) ΞΞ p(w)) by Definition 1.13, holds. For: At first, take any p

satisfying p{u), then, p{u) Λ (u, w) holds. Hence,

(3w)(p{w) A (w, w)), i.e. p{w)

holds by Definition 1.16. Next, take any p satisfying p(w). Then, by

Definition 1.16, we can find out such w that satisfies p{w) and {w9 w).

Because we have assumed {u9 w)9 so u = w holds, according to Theorem

2.3. Because p{w) holds, so p{u) holds too according to Definition 1.12.

Next, let us assume u = w. Then,

(p)(p(u) ΞΞΞ p(w))9 i.e. {p)(p(u) = (*w)(p(w) Λ (w, w))

holds by Definitions 1.12 and 1.15. According to Theorem 2.1, there is

such s and t that satisfy (5,5) and {t,t). On the other hand, according

to OPR, there is such h that satisfies

(x)(y)(z)(h(x9 y9 z) = x<y9 z>).

By successive applications of the axiom group GPl—GP7, we can jsee that

there is such p that satisfies
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According to OPl, the e is such w that satisfies w<s, t>. Accordingly,

we have

{ls){it){w<s, t> Λ (5, s) Λ (t, ί)), i.e. {w, w).

Also, p(w) holds by definition of p. Hence, (lw){p{w) Λ (w9 w)) holds.

Accordingly, by our assumption. p{u) holds too, which means that u<s, t>

holds by definition of p. Therefore, we have

(is){it)(u<s, t> Λ (s, 5) Λ (t, t)\ i.e. («, w).

THEOREM 2.6. .For #?y/ term expressions s,t,u, and y, the equality <s,t>

= <u, υ> is equivalent to the pair of equalities s = u and t = v, in B(V).

Proof. Assume at first <s,t> = <u,v>. This means

i.e. {p){(iz)(p{z) Λ {z9 <s, t>)) Ξ (*w){p{w) Λ (w, <u, υ >)),

i.e. (p)((a«)(3i(«) Λ (ss)(3f)(*<* ί > Λ (5, s) Λ (ί f ί)))

, υ> Λ (M, ff} Λ (v,«)

by Definition 1.15 and Definition 1.16. Now, by Theorem 2.1 and Axiom

OPl, we can take su h s9t,z,u,v, and w that satisfy {s, s), {t,t), z<s,t>,

{u,u)9 {v,v), and w<u,v>. According to Theorem 2.5, s = 5, t = t, u = v,

and v = v hold.

We assert now z = w. Namely, for any variable p, we assert p{z) — >

p{w). To prove this, let us assume p{z). Then

(3z)(p(z) Λ (*s)(it)(z<s, t> Λ (s, 5) Λ (ί, ί)))

holds. Hence, according to our assumption, there are such u', vf, and wf

that satisfy p(w')9 (u',u), and (t;7, z;). According to Theorem 2.3, u'= u

and t;' = v. Therefore w' = w holds according to Axiom OP2. Because

p(w') holds, p{w) holds too. Similarly, we can prove p{w) >p{z). So,

p(z) Ξ p(w) for any p. This means that 2 = w holds.

Now, according to Axiom OP2, the equalities s = u and t = v holds.

Consequently, we have s = u and t = υ according to Theorem 2.2.

Next, conversely, let us assume 5 = u and t = υ, and we prove <s,t>

= <u9v>9 which can be expressed by the formula
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Λ (as)(af ).(«<* t> Λ s = s Λ t = t))

) Λ ( a « ) ( a v ) ( w < « , v>/\u = u/\v = y)))

by Definition 1.14, Definition 1.15, and Theorem 2.5.

To show for any variable φ that

(A) (az)(p(z) Λ

implies

(B) (iw){p{w) Λ ( 3 M ) ( 3 V ) ( « ; < M , V > A U = U A V = V)),

let us assume the proposition (A). Then, we can take such 5, t, and z

that satisfy p(z), z<s,t>, (s,s)9 and (t,t). According to Theorem 2.5,

s = u and t = y. Therefore, (A) implies (B). Similarly, (B) implies (A).

THEOREM 2.7. In B{V), for any pair of term expression sequences xί9 , xn

and y19 , yn, the equality

is equivalent to the sequence of equalities

$1 = yi9 , Xn = Vn

THEOREM 2.8. Let t(w) be a term expression, possibly containing free

variable w9 and t{u) be the expression obtained by substituting the term expression

u in place of w in t{w). Then, t{u) is also a term expression.

Proof I t is enough to prove this theorem for any pair of terms t{w)

and u. We prove this theorem by complete induction with respect to the

rank p of the term t(w).

I n the case p — 0, t(w) is a variable v which may coincide with w.

If t(w) is w9 t(u) turns out to be the term u. If t(w) is the variable υ

distinct from w9 t{u) is the term v.

Next, let us assume our theorem for the case 0 -<, p < r for every natural

number p9 and we will prove our theorem for the case p = r. Namely, let

us take any term t(w) of the rank r. Then, t(w) is a term of the form

<£(w)> y(w)>9 and the term x(w) as well as the term y(w) is a term of

a rank lower than r. Hence, the expression x{u) as well as the expres-

sion y{u) is a term expression according to our induction assumption. O n
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the other hand, t{u) is an expression of the form <x{u), y{u)>. Hence,

the expression t{u) is a term according to Definition 1.1.

Remark 2.9. Let t{w) be a term expression, and u be another term

expression. Then the variable w does not occur in t{u) unless w occurs in

u. However, in the case where u is a variable u which occurs already in

t{w), we might express t(u) by t(u), which would cause confusion. Con-

sequently, we will call any term expression of the form t(w) a term expres-

sion having its proper variable w (or, w is proper in t{w)) if and only if

w does not occur in t{u) for a variable u.

We can generalize the notion easily for the many variable cases.

Namely, for any sequence of mutually distinct variables x, , z, we call

any term expression t(x9 , z) a term expression having x, , z as its

proper variables (or; x, ,z are proper in t(x, ,z)) if and only if the

variables x, ,z do not occur in t{xf, ,zr) for some suitable xf, ,z\

T H E O R E M 2.10. For any term expression t{x, , z) having the variables

x, , z as its proper variables and for any pair of term expression sequences

x, , z and x', , z', the set of equalities

x = χ'9 . . . 9 and z = zr

implies the equality t{x, •••,£) = t{x'9 ,zf) in B{V).

Proof For simplicity's sake, I will prove this theorem in the single

variable case for any term t(x) by complete induction with respect to the

rank p of the term t{x).

Let us assume x = x', and we shall prove t(x) = t{x').

In the case p = 0, the term t{x) is a variable u. If x and u coincide,

t{x) = t(x') holds because the equality is nothing but the assumption x = x'.

If x and u do not coincide, the equality t(x) = t(x') turns out to be the

equality u = u, which surely holds according to Theorem 2.2.

Let us assume now that our theorem holds for the case 0 ̂  p < r for

every natural number p, and we will prove our theorem for the case

P = r. Namely, let us take any term t{x) of the rank r. Then, t{x)

is a term of the form <u{x),y{x)>9 and u{x) as well as v{x) is a term of

a rank lower than r and having x as its proper variable. Hence,

u{x) = u(xr) and y{x) = υ(x')
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hold according to our induction assumption. Therefore,

<u(x),v(x)> = <U(X')9Ό(X')>

holds according to Theorem 2.6.

On the other hand, t(x) is nothing but <u(x),υ{x)> and t(xr) is

nothing but <u(x'),y(x')>. Hence, we have

t(χ) = t(χf).

Remark 2.11. Mostly, we need not prove theorems generally in many

variable cases, because we can prove easily the following:

Let t(x9y) be any term expression having x and y as its proper

variables, and let x and y be any term expressions which do not contain

the variables x and y. Then, t(x,y) and t(x,y) are term expressions

having y and x as their proper variables, respectively. Let us further

denote t{x,y) and t{x,y) by u(y) and y{x). Then, u[y)9 υ{x)9 and t[x,y)

are the same term expression.

THEOREM 2.12. Let t(x) be any term expression having x as its proper

variable, and let x be any term expression having no occurrence of x. Then, the

propositions

(x)((x,x)—*(t,t(x)))

are equivalent to each other, in B(V).

Proof. Without loss of generality, we can assume that t(x) is a term,

so I will prove this theorem by complete induction with respect to the

rank p of the term t(x)9 in B(V).

In the case p = 0, t(x) is either x itself or any other variable u.

In the first sub-case, where t(x) is x itself, (t,t{x)) and (t9t(x)) are

{tfx) and (t,x)f respectively. If we assume {t9x)9 then {t9 x) Λ (t, t) holds

because {t91) is t = t according to Definition 1.15 and t = t holds accord-

ing to Theorem 2.2. Hence, (zx)((x9 x) A (t9x)) holds. This is nothing

but (3a?)((α, x) Λ {t9t(x))) If we assume (ix){(x9 x) Λ (t9t(x)))9 i.e., (ix){{x9 x)

A(t9x))9 conversely, we can take such x that satisfies (x9x) and (t9x).

According to Theorem 2.5, we have x = x and t = x in this case. Hence,
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we have t = x by Theorem 2.2. t = x is equivalent to (/, x) again by

Theorem 2.5. Hence, (f,ί(a?)) and (3#)((#, x) Λ (ί, ί(a))) are mutually

equivaleat in this case.

To show the equivalence of{t,x) and (x){{x,x)—>{t,t{x))), let us assume

again (t,x), i.e. t = x according to Theorem 2.5, at first. To prove

{x)((x9x)'—>{t,t(x))), take any x satisfying {x,x), i.e. x = x according to

Theorem 2.5. Then, by Theorem 2.2, t = x, i.e. (t9t(x))9 holds. Next,

c o n v e r s e l y , l e t u s a s s u m e ( x ) { { x 9 x ) — > { t 9 t ( x ) ) ) 9 i . e . ( x ) { ( x 9 x ) — > ( t , x ) ) .

According to Theorem 2.1, we can take such u that satisfies (u9 x). Hence,

by our assumption, (t9x) holds, according to Theorems 2.2 and 2.5.

In the second sub-case, where t(x) is u which is distinct from χm

Then, (t,t(x)) and {t,t{x)) are both t = u according to Definition 1.15.

If we assume {t9t{x))9 i.e. t = u. According to Theorem 2.1, we can

take such x that satisfies (x9 x\ Hence, we have

(aαθ((a, 9?) Λ t = u), i.e. (ix){{x9 x) A {t, t(x))).

Conversely, if we assume

(aaθ((«, a?) Λ (t, t{x)))9 i.e. (aαθ((α, x) Λ / = w),

we have surely t = u, i.e. (

Next, to prove equivalence of (f, £(ac)) and (ί»)((α;, a?) >{t9t(x)))9 l e t u s

assume (t,t(x))9 i.e. t — u. Then, we surely have

{x){(x9 x) > t = u)9 i.e. {x){{x9 x) >{t, t{x))).

Next, let us assume conversely

(x)((x, x) >(t, t{x))), i.e. (x)((x, x) > t = u).

By virtue of Theorem 2.1, we have (ix){x, x). Hence, we have t = u9

i.e. (/,/(»)).

Next, I will prove our theorem in the case 0 < p — r by assuming our

theorem in all cases 0 ^ p <r. In the case p = r, /(&) is a term of the

form <u{x),v{x)> for a pair of terms u(x) and ϋ(α ), whose rank are both

lower than r, so our theorem holds for these terms.

To prove that (t9t{x)) implies (lx)((x9 x) Λ (t9 t(x))) as well as (x)((x9x)

—>(t9t{x)))9 let us assume (t9t(x))9 i.e. {t9<u(x)9y(x)>). According to

Definition 1.15, we have
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Λ (u, u(x)) Λ (v, y(x)).

Namely, we can take such u and v that satisfies (t,<u,v>), (u,u(x)) and

{v,y{x)). Because (u,u[x)) is equivalent to (ix){(x, x) A (u9u{x))) by our

induction assumption, we can take such x that satisfies (x, x) and {u, u(x))

Because (v,v[x)) is equivalent to {x)({x9x)—>{vfυ(x))) by our induction

assumption, we have (v,υ{x)). Hence, we have

(ix){(x9x) A {lu)(iv)({t9<u,v>) Λ (u9u(x)) Λ (v,υ{x)))9

i.e. (3a?)((a?, x) A(t9 <u{x), v{x)>)),

i.e. (*x)({x,x)A(t,t(x))),

according to Definition 1.15.

To prove next (x)({x9 x) >{t9t{x)))9 let us take any x satisfying (as, x).

Because {u,u(x)) and (v9v{x)) are equivalent to

{x){{x, x) — > {u, u{x))) and (x){{x, x) — > {v, y{x))),

respectively, by our induction assumption, we have (u,u(x)) and (v9υ(x)).

Hence, we have

(iu)(lv){(t9 <u, υ>) A (u, u{x)) A (v, y(x))),

which is equivalent to

i.e. (t,t(x))9

a c c o r d i n g to Definit ion 1.15. T h u s , we h a v e p r o v e d {x){(x9x)—>{t,t(x))).

Next , conversely, let us assume {ix)((x9x) A(t9t{x))). T h e n , we c a n

take such x t h a t satisfies {x9x) a n d (t9t{x)). (t9t{x)) is

i.e. (iu)(iυ)((t,<u,v>) Λ(u,u{x)) Λ{υ,v(x))).

Hence, we can take such u and v that satisfy (t,<u,v>), {u,u{x))9 and

(v,y{x)). Consequently, we have (3B)((SC, X) A {u,u{x))) and {ix){{x9 x) A {v,y{x))),

which are equivalent to (u9u{x)) and {υ9υ{x)\ respectively, according to our

induction assumption. So, we have

iiu){3v){(t,<u,v>) A (u9u(x)) A iv,y{x))),

w h i c h is equiva lent to {t9<u(x)9v{x)>)9 i.e. (t,t{x)) a c c o r d i n g to Definit ion

1.15.

T o p r o v e t h a t {x)((x9x)—>{t9t{x))) implies (t9t(x))9 let us assume
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(x){(x9x)—>(t,t(x))). According to Theorem 2.1 we can take such x that

satisfies (x9x). Hence, {t,t{x))> i.e. (t9<u(x),y{x)>), holds. According to

Definition 1.14, we have

(3w)(3t;)(U, <u, v>) A {u, u(x)) Λ (v, y(x)))9

so we can take such u and υ that satisfy (t9 <u, V>), (u,u{x))9 and (v,v(x)).

Consequently, we have

{*x)((x, x) Λ {u, u{x))) and {ix){{x9x) /\(v,v{x))),

which are equivalent to (u,u{x)) and (v9y(x)), respectively, according to our

induction assumption. Therefore, we have

(3w)(3v)((ί, <u, v» Λ {u, u(x)) Λ {v, υ(x)))9

which is equivalent to (t,<u(x),y{x)>), i.e. {t9t(x))9 according to Definition

1.14.

Remark 2.13. Any [F+]-proposition of the form A(t) for any term

expression t can be obtained by substituting t in all places of the variable

ί of a [Tf+]-proposition of the form Λ{t) for a suitable variable t which does

not occur in A(t). Then, the variable t does not occur in A(u) for any

variable u distinct from t. Moreover, A{t) does not have any sub-formula

of the forms ί< * > or t{ ). So I will call any [F+]-proposition A(t) a

proposition having t as its proper variable (or, t is proper in A(t)) if and

only if t does not occur in A(u) for a suitable variable u and A(t) does

not have any sub-formula of the forms £<•••> or t( ). Any [Tf+]-prop-

osition of the form A{t) for any term expression t can be obtained by

substituting t in place of t of a [F+]-proposition A(t) having t as its proper

variable.

THEOREM 2.14. Let A(t) be any [V+]-proposition having t as its proper

variable and let t be any term expression having no occurrence of t. Then, the

propositions

Δ(t), (3*)(U, ί) Λ A{t)\ and (t)((/, t) — • A(t))

are equivalent to each other, in B{V).

Proof. Without loss of generality, we can assume that all the term

expressions occurring in the proposition A(t) are terms. I will prove this

https://doi.org/10.1017/S0027763000013623 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013623


204 KATUZI ONO

theorem by complete induction with respect to the number v of logical

constants in the proposition A(t).

In the case v - 0, A(t) is a proposition having either of the forms

Ri(%i{t), '9%nt(t)) f o r a s e q u e n c e o f t e r m s X&), 9 x n t { t )

having t as their proper variable,

p(x(t)) for a variable p and for a term #(0 having t as its proper

variable,

or z<x{t),y(t)> for a variable z and for a pair of terms x(t) and y(ί)

having t as their proper variable.

In the first sub-case, where Λ(t) is a proposition of the form

Rt(xi(t)f fXntW)> t h e proposition A{t) is R^x^t), , sΛί(ί))> which is

equivalent to

(aα?!) (lxnt){Ri(xi, , »»<) Λ (a?!, ̂ (f)) Λ Λ (a? ,̂ »*(*)))

according to Definition 1.16. Accordingly, we can take such xlf ,ccΛί

that satisfy

According to Theorem 2.12, the proposition (xί9 x^i)) is equivalent to

(lt){(t, t) A (x19 Xi(t)))9 s o w e c a n t a k e s u c h t t h a t s a t i s f i e s ( t 9 t ) a n d (x19 x^t)),

unless n̂  = 0. According to Theorem 2.12, {xk,xk{t)) for k>.2, if any, is

equivalent to {t){{t,t)—>(xk9 xk(t))), so we have (xk,xk{t)). Hence, we have

(lt)((t, t) A (3*0 (ixJiRiix,, , xni) A (x19 Xi(t)) A Λ(α^, xni(t)))),

which is nothing but (it)({t, t) A Δ{t)).

Next, to prove {t){{t,t)—>A{t)), take any t satisfying (t,t). According

to Theorem 2.12, (xk, xk(t)) for k = 1, , «4 is equivalent to (/)((*> ί) >

{xk, xk{t)))9 so we have {xk, xk{t)). Consequently, we have

, »Λi) Λ (a?!, a?i(f)) Λ Λ {xni, x^i))), i.e. A{t),

u n d e r t h e as sumpt ion (t,t). H e n c e , we h a v e (t){(t,t)—>A{t)).

T o prove conversely t h a t (lt)((t,t) A Δ(t)) implies A(t)9 let us assume

i*t){{t9t) ΛA{t)) a n d take such t t h a t satisfies (t,t) a n d A{t), i.e.

(3a?i). ( saOCRito, , an,) Λ (x19 Xi(t)) A Λ

T h e n , we c a n take such xί9 , xni t h a t satisfy
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Therefore, we have {lt){{t,t) A {x* xk(t)), i.e. {xk9xk(t)) according to Theorem

2. 12, for k = 1, , n*. Consequently,

, xnι) A {x19 x^t)) Λ Λ {xnt, xnt(t))), i.e. A(f),

holds.

In the second and the third sub-cases, where A{t) is a proposition of

the forms p{x{t)) or z<x{t),y{t)>, we can carry out the equivalence proof

o f Λ{t), (lt)((t,t) A A(t))9 a n d (t)((t,t) >A[t)) quite similarly as the proof

of the first sub-case.

Now, we will prove our theorem in the case 0 < v — n, assuming that

our theorem holds in every case 0^v<n. In this case, A(t) is a proposi-

tion having either of the forms

Bit)—>C(t)

B(t) A C{t) for a pair of [Tf+]-propositions B(t) and C(t)

B(t) V C(t) having t as their proper variable,

or {u)B{u, t) for a F-proposition B{u, t) having t as its proper

(lu)B(u, t) variable.

However, we need not discuss the case where A{t) is a proposition of the

form B{t) = C(t), because B(t) == C(t) can be expressed in the form (B(t)

—>C{t))A(C(t)—>B{t)). Also, in either of these cases, the propositions

B{t),C{t), and B(u,t) are [F+]-propositions having t as their proper variable

and containing less number of logical constants than n.

In the first sub-case where A{t) is a proposition of the form B(t) — >

C{t), the proposition A{t) is surely the proposition B(t) > C(t). At first,

let us assume A{t), i.e. B(t) — > C{t), in the first sub-case. According to

Theorem 2.1, we can take such t that satisfies {t91). Then, I will prove

B(t) — > C(t). To show this, let us assume B{t). Then, we have

{lt){{t,t) A B{t)), which is equivalent to B{t) by our induction assumption.

Hence, we have C{t), which is equivalent to {t){(t,t)—>C(t)) by our

induction assumption. From this, we can deduce C{t) easily. Thus, we

have (it)((t,t) A(B(t)—>C(t))).
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T o s h o w {t){{t,t) — > ( B { t ) - * C ( t ) ) ) f l e t u s t a k e a n y t s a t i s f y i n g ( t 9 t ) .

Then, we can prove B{t) >C{t) similarly as the above proof.

To show conversely that (aO(U» t) A {B(t)—>C(t))) implies B{t)—>C(t)9

assume {it){{t, t) A {B{t)—>C(t)) and B{t). Then, we can take such t

that satisfies (t,t) and B(t) >C(t). By virtue of our induction assump-

tion, we have (0((M)—>B(t)). Hence, B{t) holds, and this implies C[t).

Accordingly, we have {lt){(t, t) A C(t)), which is equivalent to C{t) by our

induction assumption.

To show that (t)((t,t)—>(B(t)—>C(t))) implies B(t)-*C{t), let us as-

sume (*)((*, ί)->(#(*)->£(*))) and B{t), which is equivalent to {lt){{t,t) A B{t))

according to our induction assumption. Then, we can take such t that

satisfies {t,t) and B{t). As we can prove easily C(t), we have (at){(t, t) A C{t))

which is equivalent to C(t) according to our induction assumption.

In the second sub-case, where Λ{t) is a proposition of the form B{t) A

C{t), let us at first prove (af)((*,ί) Λ Δ{t)), i.e. (af)(tf,ί) Λ {B{t) A C{t))) by

assuming A{t), i.e. B[t) A C{t). Namely, by induction assumption, we have

(lt){{t,t) A B{t)) and (t)((t,t)—>C(t))9 from which we can easily deduce

(3ί)((ί, t) A (B(t) A C(t))). (t)((t, t) — > A(t)), i.e. (*)((*, /) — > {B{t) A C{t))),

can be deduced from (t)((t,t)—>B(t)) and (t){(t,t)—>C(t)) purely logically,

which are equivalent to B(t) and C(t) by our induction assumption, respec-

tively. Hence, A(t) implies (t){{t,t)—>A{t)).

Also, (aί)((ί,ί) Λ A{t))9 i.e. (aί)((ί,ί) Λ {{B{t) A C{t))) implies (aί)((ί,ί) Λ

B{t)) A ilt){{t,t) A C(t)) purely logically, and this proposition is equivalent

to B(t) A C(t), i.e. A(t), by our induction assumption.

F u r t h e r , ( * ) ( ( * , f ) — > A { t ) ) , i . e . ( t ) ( ( t , t ) — > ( B ( t ) A C{t))) i m p l i e s (t)((tft)

—>B{t)) A (t)((t,t)—>C(t)) purely logically, and this proposition is equiva-

lent to B{t) A C{t), i.e. A{t), by our induction assumption.

In the third sub-case, where A{t) is a proposition of the form B{t) V

V C(ί), I will prove at first

(aO((U) Λ 4(0), i.e. (a*)((f,ί)Λ (5(0 V «*))),

and (0((/, t) — > 4(0), i.e. (t)((t91) — > (B(t) V C(0)),

by assuming A(t), i.e. B(t) V C(t). These are purely logical consequences

of our induction assumption that

B(t), (aθ((f, ί) Λ B(t))f and (0((ί, ί) — > B(t))
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are mutually equivalent and that

C(ί), (a*)((f, ί) Λ C(t)), and (t)((t, t) —» C(0)

are mutually equivalent.

I will prove now 4(ί) by assuming {t){(t,t)—>4U)). According to

Theorem 2. 1, we can take such t that satisfies (t, t). Hence, A{t), i.e.

B{t) V C(0, holds for this /. Accordingly,

(it)((t,t) ΛB(t)) V(3*)((f,ί)Λ£(0)

holds. According to our induction assumption, however, this is equivalent

to B(t) V C(t), i.e. 4(ί). Similarly, 4(ί) is deducible from (it)({t,t) A Δ(t)).

In the fourth sub-case, where A{t) is a proposition of the form

(u)B(u, t), our induction assumption is that

B{u, £), (a*)((f, ί) Λ B(w, t)), and (*)((*, ί) -> B(u, t))

are mutually equivalent. At first, I will prove (lt)((t, t) Λ A{t)) and

(t){{t,t)—>Δ(t)) by assuming A{t), i.e. {u)B{u,t). By virtue of Theorem

2.1, we can take such t that satisfies (t91). To show 4(0> i.e. (u)B(u, t)

for this ί, take any M. Then, J5(«,ί) holds, so (t){{t,t)—>B(u,t)) holds.

Accordingly, we have B{u9t). Hence, (lt){{t,t) Λ 4(0). On the other

hand, (t){(t,t)—>A(t)) is a purely logical consequence of our assumptions.

Also, A(t), i.e. (u)B{u, t) is a purely logical consequence of

t,t) ΛA(t)), i.e. (itW,t)A(u)B(u,t)),

and our induction assumption that B{u,t) is equivalent to

t,t) AB(u,t)).

To prove 4(ί), i.e. (u)B(u,t), by assuming (t)((t,t)—>Δ(t))9 i.e.

*> ί) — > {u)B{u91))9 let us take any u. By virtue of Theorem 2.1, we

can take such t that satisfies (/, t). Then, B(u91) holds for these u and

t. Accordingly, we have (lt)({t9t) A B{u91))9 which is equivalent to B{u9t)

according to our induction assumption. Hence, we have (u)B{u9t)9 i.e.

Λ{t). Similarly, A(t) is deducible from (3ί)((ί, t) A Δ{t)).

In the fifth sub-case where A(t) is a proposition of the form (iu)B(u91),

our induction assumption is that

B(u, t)9 (lt)((t91) A B(u91)), and (*)((*, ί) •—> B(u91))
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are mutually equivalent. In this case, A{t), i.e. {iu)B(u,t)9 is purely

logically equivalent to

(ϊt)((t, t) A Δ(t))9 i.e. (it)((t9 t) Λ (*u)B{u, /)),

under the induction assumption that β(&, £) is equivalent to

[it){(t9t) AB(u9t)).

Also, (ί)((ί,f)—>4W), i.e. (t)((t,t_)—+(lu)B(u,t)), is a purely logical

consequence of A{t), i.e. {ΊU)B{U, t)9 under our induction assumption.

N o w , I w i l l s h o w A{t) b y a s s u m i n g ( t ) { { t 9 t ) — > A { t ) ) , i . e . ( t ) ( { t , t ) — >

(lu)B(u, t)). By virtue of Theorem 2.1, we can take such t that satisfies

(t, t). For this t, we can take such u that satisfies B(u, t). Hence, we

have (lt)((t, t) A B{u9 t))9 which is equivalent to B(u,t) according to our

induction assumption. Thus, we have (lu)B(u,t), i.e. A{t).

Thus, we have proved our theorem in all sub-cases of the case v = n

by assuming our theorem for cases 0 < v < n.

THEOREM 2.15. Let A{t) be any [V+]-proβositio?ι having t as its proper

variable, and t be any term expression. Then, in B{V),

(UT) A{t) is deducible from (x)A[x).

(E*T) {ix)A(x) is deducible from A(t).

Proof (x)A(x) surely implies {t){(t9t)—>A(t)) in LP (or in LM), and

(t)((t9t) —>A(t)) is proved to be equivalent to A(t) in B(V) by Theorem

2.14. Hence, (UT) holds in B(V).

On the other hand, (ix)A(x) is deducible from {3t){{t,t) A A(t)) in L P

(or in LM), and {lt){{t9t) A A[t)) is proved to be equivalent to A{t) in B{V)

by Theorem 2.14. Hence, (E*T) holds in B{V).

Now, I can prove the main theorem of this chapter, which reads:

THEOREM 2.16. Any [V+J-proposition (speaking exactly, its interpretation in

B{V)) is provable in B(V) if and only if it is provable in B[V],

Proof Because any deduction in the logic LP (or LM) can be regarded

as a deduction in LPT (LMT), so we have only to prove that ( the inter-

pretation of) any provable [V+ ]-proposition in B[V~\ is also provable in B{V).

Because our interpretation of [F+]-propositions in B(V) is faithful with respect

to the logical constants, we have only to check the inference rules (UT)
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and (E*T) of the logic LPT (or LMT), which are the only inference rules

distinct from the corresponding inference rules of the logic LP (LM).

According to Remark 2.13, any [F+]-proposition of the form A{t) for

a term expression t can be obtained by substituting t in all places of t

occurring in A{t) having t as its proper variable. So, our problem is to

check for every [F+]-proposition of the form A(t) having t as its proper

variable and for any term expression t9 whether

(UT) A{t) is deducible from (x)A{x)

and (E*T) {ix)A{x) is deducible from A{t)

hold in B{V). However, this has been already proved to hold in Theorem

2.15.

Remark 2.17. By virtue of Theorem 2.16, we have no need to distin-

guish the theories B(V) and B[V], so I will denote these both simply by

B(V), hereafter.

(3) Abstractions of normal kernels

It was my main purpose in establishing the theory B{V) to make all

the necessary abstractions of the form

( 3 2 > ) ( a j ) -(z)(v(x, - , z ) = A ( x , ,z))

provable in the theory B{V). I do not need to make the abstractions of

such abnormal kernels as x(x) provable. However, I would like to make

all the abstractions of such normal kernels as those expressible by F-pro-

positions. For this purpose, I will define in this chapter normality of

abstraction kernels with respect to the set of variables at first, and thereafter

I would like to show that the abstraction

(3P)(») (z){v{x, , z) ΞΞ A(x, •••,«))

is provable in B(V) for any normal kernel A(x, , z) with respect to

variables x, , z. Indeed, we can define normality notion nicely for this

purpose.

For practical application, however, it is convenient that we can have

such p that satisfy

Ί>($, * 9 z ) = A ( x 9 , z )

for any sequence of term expressions x, , z. This would be meaningful
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only when A{x, , z) is a [F+]-proposition having x, , z as its proper

variables, unless we modify the definition of A{x, , z). In fact, it looks

like desirable to call some kernels A{x, , z) normal with respect to

x, ,z even though they are not [F+]-propositions having x, ,z as

their proper variables. Accordingly, we introduce an interpretation of

Δ{x, , z) for some kernels A(x, , z) which are not [F+]-propositions

having x9 , z as their proper variables. Naturally, we have to define

A{x, ,z) so as to keep inferences rules (UT) and (E*T) for the newly

defined interpretation of A(x, •••,?).

DEFINITION 3.1. Any [Ύ+]-proposition is called normal with respect to

the set of free variables x, , z if and only if the proposition can be

confirmed to be so by the following rules:

(Nl) Any [7+]-proposition of the forms

Ri(t, m,tnt) for any sequence of term expressions t19 ,ί»t,

^<ίi> * * Λn> f° r a n y sequence of term expressions tί9 9tn9

or t = s for any pair of term expressions t and 5

is normal with respect to any set of free variables x9 , z.

(N2) Any [F+]-proposition of the form p(x19 ,xn) is normal with

respect to any set of free variables x9 , z except when p appears among

x, , z.

(N3) Any [F+]-proposition of the forms A — > B, A A B, and A\/ B

is normal with respect to the set of free variables x, , z9 if A as well

as B is normal with respect to the same set of free variables.

(N4) Any [V^J-proposition of the forms {u)A and {zu)A is normal

with respect to the set of free variables x, , z, if A is normal with

respect to the set of free variables u9 x9 , z.

Remark 3.2. Any [F+]-proposition which is normal with respect to

x, , z as well as to u, , w is normal with respect to x, , z9 u, , w.

Any [F+J-proposition which is normal with respect to x9 u, , w is normal

with respect to u9 , w.

T H E O R E M 3.3. For any normal [V+]-proposition A(x, •••,«) with respect

to the variable set x, , z9 there is such a [V+]-proposition that satisfies
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1) A'{x, , z) is equivalent to Λ{x, , z) for all free variables in it.

2) A'{x, , z) is a normal [V+yproposition with respect to the variable set

x, , z.

3) A'{x, , z) is a [V+]-proposition having x, - - ,z as its proper variables.

Proof. Let A'{x, , z) be the proposition obtained from A{x, , z)

on replacing every sub-proposition of the form u<t19 , tn> for any

variable u in the variable set x, , z by u = <t19 ',tn>. T h e n :

1) We can prove equivalence of A(x9 ,z) and A'(x, ,z) by

Definition 1.3. and Theorems 2.4 and 2.5.

2) We can prove that A'(x, , z) is a normal [F+]-proposition with

respect to the variable set x9 , z by Definition 3.1.

3) We can prove that Af{x9 , z) is a [F+]-proposition having

x9 . . . , z as its proper variables by Remark 2.13 and Definition 3.1.

DEFINITION 3.4. For any normal [F+]-proposition A(xί9 •••,»») with

respect to variables x19 9xn and a sequence of term expressions t19 •••,£»,

we understand by A{t19 ,tn) the proposition A'(t19 9tn)9 where

A'(x19 , xn) is the normal [F+]-proposition given by Theorem 3.3 which

is equivalent to A{x19 •••,&») and which has x19 9xn as its proper

variables.

THEOREM 3.5. Let A{t) be any normal \V+yproposition with respect to t,

and t be any term expression. Then,

(UT) A(t) is deducible from (x)A(x).

(E*T) (lx)A(x) is deducible from A(t).

Proof. By Theorem 2.16 and Definition 3.4.

LEMMA 3.6. Any proposition of the form (x, x) for any variable x and any

term expression x is a normal F 4 -proposition with respect to any set of variables.

Proof. This can be proved by complete induction with respect to the

rank of the term expression x by making use of Definitions 1.15 and 3.1.

THEOREM 3.7. For any normal [V+]-proposition with respect to a certain set
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of variables, there is a V+-proposition which is equivalent to the [V+~\-proposition

and normal with respect to the same set of variables.

Proof Let A{x, •••,«) be any normal [F+]-proposition with respect to

the set of variables x, , z. To confirm that A{x, , z) is normal by

Definition 3.1, it is necessary to confirm that some sub-proposition of the

form u = v for term expressions u and v must be confirmed as normal

according to the rule (Nl) of the definition. Replace every sub-proposition

of the form u = v of A(x9 , z) by

(lu)[3v)(u = v A (u, u) A (v,y))9

and let us denote by B{x, , z) the proposition obtained by this replace-

ment. Then, B(x, , z) is easily provable to be equivalent to A(x9 , z)

by making use of Theorems 2.2, 2.5, and 2.15. B(x9 , z) is also

provable to be a normal [F+]-proposition with respect to as, ,z.

Moreover, in any sub-proposition of the form u — v of B{x, , z)9 the

term expressions u and v are variables.

Now, I will prove our theorem for B(x9 , z) instead of A(x9 , z)

by complete induction with respect to the highest rank p of term expres-

sions occurring in B[x9 , z). If p = 0, B{x9 , z) is already a V+-

proposition. If p > 0, carry out the reduction Al—A3 of Definition 1.16

for every elementary sub-proposition of the forms Rt{x19 , xnt)9 p{x), or

x<y,z> containing any term expression of the highest rank p. Let

B'{x9 , z) denote the replaced proposition. Then, Bf{x, , z) is provable

to be equivalent to B{x9 ,z), and Bf{x9 9z) is also provable to be a

normal V+ -proposition with respect to x9 , z and to have only term

expressions of lower rank than p.

LEMMA 3.8. Let x and y be

the term « <x19 x2>, >, xm> ( m ^ l )

and the term expression <y19 ',yn> (n>)9

respectively. Then, any proposition of the forms

(P)(*q)&i) * (^m)(2/i) {yn)(q{x, y) Ξ P ( » i ι • • • , » « , y))

and (p)(3g)(a?i) (a?J(^i) (2/J(g(^, , x ^ y ) = p(x, y))

is provable in B(V)9 where neither p nor q occur in x and y.
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Proof. By repeated application of Axioms GP5 and GPβ.

LEMMA 3.9. Any proposition of the form

= p(^i, 9xm9v9u9y19 ,t/J)

is provable in B{V) for m,n>0, where neither p nor q appear among x19 ,

# m> u, υ, yl9 , yn.

Proof In the case m = n = 0, this is nothing but Axiom GP3.

In the case, w, w ^ l , let us denote by x and y

« <xl9 x2>, >, α;m> and <y19 , 2/Λ>,

respectively. Then, from any p, we have g satisfying

(»i) (#m)M(*>)(2/i) * (yn)(g(%> v9 u, y) === p(α?i, , fl?OT, v, «, y))

according to Lemma 3.8. For this gr, we have Λ satisfying

(»i) (»m)(w)(v)(yi) (yn)(h(x9 u, v9 y) = flr(ac, v, M, y))

by Axiom GP7 according to Theorem 2.16. Now, for this h, we have q

satisfying

(»i) [xm)(u){v){yi)' ' {yn)(qi%i, , Xm, u, v, y) == A(α, M, V, y)).

This q surely satisfies

(»i) 0O(«)(*0(yi) '(yn)(q(%i, ' -,xm9u9v,y19 yΛ)

In the case m = 09n^l9 we can take such # for any 2) that satisfies

by Axiom GP2. This # satisfies

!) {yn)(g(%9 v9 u, y) =

According to the result in the preceding case, we can take such h that

satisfies

(x){u)(υ)(yx) {yn)(h{x9 u9 υ9 y) = g(a;, v, M, y)).

For this /z, we have q satisfying
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Vi) (yn)(q(u, v, y) Ξ= {x)h(x9 u, υ, y))

by Axiom GPU. We can easily prove that

WW(|/i) {yn){q{u, v, y) Ξ= p(v, u, y))

holds for this q.

In the case ml>l, n — 0, we can take such # for any p that satisfies

(a?i) ' W W H i ^ ^ ^ ^ ^ K -,xm,v,u))

by Axiom GP5. For this #, we can take such b that satisfies

by Axiom GP2. For this 6, we can take such c that satisfies

0»i) (tfm)Mb)(z)M<<£, v>, «>, 2) = b(z, « x , v>, u>))

by Axiom GP3. For this c, we can take such d that satisfies

(*i) (xm)M(v){z)(d{x, v9 u, z) Ξ= C(<<Λ:, t;>, «>, «))

by Lemma 3.8. For this d, we can take such e that satisfies

(»i) (*m)(M)(v)(«)(β(gc, M, v, z) = d(α, v, M, Z))

by already proved case m,n>l of this lemma. For this e, we can take

such / that satisfies

3?> ̂ >» v>> z) = e{x9 u, v, z))

by Lemma 3.8. For this /, we can take such g that satisfies

(&i) (xm)(u)(v)(z)(g(z, « x , u>, v>) Ξ f(«x, u>, v>, z))

by Axiom GP3. For this g, we can take such h that satisfies

by Axiom GPU. For this h, we can take such q that satisfies

by Axiom GPβ. For this q, we can prove that

(»i) (%m)(u)(v)(q(x19 , am, w, ι/) == ̂ (α;!, , χm, v, u)).

L E M M A 3.10. Let x19 9xn and y19 9yn be two permutations of the

same set of n variables. Then, the proposition

https://doi.org/10.1017/S0027763000013623 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013623


A BASIC THEORY OF OBJECTS 215

) * * * Miqfal* * * > &n) Ξ

ύ provable in B(V), where neither φ nor q appear among x19 ,xn.

Proof By repeated application of Lemma 3.9.

LEMMA 3.11. Let x, , z be a sequence of distinct variables, s, , t be

a sequence of variables of x, , z, maybe containing some repetitions, and u, , w

be a sequence of variables other than x, ,z but maybe containing some repetitions.

Then, the proposition

)(&) {z)(q{s, • • - , * ) = V(u, , w, s , , t))

is provable in B{V), where neither p nor q appear among x, , z.

Proof I will prove this theorem by complete induction with respect

to the length λ of the sequence u, ,w. {λ>0)

In the case λ = 0, we have nothing to prove.

In the case 0 < λ — I let us assume that our proposition holds in the

cases 0 ̂  λ < I. Take any arbitrary p. By Axiom GPl, we can take

such h that satisfies

{x){g{x) Ξ= φ(u, x)).

If we denote u, , w by u, v, , w, this g satisfies

(&)••• (z)(g(v, , w, s, , t) = p(u, v, , w, s, , t)).

Moreover, by our induction assumption, we have such q that satisfies

{x) {z){q{s, . . . , * ) = g{v, , w, 5, , t)).

This q surely satisfies

(») * {*)[q(s, , t) = p(w, v, , w, s, , t)).

L E M M A 3.12. Let x, , z be a sequence of mutually different variables,

and let s, ,t be a sequence of variables of the set {x, ,z}, possibly having

some repetition. Let further u, ,w be a sequence of all the remaining variables

of the set {x, ,z) which do not occur in s, ,f. Then, the proposition

) ( α ) ' (*){q(u, , w , s , , 0 = Ί>(s> ' ft))

is provable in B(V), where neither p nor q appear among x, , z.
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Proof. I will prove this theorem by complete induction with respect

to the length λ of the sequence u, , w,

In the case λ = 0, we have nothing to prove.

Next let us assume that our theorem holds in any case 0 ̂  λ < I, and

I will prove the theorem in the case 0 < λ = I. Let us denote any

sequence u, ,w of the length λ by u, v, , w, and let us take any

arbitrary p. By our induction assumption, we can take such g that

satisfies

(a) (t)(g{v, ' 3 w, s, , t) == p{s, , t)).

For this g, we can take by Axiom GP2 such q that satisfies

Because this q satisfies

0*0 (z)(q(u, υ9 , w, s9 , t) = g(v, , w, s, , t))9

it satisfies also

(»)••• (2)W^, ^ * w, s, - , t) = p(s, , 0).

L E M M A 3.13. Let {x, ,z] be a set of n variables, and u, ,w be a

sequence of variables admitting repetition, each of which be a variable in the set

{x, ,2}, and every variable in the set {x, * ,z) occur at least once in the

sequence u, 9w. Then, the proposition

is provable in B{V), where neither p nor q appear among x9 , z.

Proof I will prove this theorem by complete induction with respect

to the length λ of the sequence u, ,w. Certainly, λ is a number no

less than n.

In the case λ = n9 the sequence u, ,w is a permutation of {x, ,z}.

Hence, we have the theorem by virtue of Lemma 3.10.

Now, let us assume that our theory holds for every case n -<L λ < /, and

we will prove our theorem for the case λ = I. Namely, let u, , w be a

sequence of the length λ, and υ, υ, be a sequence of the same set of

variables, each having the same repetition as u, ,w. Then, for any p

we have such g that satisfies
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0*0 {z){g{υ9 v9 ) Ξ= p{u9 , w)).

according to Lemma 3.10. For this g, we have such h that satisfies

according to Axiom GP4. This h surely satisfies

0») -

The sequence v, is a sequence of the length / — 1 of the variable set

{#, ,z}, and each variable of the set surely appears at least once in the

sequence #,•••, so according to our induction assumption, we can find

out such q that satisfies (χ) iz){q{x9 9z) = h(υ9 •)) which implies

(a?) (s)te(a?, , s) = p(κ, , w)).

LEMMA 3.14. Any proposition of the form

(P)(3?)(aθ (z)(q(x, , z) = p(«, , w)),

ix Â r̂  », , z is any sequence of mutually distinct variables without containing p

and q, and u, ,w is any sequence of variables x, , z admitting repetitions.

Proof. This lemma is a consequence of Lemmata 3. 9—3. 13.

Now, I can give a proof of the following theorem, which is the main

purpose of this chapter:

T H E O R E M 3.15. For any normal [V+]-proposition A{x, , z) with respect

to the variable set {x, ,z], the proposition

(3?)0*0 -{z){p(x, - , z ) = A ( x , •••,*:))

is provable in B(V), where p does not occur in A{x, , z).

Proof. By virtue of Theorem 3.7, it is enough to prove this theorem

only in the case where A(x, , z) is a F+-proposition. Any normal V+-

proposition is confirmed to be normal by making use of the rules (Nl)—

(N4) of Definition 3.1. I will prove this theorem by complete induction

with respect to the number v of times of applications of these rules to

confirm that A{x, 9z) is normal with respect to x, 9z. (v>l.)

In the case v = 1, A{x9 , z) is either of the forms

Ri(ti, , tnι), u<t, s>9 t = s, or f(t)9
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where / does not belong to the variable set x, , z. By Axioms PNR ί 5

OPR, and ER, we can take such g, h, and k that satisfy

(u)(t)(s){h{u, t, s) = u<t,

and {t){s){k(t, s)=. t = s).

Needless to say, we can take these variables g9h, and k so that any one

of them does not belong to the variable set #,•••, z. Hence, according

to Lemma 3.14, we can take such p that satisfies.

(a?) (z)(p{x, , z) = g(t19 , tnt))f

(x) (z)(p{x, , z) ΞΞ h(u, t, s)),

in respective cases. This p surely satisfies

(x)- -UXpία, ,«) = . ί = s),

(x). .

in respective cases. Namely,

z) ΞΞΞ

is provable in B{V) in the case v = 1.

Next, let us assume our theorem in all the cases 1 ̂  v < n, and we

will prove our theorem in the case 1 < v = n. Namely, let A(x, , z) be

a ^-proposition which can be confirmed to be normal with respect to the

variable set x, , z after n time applications of the rules (Nl)-—(N4). Then,

Λ(x, , z) must be a proposition of the forms:

B ( x , , z ) — > C ( x , , z ) , B ( x , . , z ) A C ( x , . , z ) ,

o r β(α?, . , z) V C ( α , •••,«)

f o r a p a i r o f n o r m a l F + - p r o p o s i t i o n s 5(α?, •••,«) a n d C[x, •••,«)

w i t h r e s p e c t t o t h e v a r i a b l e s e t a?, , z ( F i r s t s u b - c a s e ) ,
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or, (u)B(u, x9 , z) or (zu)B{u, x, , z) for a normal F+-proposition

B(u, x, , z) with respect to the variable set u, x, , z

(Second sub-case).

In the first sub-case, B(x, , z) as well as C{x, , z) can be

confirmed to be normal by a number of times of applications of the rules

(Nl)—(N4) less than n. Hence, according to our induction assumption,

we have such free g and h that satisfy

(x) {z)(g{x, , z) = B(x, ••-,*))

a n d (x) (z)(h{x, . -, z) Ξ= C(X, , 2)).

Now, for these g a n d h, we have such p t h a t satisfies

it)(p(t)=.g(t)—

(t)(v(t) ^ . g(t) Λ

or (t)(p(t) ̂ . flf(« V

in respective cases, according to Axioms GPI, GPC, or GPD. For this p,

we can easily prove

or

in each

(*)••

one of

• (z)(v(x,

• (z)(p(x, -

>{zMχ,

respective

(3J»)(*)

•',z)=.

cases.

• (z)(pίx,

B(x,

B(x,'

B(x,

Thus,

'-,»)

• ,z)

• ,z)

>C(x,

Λ C(x,

V C(x, -

we have

) = A( 7* φ

In the second sub-case, B{uf x, , z) can be confirmed to be normal

with respect to the variable set u, x, , z after n — 1 times of applications

of the rules (Nl) —(N4). Hence, according to our induction assumption, we

have such g that satisfies

(u)(x) (z){g{u, x, , z) ΞΞ B{u, x, , z)).

For this g, we can take such p that satisfies

(t){p(t) = (u)g(u, t))

or (t)(p{t) = (zu)g{u, t)),
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in each one of respective cases, according to Axioms G P U or GPE. For

this p, we can prove easily

0*0 -(s)(:Pθ», ,z) = 4(α, ••-,*))

in the second sub-case.

THEOREM 3.16. For any [V+]-proposition A{t) which is normal with respect

to t but possibly containing x and y, the proposition

holds in B{V).

Proof. Let A(t) be any normal [F+]-proposition with respect to t, and

x and y be any pair of arbitrary variables satisfying x = y. According to

Theorem 3.15, we can take such p that satisfies

especially, p(x) == A(x) and p(y) Ξ= A{y). According to Definition 1.13,

{q){q{x) == q(y)), especially

holds. Hence, we have A(x) Ξ= A{y).

(4) Extensions of the basic theory B{V).

Let V be any primitive vocabulary, and V+ be the vocabulary con-

taining two more primitive notions S and T as before. Any [F+]-theory

is called an extension of B(V) if and only if the theory can be axiomatically

formulated by supplying a finite number of V+ -proposition axioms to the

axiom system Σ(F).

A vast class of formal F-theories usually developed axiom-schematically

on some logics between the classical logic LK and the minimal logic LM

are expected to be extensions of B(V). As any extensions of B(V) is

axiomatic (finitely axiomatizable), these axiom-schematic formal theories

turn out to be finitely axiomatizable by formulating them as extensions of

B(V).

Although there still remain some problems to be discussed later, I will

describe here by some examples how I am planning to construct mathematical

theories on the basis of the basic object theory. As simple examples of such
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kind of theories, I will adopt here the object theories which I have developed

in my former papers [4] and [5], and thereafter I will give a remark for

formal theories standing on intermediate logics.

(4. 1) Preliminary remarks for the object theories OZ and OF.

The object theory OZ as well as the object theory OF is a formal

theory standing on the classical logic LK. Both theories have the binary

relation " e " as their sole primitive notion. (In my original paper [4] for

OZ, this relation has been denoted by "@".) Accordingly, both theories

are {e}-theories.

In both theories, I use notation for relation products. Namely, let

xφy and xθy be a pair of binary relations between x and y. Then, the

relation product φθ is defined by

xφθy = {iz){xφz A zθy).

It is also convenient to use the comprehension operator notation "{ )"

which maps binary relations φ into binary relation {ψ). It is defined by

^ (t)(t e χΞ=tφy).

Let us also define x = y as usual by

x = y = (t)(t e x^t e y).

Then (e) is nothing but the equality relation. It is very interesting

that we can prove the following:

If any binary relation φ is unique in the sense that

= Z ΞΞΞ xφy),

the relation φ can be expressed in the form {θ) for a suitable binary

relation θ.

In any extension of B{V) for any primitive vocabulary V, any variable

p can be regarded as a binary relation by defining it as follows:

Any extension of B(V) having the axiom

(ALK)
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can be regarded as a theory having the classical logic for F-propositions.

This can be proved by making use of Theorem 3.15.

(4. 2) The object theory OZ.

The object theory OZ has been originally introduced in my paper [4]

as a theory standing on the classical logic LK, having " e " as its sole

primitive notion, and being defined by a single axiom schema. To intro-

duce the axiom schema, we define the relations " c " and C V successively

as follows:

X C y = (t){t <= X >t ey),

xσy P

Then, the axiom schema of OZ is

{m){iy){x){x e y ΞΞ. #<rm Λ A{x))9

where A{x) is a proposition having no occurrence of y.

To introduce OZ as an extention of 2?({e}), it would be necessary

to supply axioms which indicate that we can deal with {e}-propositions in

the classical logic and that the just mentioned axiom schema holds for

every {e} -proposition A(x). As we have remarked in (4. 1), the first

request can be expressed by the axiom (ALK). The second request can

be expressed by the axiom

(AOZ) {p){m){iy){x){x e y =. xσm A p[x)).

As we have shown in [4], the Zermelo set theory without the axiom

of choice can be constructed on the theory OZ, which would be regarded

as a so simple extension of J5({e}). Naturally, the object theory thus

defined can be regarded as finitely axiomatizable in the minimal logic

LM.

(4. 3) The object theory OF.

The object theory OF has been introduced in my paper [5] as a theory

standing on the classical logic LK, having " e " as its sole primitive notion,

and being defined by a single axiom schema. To introduce the axiom

schema, we define the relations " έ " , "ς=", and "<J" successively as follows:
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a;έt/ = x{<=) e y,

x t y =Ξ (ί)(ί e a? —> ί έ t/),

Then, the axiom schema of OF is

(m)(ly)y{{R)σ)m

for any binary relation R having no occurrence of y.

To introduce OF as an extension of B{{^}), it would be necessary to

supply the axiom (ALK) and the axiom

{p){m){iy)y{{p)σ)m.

As we have shown in [5], the Fraenkel set-theory without the axiom

of choice can be constructed on the theory OF which would be regarded

as a so simple extension of B{{^}). The object theory thus defined is

surely finitely axiomatizable.

(4. 4) Axiom of choice.

The axiom of choice is occasionally formulated as an axiom schema,

so it would be worth to examine if the axiom of choice can be formulated

nicely in an extension of £({e}). Among many possible approaches to

that purpose, I will suggest the way which has been taken in my paper

[6]. Namely, we can formulate the generalized axiom of choice by asserting

existence of such relation R that satisfies

{X){X 3<Ξ X >X =>{R)x),

where 3 is the inverse relation of e . Similarly, we can formulate the

axiom of choice by asserting existence of such R represented by a set that

(x){x e m Λ x ^ ^ x. -—> x a{R)x).

In extensions of 5({e}), these propositions can be formulated nicely

as

(GCH)

(CH) (m)(3p)(x)(x G W Λ ^ G Λ ; , —>x Ξ){p)x).
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(4. 5) Formal theories standing on intermediate logics.

There are a great number of intermediate logics which can be character-

ized by axiom schemata. Usual axiom schemata would be formulated by

propositions in extensions of B{V). For example, the intuitionistic logic

can be characterized by the axiom schema

This axiom schema can be formulated in any extension of B(V) by the

axiom

(LJA) (p)(q)(x){~ φ(x) —

Also, Peirce's rule can be also axiomatized by

(PA) (P)(q){x){((p{x) — > q(x)) —> p{x)) — > p(x))

and tertium non datur can be axiomatized by

(TND) (v)(x)(p(x) V - p(x)).

In this way, a great number of intermediate logics would turn out to be

finitely axiomatizable on the minimal logic by making use of the device used

for introducing B(V). Also, a great number of axiom schematic formal

theories standing on these logics would turn out to be finitely axiomatiz-

able in the same way.

(5) Concluding remarks.

Any extension of B(V) for a suitable V can be regarded as finitely

axiomatizable on the logic LM. The logic LM can be regarded as a

sublogic of the intuitionistic logic LJ without using the negation notion of

the original logic LJ and defining new "negation: ~-" by

~ A ^ A > λ,

taking up a proposition constant λ. Hence, any extension of B(V) can

be regarded as finitely axiomatizable in the logic LJ. According to the

result of my former paper [1], any axiomatizable formal theory standing

on the logic LJ can be regarded as tabooistic. Hence, any extension of

B{V) for any V can be regarded as tabooistic.

For any tabooistic theory, we can interpret logical constants, Λ, V>

and (a ), and elementary propositions so that any proposition is provable in
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the tabooistic theory if and only if its interpretation is tautogical in the

primitive logic LO. In other words, any tabooistic theory are purely

logically. constructible in the primitive logic LO.

Accordingly, any extension of B(V) for suitable V is purely logically

constructible in LO. Because a vast class of formal theories including

most of popular mathematical theories can be regarded as extensions of

B[V) for suitable F's, we know that a vast class of formal theories includ-

ing most of popular mathematical theories are purely logically constructible

in LO.
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