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A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly
collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients)
is proposed, with account taken both of the nonlinear advection of the perturbed
particle distribution by fluctuating E × B flows and of its phase mixing, which is
caused by the streaming of the particles along the mean magnetic field and, in
a linear problem, would lead to Landau damping. It is found that it is possible
to construct a consistent theory in which very little free energy leaks into high
velocity moments of the distribution function, rendering the turbulent cascade in
the energetically relevant part of the wavenumber space essentially fluid-like. The
velocity-space spectra of free energy expressed in terms of Hermite-moment orders
are steep power laws and so the free-energy content of the phase space does not
diverge at infinitesimal collisionality (while it does for a linear problem); collisional
heating due to long-wavelength perturbations vanishes in this limit (also in contrast
with the linear problem, in which it occurs at the finite rate equal to the Landau
damping rate). The ability of the free energy to stay in the low velocity moments
of the distribution function is facilitated by the ‘anti-phase-mixing’ effect, whose
presence in the nonlinear system is due to the stochastic version of the plasma echo
(the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations).
The partitioning of the wavenumber space between the (energetically dominant) region
where this is the case and the region where linear phase mixing wins its competition
with nonlinear advection is governed by the ‘critical balance’ between linear and
nonlinear time scales (which for high Hermite moments splits into two thresholds,
one demarcating the wavenumber region where phase mixing predominates, the other
where plasma echo does).
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2 A. A. Schekochihin and others

1. Introduction
Turbulence is a process whereby energy injected into a system (via some mechanism

usually associated with the system being out of equilibrium) is transferred nonlinearly
– and therefore leading to chaotic and multiscale states – from the scale(s) at
which it is injected to much smaller scales at which it is thermalised through
microphysical dissipation channels available in the system. The system is forced
to seek ways of transferring energy across a range of scales because the injection
and dissipation physics are usually unrelated to each other and operate at disparate
scales. It is the bridging of the gap between these scales that brings about turbulent
cascades, broad-range power-law spectra and so on. In fluid systems, however varied
and multiphysics they are, most turbulence theories are basically extensions and
generalisations of the ideas of Richardson (1922) and Kolmogorov (1941b) of a
local-in-scale cascade maintaining a constant flux of energy away from the injection
and towards the dissipation scales (e.g. Zakharov, L’vov & Falkovich 1992; Davidson
2013). This type of thinking has been tremendously successful in making sense of
experimental and numerical evidence in both fluids and plasmas.

In plasmas, however, a straightforward application of such ‘fluid’ thinking to
any physical regime that is not collisionally dominated skirts over the obvious
complication that the kinetic phase space includes the particle velocities as well as
their positions, and the (free) energy is generally free to travel across this entire
6-D space. Its ability – and propensity – to do so is, in fact, manifest in what is
probably the most important phenomenon that makes plasmas conceptually different
from fluids – the Landau (1946) damping of electromagnetic perturbations in a
collisionless plasma. Viewed in energy terms, it involves the transfer of free energy
from electromagnetic perturbations into perturbations of the particle distribution
function, which develops ever finer structure in velocity space (‘phase mixing’)
until this transfer (which looks like damping if one only tracks the electromagnetic
fields) is made irreversible by coarse graining of the velocity-space structure. The
physical agent of this coarse graining is collisions, even if they would appear to
be infinitesimally small. Mathematically, the Landau (1936) collision operator is
a diffusion operator in velocity space and so even small collision frequencies are
enough to thermalise any amount of energy, provided sufficiently large velocity-space
gradients develop.

In a linear plasma system, Landau damping, or, more generally, phase mixing, is
the only available thermalisation route. It provides an adequate mechanism to process
any injected free energy at any fixed wavenumber (since the process is linear, energy
will stay in the wavenumber into which it is injected; there is no coupling), leading to
a finite effective damping rate and filling up the phase space with free energy. If one
uses a Hermite decomposition to quantify ‘scales’ in velocity space, one finds that, in
a steady-state system continuously pumped via low Hermite moments and dissipating
free energy via high ones, the free energy will accumulate in phase space to a level
that diverges if the collisionality is taken to zero; the collisional heating rate in this
limit is finite and equal to the phase-mixing rate (Kanekar et al. 2015). How does
this mechanism coexist and compete with the refinement of spatial scales caused by
coupling between scales – an inevitable consequence of nonlinearity?

In this paper, we address this question using a simple archetypal example of plasma
turbulence–electrostatic turbulence in a drift-kinetic plasma. We will describe this
example in § 2, along with all the relevant preliminaries: the concept of free energy,
the Hermite decomposition, and the existing Kolmogorov-style ‘fluid’ turbulence
theory for this problem (Barnes, Parra & Schekochihin 2011). In § 3, we will
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Phase mixing versus nonlinear advection in plasma turbulence 3

introduce the phase-space formalism that explicitly separates the phase-mixing and
the ‘anti-phase-mixing’ perturbations (the latter activated by the plasma echo effect),
both of which turn out to be inevitable in a nonlinear system, and provides a useful
starting point for a substantive theoretical treatment of phase-space turbulence. In § 4,
a phenomenological scaling theory of this turbulence will be proposed. While we will
describe in detail how free energy and its fluxes are distributed in the inertial range
– leading to some interesting and testable scalings – the main conclusion will be that
phase mixing is quite heavily suppressed in a turbulent system. Section 5 is devoted
to summarising this and other findings and to discussing their implications, as well
as future directions of research. A reader only interested in a digest can skip directly
to this section.

2. Preliminaries
This section contains a rather extended tutorial on a number of topics constituting

elementary but necessary background to what will follow. Readers who are sufficiently
steeped in these matters can skim through this section and then dedicate themselves
more seriously to §§ 3 and 4 (where references to relevant parts of § 2 will be
supplied).

2.1. Prototypical kinetic problem
We consider a plasma near Maxwellian equilibrium, in which case the distribution
function for particles of species s can be expressed as

fs = FMs + δfs, (2.1)

where FMs is a Maxwellian distribution and δfs a small perturbation.
We assume this plasma to be in a uniform strong magnetic field B=Bẑ (ẑ is the unit

vector in the direction of this field, designated the z axis). We consider low-frequency
perturbations, which will be highly anisotropic with respect to the field:

ω�Ωs, k‖� k⊥, (2.2a,b)

where Ωs is the Larmor frequency.
We assume these perturbations to be electrostatic, viz.,

δE=−∇φ, δB= 0, (2.3)

where φ is the scalar potential. We use Gaussian electromagnetic units.
We consider only long wavelengths,

k⊥ρs� 1, (2.4)

where ρs is the Larmor radius.
Finally, we assume a Boltzmann electron response (which arises via expansion of

the electron drift-kinetic equation in the electron-to-ion mass ratio):1

eφ
Te
= δne

ne
= δni

ni
= 1

ni

∫
d3vδfi, (2.5)

1The intricacies of the k‖ = 0 electron response (see § 2.1.1) do not affect the inertial-range theory to be
presented here.
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4 A. A. Schekochihin and others

where e is the electron charge, Ts and ns are the equilibrium temperatures and number
densities, respectively, and δns are density perturbations (s= e for electrons, s= i for
ions). The second equality in (2.5) is a consequence of plasma quasineutrality. It is
useful to denote

ϕ = Zeφ
Ti
, (2.6)

where Z is the ratio of the ion to electron charge.
Under these assumptions, we may integrate out the dependence of the ion

distribution function on perpendicular velocities, so we introduce

g(t, r, v‖)= 1
ni

∫
d2v⊥δfi, (2.7)

and write the drift-kinetic equation for g in a 4-D phase space:

∂g
∂t
+ v‖∇‖(g+ ϕFM)+ u⊥ · ∇⊥g=C[g] + χ, (2.8)

ϕ = α
∫

dv‖g, α = ZTe

Ti
, (2.9)

where FM is a 1-D Maxwellian with thermal speed vth,

FM = 1√
π

e−v
2
‖/v

2
th, vth =

√
2Ti

mi
, (2.10)

u⊥ is the E×B drift velocity,

u⊥ = c
δE×B

B2
= ρivth

2
ẑ×∇⊥ϕ, (2.11)

C[g] is the collision operator and χ a source term – both of which need a little further
discussion, which we will provide in § 2.1.2.

Note that while we will be referring to ‘slab’ ion-temperature-gradient (ITG)
turbulence (e.g. Cowley, Kulsrud & Sudan 1991; Ottaviani et al. 1997; Horton
1999) as the main physical instantiation that we have in mind of the kinetic problem
described above, there will be nothing in our theory that would make it inapplicable to
the (inertial range of) electron-temperature-gradient (ETG) turbulence (Dorland et al.
2000; Jenko et al. 2000), or indeed to a generic case of electrostatic drift-kinetic
turbulence with energy injection at long wavelengths.

2.1.1. A nuance: Boltzmann closure and zonal flows
In this context, we must come clean on an important detail. The Boltzmann

closure (2.5) for the electron density is, in fact, only valid for perturbations with
k‖ 6= 0 because it relies on electrons streaming quickly along the magnetic field
lines to short out the parallel electric field. In tokamak plasmas, where magnetic
shear imposes a link between k‖ and ky, the Boltzmann closure is normally amended
(Dorland & Hammett 1993; Hammett et al. 1993) to remove from the electron density
the response associated with perturbations that have ky = k‖ = 0 (the ‘zonal flows’),
namely,

δne

ne
= e(φ − φ)

Te
, (2.12)
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where φ is the flux-surface average, which in our context is an average over y and
z (formally, one obtains this by first deriving the density response in a toroidal,
magnetically sheared system, as is done, e.g. in § J.2 of Abel & Cowley (2013), then
taking the magnetic shear and curvature to be small and passing to the slab limit).

This implies that, in order to find the (y, z)-averaged (zonal) part of ϕ from the
ion distribution function, at least the lowest-order finite-Larmor-radius correction has
to be kept (physically representing the polarisation drift; see Krommes (1993, 2010)),
leading to α in (2.9) for the zonal part of ϕ having to be replaced with α=2/k2

xρ
2
i , or

− 1
2
ρ2

i ∂
2
xϕ =

∫
dv‖g. (2.13)

In ITG turbulence far from marginal stability, these changes affect important
quantitative details of the interaction between zonal flows and drift waves at the
outer scale (Rogers, Dorland & Kotschenreuther (2000); see also discussion around
(2.43)), but do not matter for the inertial-range physics that we will focus on in this
paper.

A reader who is unconvinced may observe that (2.9) can be used without these
modifications if, instead of considering ITG turbulence, we consider ETG turbulence
(Dorland et al. 2000; Jenko et al. 2000). In this case, it is the ions that have a
Boltzmann response (due to their large Larmor orbits, over which the density response
from electron-scale fluctuations averages out),

δni

ni
=−Zeφ

Ti
(2.14)

(which is = δne/ne by quasineutrality). The required modifications in (2.8) and (2.9)
are

ϕ→ eφ
Te
, α→− Ti

ZTe
, ρi→ ρe, vth→ vthe =

√
2Te

me
, (2.15)

and ϕFM→−ϕFM in (2.8). None of this affects anything essential in the upcoming
theoretical developments.

2.1.2. Injection, phase mixing, advection and dissipation
The precise nature of the source term χ in (2.8) will not matter in our theory, as

long as it does not contain any sharp dependence on v‖ (i.e. is confined to low velocity
moments). A random forcing is often a convenient choice for analytical theory (e.g.
Plunk 2013; Plunk & Parker 2014; Kanekar et al. 2015), but a more physical form in
the context of electrostatic drift-kinetic turbulence in plasmas (e.g. Horton 1999) arises
from accounting for the presence of equilibrium density and temperature gradients,
taken conventionally to be in the negative x direction:2

χ =−u⊥ · ∇(niFM)

ni
=−ρivth

2
∂ϕ

∂y

[
1
Ln
+
(
v2
‖
v2

th
− 1

2

)
1

LT

]
FM,

1
Ln
=− 1

ni

dni

dx
,

1
LT
=− 1

Ti

dTi

dx
.

(2.16)

2The erudite reader given pause by 1/2 rather than 3/2 in the prefactor of 1/LT in (2.16) will recall
that we have integrated out the v⊥ dependence.
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6 A. A. Schekochihin and others

We shall see in § 2.3 that these terms render the system linearly unstable and
thus extract energy from the equilibrium gradients and inject it into the perturbed
distribution.

The resulting perturbations are subject to two influences, linear and nonlinear,
encoded by the second (v‖∇‖g) and fourth (u⊥ · ∇⊥g) terms on the left-hand side
of (2.8), respectively. The nonlinear term represents advection of the distribution
function by the mean perpendicular flow, itself determined by the former. This
involves coupling between different wavenumbers and thus usually leads to spatial
mixing (generation of small spatial scales) of the perturbed distribution. The linear
term represents phase mixing – generation of small velocity-space scales in the
perturbed distribution function. The simplest way to understand this is to notice
that the homogeneous solution to the linear kinetic equation in Fourier space,
∂tg + iv‖k‖g = · · · , is g ∼ e−iv‖k‖t and the velocity gradient of that grows secularly
with time, ∂v‖g=−ik‖tg.

As fine structure in phase space is generated, there must be a means for removing it.
This is why, even for a ‘collisionless’ (meaning in fact weakly collisional) plasma, the
collision operator C[g] must be included in (2.8). We hasten to acknowledge that, in
pretending that the collision operator operates purely on g, we are ignoring that the v⊥
dependence cannot in fact be integrated out of it: collisions will strive to isotropise the
distribution and so the collision operator must necessarily couple v⊥ and v‖. However,
non-rigorously, when the collision frequency is small,

ν�ω, k‖vth, k⊥u⊥, (2.17)

the collision operator’s essential contribution will be simply to iron out fine structure
in velocity space and, given an initial distribution and a source that are smooth in v,
only fine structure in v‖ can arise. Thus, it should suffice to assume a simple model
form for C[g]: for example, the Lenard & Bernstein (1958) operator,

C[g] = ν ∂

∂v̂‖

(
1
2
∂

∂v̂‖
+ v̂‖

)
g, v̂‖ = v‖

vth
. (2.18)

The fact that this operator does not conserve momentum or energy, while easily
repaired if one strives for quantitatively precise energetics (Kirkwood 1946), will
not cause embarrassment as collisions will only matter for high velocity moments
(because large gradients with respect to v‖ are necessary to offset the smallness of ν).
It is not hard to estimate the velocity-space scales at which collisions can become
important: balancing C[g] ∼ωg, where ω∼ k‖vth and/or k⊥u⊥ is the typical frequency
scale of the collisionless dynamics, we find that the requisite velocity scale is

δv‖
vth
∼
( ν
ω

)1/2
, (2.19)

so the structure gets ever finer as ν→+0.
Finally, we are going to assume implicitly that (2.8) contains some regularising term

to ensure a cutoff in k⊥ – a necessity because of the spatial mixing associated with
the nonlinear advection. Physically, the advection term will drive the system out of
the domain of validity of the drift-kinetic approximation, to k⊥ρi ∼ 1 and larger. The
precise way in which the energy is thermalised at these Larmor and sub-Larmor scales
is a rich and interesting topic in its own right, involving a kinetic cascade in a 5-
D phase space (with nonlinear phase mixing in v⊥ now also occurring) – but these
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matters are outside the scope of this treatment (see Schekochihin et al. 2008, 2009;
Tatsuno et al. 2009; Plunk et al. 2010; Bañón Navarro et al. 2011b).

It is the competition between the two ways – linear phase mixing versus nonlinear
advection – of generating small-scale structure in phase space thus enabling the energy
injected by the source to be thermalised that will be the subject of this paper.

2.2. Free energy
We have referred to injection and thermalisation of energy many times now, and so
defining precisely what we mean by ‘energy’ has become overdue.

Energy in δf kinetics (i.e. in near-equilibrium kinetics) is the free energy associated
with the perturbed distribution:3

F =−
∑

s

TsδSs =
∑

s

Tsδ

∫
d3v〈 fs ln fs〉 =

∑
s

∫
d3v

Ts〈δf 2
s 〉

2FMs
, (2.20)

where angle brackets denote spatial averaging and δSs is the mean additional
(negative!) entropy associated with the perturbed distribution of species s. The last
expression in (2.20) was obtained by letting fs = FMs + δfs and expanding 〈 fs ln fs〉 to
second order in δfs (see, e.g. Schekochihin et al. 2008; note that 〈δfs〉 = 0 because
〈 fs〉 = FMs by definition). It is now not hard to establish that F = niTiW, where

W =
∫

dv‖
〈g2〉
2FM
+ 〈ϕ

2〉
2α

(2.21)

is the quadratic quantity conserved by (2.8). This can be shown either by using the
Boltzmann-electron closure in (2.20) (viz., δfe = (eφ/Te)FMe, so the s= e term in

∑
s

gives rise to the 〈ϕ2〉 term in W) or directly starting from (2.8), which gives us the
following law of evolution of the free energy:

dW
dt
=
∫

dv‖

( 〈gχ〉
FM
+ 〈ϕχ〉

)
+
∫

dv‖
〈gC[g]〉

FM
. (2.22)

The first term on the right-hand side is the energy-injection term, which turns into
the usual flux term for ITG (or ETG) turbulence if we substitute χ from (2.16) (see
(2.37)), and the second, negative definite, term is the collisional thermalisation of this
energy flux.

The Landau damping of the electrostatic perturbations is simply the transfer of free
energy, via phase mixing, from the 〈ϕ2〉 part of W to 〈g2〉4: since ϕ=α ∫ dv‖g, small-
scale velocity-space structure in g is washed out in ϕ but of course remains as free
energy in 〈g2〉 (cf. Hammett & Perkins 1990; Hammett, Dorland & Perkins 1992).

3The understanding that this is the case can be traced back through a sequence of papers, from early,
somewhat forgotten, insights to a more recent surge in appreciation (Bernstein 1958; Kruskal & Oberman 1958;
Fowler 1963, 1968; Krommes & Hu 1994; Sugama et al. 1996; Krommes 1999; Hallatschek 2004; Candy &
Waltz 2006; Howes et al. 2006; Schekochihin et al. 2008, 2009; Scott 2010; Bañón Navarro et al. 2011a,b;
Abel et al. 2013; Kunz et al. 2015; Parker & Dellar 2015). Note that we have not included in (2.20) the
energy of the electric and magnetic field, (〈E2〉 + 〈δB2〉)/8π (which is part of the general expression for the
free energy; see, e.g. Schekochihin et al. 2008) because we are considering electrostatic perturbations (δB= 0)
at scales much longer than the Debye length (〈E2〉 is negligible).

4To be precise, from 〈ϕ2〉 and low-order (‘fluid’) velocity moments of g to higher-order (‘kinetic’) moments
(see § 2.3.2).
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8 A. A. Schekochihin and others

2.3. Hermite decomposition
A natural way to separate the ‘fluid’ part of the problem from the ‘kinetic’ part
and represent phase mixing is to expand the perturbed distribution in Hermite
polynomials:5

g(v‖)=
∞∑

m=0

Hm(v̂‖)FM(v‖)√
2mm! gm, (2.23)

gm =
∫

dv‖
Hm(v̂‖)√

2mm!g(v‖), (2.24)

where v̂‖ = v‖/vth and the ‘physicist’s’ Hermite polynomials are

Hm(v̂‖)= (−1)mev̂
2
‖

dm

dv̂m
‖

e−v̂
2
‖ ,

∫
dv‖

Hm(v̂‖)Hn(v̂‖)
2mm! FM(v‖)= δmn. (2.25)

The first three Hermite moments are the (ion) density (δn), mean-parallel-velocity (u‖)
and parallel-temperature (δT‖) perturbations:

H0(v̂‖)= 1 ⇒ g0 = δnn =
ϕ

α
, (2.26)

H1(v̂‖)= 2v̂‖ ⇒ g1 =
√

2
u‖
vth
, (2.27)

H2(v̂‖)= 4
(
v̂2
‖ −

1
2

)
⇒ g2 = 1√

2

δT‖
T
. (2.28)

Noting further that the source term, given by (2.16), is

χ =−ρivth

2
∂ϕ

∂y

[
H0(v̂‖)

Ln
+ H2(v̂‖)

4LT

]
FM ≡

[
χ0 + H2(v̂‖)

2
√

2
χ2

]
FM (2.29)

and that the streaming term in (2.8), v‖∇‖g, couples Hermite moments of adjacent
orders via the formula

v̂‖Hm(v̂‖)= 1
2 Hm+1(v̂‖)+mHm−1(v̂‖), (2.30)

we arrive at the following Hermite representation of (2.8):

∂

∂t
ϕ

α
+ vth∇‖ u‖

vth
= χ0 =− vth

2Ln
ρi
∂ϕ

∂y
, (2.31)(

∂

∂t
+ u⊥ · ∇⊥

)
u‖
vth
+ vth∇‖

(
1
2
δT‖
T
+ 1+ α

α
ϕ

)
= 0, (2.32)(

∂

∂t
+ u⊥ · ∇⊥

)
δT‖
T
+ vth∇‖

(√
3g3 + 2

u‖
vth

)
=√2χ2 =− vth

2LT
ρi
∂ϕ

∂y
, (2.33)

5This has attracted recurring bursts of attention over many years, especially recently (Grad 1949; Armstrong
1967; Grant & Feix 1967; Eltgroth 1974; Crownfield 1977; Hammett et al. 1993; Parker & Carati 1995; Smith
1997; Ng, Bhattacharjee & Skiff 1999; Watanabe & Sugama 2004; Zocco & Schekochihin 2011; Black et al.
2013; Hatch et al. 2013, 2014; Loureiro, Schekochihin & Zocco 2013; Plunk & Parker 2014; Kanekar 2015;
Kanekar et al. 2015; Parker & Dellar 2015).
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Phase mixing versus nonlinear advection in plasma turbulence 9

and, for m > 3, a universal equation retaining no traces of the temperature-gradient
drive or Boltzmann-electron physics:(

∂

∂t
+ u⊥ · ∇⊥

)
gm + vth∇‖

(√
m+ 1

2
gm+1 +

√
m
2

gm−1

)
=−νmgm. (2.34)

Note that we have taken advantage of the fact that Hermite polynomials are
eigenfunctions of the Lenard–Bernstein operator (2.18), but ignored collisions in
the m = 1 and m = 2 equations (this is allowed because we are assuming ν →+0
and so collisions will only be important at m� 1).

2.3.1. Energy injection: slab ITG instability
The first three equations are the standard three-field fluid system that describes an

ITG-unstable plasma at long wavelengths in an unsheared slab (Cowley et al. 1991).
The quickest way to obtain the slab ITG instability (Rudakov & Sagdeev 1961; Coppi,
Rosenbluth & Sagdeev 1967; Cowley et al. 1991) is to balance the two terms on the
left-hand side of (2.31), the first with the third term in (2.32) and the first term on
the left-hand side with the temperature-gradient term on the right-hand side of (2.33).
The resulting dispersion relation has three roots, of which one is unstable:

ω3 ≈ α
2
(k‖vth)

2ω∗T ⇒ ω≈
(
−1

2
+ i

√
3

2

)(α
2

)1/3
(k‖vth)

2/3ω
1/3
∗T , (2.35)

where ω∗T = kyρivth/2LT . This approximation is valid provided Ln/LT� 1 and ω∗T�
k‖vth, although, as the growth rate grows with k‖, the fastest growth is in fact achieved
for k‖vth ∼ ω∗T , when the dispersion relation is a more complicated and somewhat
unedifying equation. At k‖vth � ω∗T , the ITG mode is replaced by a sound wave,
which, in a kinetic system, is heavily Landau damped.6

2.3.2. Free-energy flows
The temperature-gradient instability injects energy into the ϕ, u‖/vth and δT‖/T

perturbations, all of which are comparable to each other in magnitude when
k‖vth ∼ ω∗T . Because the three-field system is not closed,7 there is a transfer of
energy from δT‖/T to higher Hermite moments: the g3 term in (2.33) provides the
energy sink from the unstable (‘forced’) moments and the g2 term in (2.34) at m= 3
is the source for the higher moments; the energy thus received by them is eventually
thermalised via collisions.

To be more precise about these statements, let us rewrite the free energy (2.21) in
terms of Hermite moments:

W = 1+ α
2α2
〈ϕ2〉 + 〈u

2
‖〉
v2

th
+ 1

4
〈δT2
‖ 〉

T2
+ 1

2

∞∑
m=3

〈g2
m〉. (2.36)

6An elementary analysis of the slab ITG dispersion relation can be found, e.g. in appendix B.2 of
Schekochihin, Highcock & Cowley (2012). Note that, in § 2.4.3, we will argue that the inertial-range fluctuations
in fact have k‖vth�ω∗T , and in § 4, we will show that their Landau damping is suppressed in the nonlinear
regime.

7The only rigorous way to turn it into a closed system is to assume ν�ω, k‖vth, k⊥u⊥ in (2.34), whence
gm� gm+1 and so the heat flux is expressible in terms of the temperature gradient:

√
3 g3 ≈ (vth/

√
2 ν)∇‖g2 =

(vth/2ν)∇‖δT‖/T . Putting this into (2.33) gives rise to a parallel heat conduction term. We are not, however,
interested in this collisional limit.
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Its ‘fluid’ and ‘kinetic’ parts satisfy:8

d
dt

(
1+ α
α2
〈ϕ2〉 + 〈u

2
‖〉
v2

th
+ 1

4
〈δT2
‖ 〉

T2

)
= 〈δT‖ux〉

2TLT
−
√

3vth

2T
〈δT‖∇‖g3〉, (2.37)

d
dt

1
2

∞∑
m=3

〈g2
m〉 =
√

3vth

2T
〈δT‖∇‖g3〉 − ν

∞∑
m=3

m〈g2
m〉. (2.38)

The first term on the right-hand side of (2.37) is the injected energy flux and the
second term on the right-hand side of (2.38) is the dissipation of that flux by
collisions. In steady state, d〈· · ·〉/dt= 0, we must have

〈δT‖∇‖g3〉> 0 (2.39)

because the collision term is negative definite in (2.38), and, therefore,

〈δT‖ux〉> 0 (2.40)

to achieve balance in (2.37). The inequality (2.39) implies a non-negative mean energy
flux to higher Hermite moments (cf. Krommes & Hu 1994; Nakata, Watanabe &
Sugama 2012).

How that flux is processed from being injected at m = 3 to being dissipated at
m�1 (assuming ν→+0) is handled by (2.34). This equation contains in a beautifully
explicit form the two effects to which this paper is devoted: the phase mixing is
manifest in that gm is coupled to gm+1 and gm−1, providing a mechanism for pushing
energy to higher m’s; simultaneously, all Hermite moments gm are advected (spatially
mixed towards smaller scales) by the same fluctuating velocity u⊥, determined, via
(2.11), by the zeroth Hermite moment, ϕ = αg0.

2.4. ‘Fluid’ turbulence theory
Barnes et al. (2011) proposed a Kolmogorov-style theory of ITG turbulence,
essentially ignoring the possibility of a leakage of free energy from the low Hermite
moments to the high. While their theory is by no means uncontroversial or the only
offering on the market (e.g. Gürcan et al. 2009; Plunk, Bañón Navarro & Jenko 2015),
it does appear to match the results of numerical experiments (in the strongly unstable
regime) and so it is worth both reviewing how it is constructed and examining to
what extent it contradicts the statement made in the previous subsection that free
energy must leak to higher Hermite moments.

The scaling argument of Barnes et al. (2011) addresses two main questions (as
would any such argument aspiring to be a complete theory):

(i) what is the effective outer (energy-containing) scale of the turbulence and the
fluctuation level at that scale;

(ii) what is the spatial structure of the turbulence in the ‘inertial range’ between that
outer scale and the small-scale cutoff?

8Note that both (2.37) and (2.38) will also contain sinks accounting for energy losses at small spatial
scales.
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2.4.1. Outer scale
The first question would be trivial for turbulence forced externally at some fixed

scale, but for temperature-gradient-driven turbulence, relying on a linear instability,
the system must decide where to have its energy-containing scale. This is not simply
the peak scale of the growth rate because at long wavelengths the growth rate will
generally grow with wavenumber less quickly than will the nonlinear cascade rate (as
we shall see in § 2.4.2) and so in fact it is the largest scale at which there is an
instability that will end up being the energy-containing scale.

Barnes et al. (2011) conjectured that this infrared cutoff will be set by the largest
parallel scale available to fluctuations:

k‖0 ∼ 1
L‖
, (2.41)

where L‖ in our idealised homogeneous system is simply the parallel extent of the
‘box’ – in a tokamak, it would be the magnetic connection length between unstable
and stable parts of the plasma (L‖ ∼ qR, where q is safety factor and R the major
radius). The perpendicular energy-containing scale is then given by

ω∗T = ky0ρi
vth

LT
∼ k‖0vth ⇒ ky0ρi ∼ LT

L‖
(2.42)

because the instability would be supplanted by stable (in fact, Landau damped) sound
waves at smaller ky. Note that we require LT/L‖� 1 for the turbulence to occur in
a scale range consistent with the drift-kinetic approximation k⊥ρi � 1. Finally, it is
further conjectured that the zonal flows generated by the turbulence will have a typical
shearing rate SZF comparable to the nonlinear decorrelation rate τ−1

nl0 at the outer scale
(cf. Rogers et al. 2000) and, therefore, will isotropise the turbulence:9

kx0 ∼ SZFky0τnl0 ∼ ky0 ∼ k⊥0. (2.43)

This is the only place in the theory where the zonal flows make an appearance as it is
assumed that they do not completely dominate the nonlinear dynamics, in contrast to
their alleged behaviour in the near-threshold regime (e.g. Dimits et al. 2000; Diamond
et al. 2005; Diamond, Hasegawa & Mima 2011; Gürcan et al. 2009; Nakata et al.
2012; Ghim et al. 2013; Connaughton, Nazarenko & Quinn 2014; Makwana et al.
2014).

The energy-containing scale given by (2.42), the amount of energy it contains is
estimated by balancing the rate of injection by instability, ω∗T , against the rate τ−1

nl0
of nonlinear removal of this energy to smaller scales via advection by the turbulent
flow:

ω∗T ∼ k⊥0ρi
vth

LT
∼ τ−1

nl0 ∼ k⊥0u⊥0 ∼ ρivthk2
⊥0ϕ0 ⇒ ϕ0 ∼ 1

k⊥0LT
∼ ρiL‖

L2
T
. (2.44)

9It is possible to imagine (or conjecture) variants of drift-wave turbulence in which zonal flows are not
strong enough to do this. In such systems, the saturated state at the outer scale is dominated by ‘streamers’,
anisotropic structures with kx0� ky0, whose radial extent is probably determined by the size of the system
(Drake, Guzdar & Hassam 1988; Drake, Guzdar & Dimits 1991; Cowley et al. 1991; Rogers, Drake & Zeiler
1998; Dorland et al. 2000; Jenko et al. 2000). In order for these structures to survive, they must be immune
to the secondary instability that would otherwise give rise to zonal flows, which would in turn break up
the streamers (Rogers et al. 2000; Quinn et al. 2013; Connaughton et al. 2014). How a streamer-dominated
outer-scale state channels its energy into an inertial-range cascade is not entirely well understood. However, we
do not expect that the physics of this inertial range to be much different from that described below.
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Finally, if one’s overriding practical concern is the calculation of the effective heat
transport caused by the turbulence, one concludes from the above that the turbulent
thermal diffusivity and the heat flux are

Dturb ∼ u2
⊥0τnl0 ∼ u⊥0

k⊥0
∼ ρivthϕ0, ⇒ Q∼ nDturbT

LT
∼ nρ2

i vth
L‖
L3

T
. (2.45)

All of this is not particularly sensitive to the fact that, in making the argument that
led to (2.44), we completely ignored the possibility (in fact, the inevitability) that
some of the energy injected at the outer scale might be removed not by the nonlinear
advection, as if the system were purely fluid, but also by the phase mixing towards
high m’s. The presence of such a transfer (of which there is, in fact, numerical
evidence; see, e.g. Watanabe & Sugama 2006, Hatch et al. 2011a,b, Nakata et al.
2012) would only break our argument if the rate ∼k‖0vth of this transfer were
substantially larger than the nonlinear-advection rate and so if the dominant balance
were ω∗T ∼ k‖0vth� k⊥0u⊥0. But this is obviously impossible as one cannot saturate a
linear instability by a linear mechanism: there would not be anything in the theory
to determine the saturated amplitude.10 In view of (2.42), the phase mixing rate is, in
fact, of the same order as both ω∗T and k⊥0u⊥0. Therefore, it cannot affect the basic
scalings – although for the purposes of quantitative transport modelling, it is quite
crucial to know by what fraction of order unity it might cut the nonlinear mixing
rate, a key preoccupation in the development of ‘Landau-fluid’ closures for plasma
turbulence in fusion contexts (Hammett et al. 1992, 1993; Dorland & Hammett 1993;
Beer & Hammett 1996; Snyder & Hammett 2001b).

A question that is much more sensitive to whether phase mixing is non-negligible
is the structure of the inertial range.

2.4.2. Inertial range: perpendicular spectrum
How is the energy injected at (k⊥0, k‖0) cascaded to smaller scales? Ignoring phase

mixing, Barnes et al. (2011) proposed to calculate the dependence of the turbulent
amplitudes on scale via the Kolmogorov assumption of constant energy flux: at each
scale k−1

⊥ , energy ϕ2 is transferred (locally) to the next smaller scale over the cascade
time τnl:

ϕ2

τnl
∼ k⊥u⊥ϕ2 ∝ k2

⊥ϕ
3 = const ⇒ ϕ ∝ k−2/3

⊥ , (2.46)

where we used u⊥ ∝ k⊥ϕ (see (2.11)). Note that, both here and in similar arguments
that will follow, we do not make a distinction between the energy content of low-m
moments, assuming11

ϕ ∼ u‖
vth
∼ δT‖

T
(2.47)

and possibly also ∼ a few more low-m moments of g, although we do assume
that there is not a substantial energy leakage to asymptotically large m’s. The 1-D
(perpendicular) spectrum is then

E⊥ϕ (k⊥)= 2πk⊥

∫
dk‖〈|ϕk|2〉 ∼ ϕ

2

k⊥
∝ k−7/3
⊥ , (2.48)

10Again, focusing on turbulence far above the threshold, we are going to ignore the possibility of a more
sophisticated scheme involving zonal flows.

11This is because the typical rate for coupling these moments is k‖vth, which will shortly be argued to be
comparable to the nonlinear rate at which these moments change, see (2.50).
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where 〈· · ·〉 now denotes a time or ensemble average. This scaling is supported both
by numerical simulations of Barnes et al. (2011) and, apparently, by those done by
other groups (Hatch et al. (2013, 2014), Plunk et al. (2015) who confirm finding the
same scaling, without, however, providing plots).

2.4.3. Critical balance
The structure of the turbulence in the parallel direction can now be inferred

via a causality argument known in the astrophysical MHD literature as ‘critical
balance’ (Goldreich & Sridhar 1995, 1997; Boldyrev 2005) and emerging as a
universal scaling principle for strong turbulence in wave-supporting systems (Cho
& Lazarian 2004; Schekochihin et al. 2009; Nazarenko & Schekochihin 2011):
fluctuations cannot stay correlated at parallel distances longer than those over which
linear communication happens at the same rate as the nonlinear decorrelation: thus,
fluctuations are uncorrelated for

k‖vth . k⊥u⊥ ∝ k4/3
⊥ ⇒ k‖L‖ .

(
k⊥
k⊥0

)4/3

. (2.49)

Here, and in what follows, we shall adopt a non-dimensionalisation L‖=1 and k⊥0=1,
so the above condition will henceforth be written k‖ . k4/3

⊥ .
This argument implies that, at any given k⊥, the ‘energy-containing’ parallel scale

will be given by the ‘critical-balance’ wavenumber:

k‖cvth ∼ k⊥u⊥ ⇒ k‖c ∼ k4/3
⊥ , (2.50)

another scaling that was confirmed numerically by Barnes et al. (2011). The
consequent scaling of the 1-D parallel spectrum is (using (2.50) in (2.46))12

ϕ ∝ k−1/2
‖ ⇒ E‖ϕ(k‖)= 2π

∫
dk⊥k⊥〈|ϕk|2〉 ∼ ϕ

2

k‖
∝ k−2
‖ . (2.51)

Note that, under this scheme, the drift waves are slow in the inertial range because
ω∗T ∝ ky whereas k⊥u⊥ ∝ k4/3

⊥ , so the relevant frequency in (2.49) is indeed ∼k‖vth,
not ω∗T . By the same token, energy injection by the temperature-gradient instability
is slow compared to the nonlinear cascade rate, so, effectively, the instability only
operates at the outer scale, while the fluctuations that carry the injected energy through
the inertial range are more akin to ion sound waves than to drift waves.13

12Another way of arriving at this spectrum and at the critical balance (Beresnyak 2015) is to start with
the constant-flux conjecture applied to the scaling of amplitudes with frequencies, rather than wavenumbers:
ϕ2ω∼ const⇒ ϕ ∝ ω−1/2 (Corrsin 1963). The frequencies of the perturbations will be ω∼ k‖vth, hence the
parallel scaling (2.51).

13This also explains why the Barnes et al. (2011) cascade should asymptotically override the nonlinear
transfer proposed by Gürcan et al. (2009): the latter authors argue, effectively, that the cascading of the energy
to small scales is done by the non-local shearing of the drift waves by zonal flows, which they assume to
occur at the rate ∼k⊥uZF , where uZF is a scale-independent zonal velocity; this, via a constant-flux argument
analogous to (2.46), gives E⊥ϕ ∝ k−2

⊥ . However, if the zonal shearing rate is comparable to the energy-injection

rate at the outer scale (which we also assume; see (2.43) and (2.44): k⊥0uZF ∼ SZF ∼ τ−1
nl0 ∼ ω∗T ), then it

will be smaller than k⊥u⊥ for k⊥ > k⊥0. Note also that a nonlinear transfer rate ∝ k⊥ could not effectively
dominate the injection rate, ω∗T , which is also ∝ k⊥.
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2.4.4. Constant flux is inconsistent with robust phase mixing
In § 4.2, we will explain how to derive from these arguments the scaling of the

2-D spectra for any k⊥ and k‖. However, we must first discuss the key point that the
constant-flux assumption (2.46) cannot be consistent with both the idea that the energy
resides along the ‘critical-balance curve’ (2.50) and with phase mixing taking energy
out to large m’s at the rate ∼k‖vth – simply because the latter would mean that the
energy in the low-m moments is not conserved and so need not be fully transferred
nonlinearly to smaller scales.

The simplest way to explain the implications of this for the spectra is to replace
(2.46) by a simple mock-up of an evolution equation for E⊥ϕ (k⊥) (cf. Batchelor 1953;
Howes et al. 2008):

∂E⊥ϕ
∂t
=− ∂ε

∂k⊥
− γE⊥ϕ , ε∼ k⊥E⊥ϕ

τnl
, γ ∼ k‖vth ∼ τ−1

nl ∼ k2
⊥
√

k⊥E⊥ϕ , (2.52)

where ε is the energy flux and γ is the effective rate of phase mixing (Landau
damping), which, by the critical-balance conjecture (2.50), is of the same order as
the cascade rate τ−1

nl . Assuming steady state in (2.52) and letting γ τnl= ξ = const∼ 1
(independent of k⊥, as per critical balance), we find

∂ε

∂k⊥
=− ξ

k⊥
ε ⇒ ε∝ k−ξ⊥ ⇒ E⊥ϕ (k⊥)∝ k−(7+2ξ)/3

⊥ . (2.53)

Thus, the flux decreases with increasing wavenumber and so the spectrum is steeper
than the constant-flux solution (2.48). The power laws that emerge in such dissipative
systems are generally hard to predict and probably non-universal (cf. Bratanov et al.
2013; Passot & Sulem 2015) – in our case, because they depend on an order-unity
prefactor (ξ ) in the critical-balance relation (2.50), rather than on some dimensionally
and physically inevitable scaling.14 However, numerical – or, indeed, experimental –
evidence does not appear to support spectra that are significantly steeper than k−2

⊥
at long (above the Larmor scale) wavelengths (e.g. Hennequin et al. 2004; Görler &
Jenko 2008; Casati et al. 2009; Barnes et al. 2011; Vermare et al. 2011; Kobayashi
& Gürcan 2015). Furthermore, numerical investigations by Teaca et al. (2012), Teaca,
Navarro & Jenko (2014) and Bañón Navarro et al. (2014) confirm local nonlinear
energy transfer and possibly even constant fluxes, albeit with a number of caveats
regarding non-asymptoticity of the simulations, consequent possible non-universality of
their results, as well as distinctly measurable, if not dominant, amounts of dissipation
(meaning, in their context, phase mixing) everywhere.

In what follows, we shall see that, in a sufficiently collisionless plasma, the constant-
flux assumption is safer than it might appear.

14It is easy to see that ξ < 1. Indeed, the nonlinear cascade rate that follows from (2.53) is k⊥u⊥∝ k(4−ξ)/3⊥ ,
which can only overcome the injection rate associated with the temperature gradient if ξ < 1 (see discussion at
the end of § 2.4.3). The extreme case ξ = 1 gives E⊥ϕ ∝ k−3

⊥ . One can obtain such a spectrum if one assumes
that the fluctuation energy present at each scale, not just at the outer scale, is determined by the balance
between the instability growth rate, the nonlinear decorrelation rate – and also the phase mixing, which removes
the energy to high m’s so there is no need for a constant flux. Then each scale behaves as the outer scale
described in § 2.4.1 (ϕ ∝ k−1

⊥ , as in (2.44)). We consider this scenario much too fanciful (it would require
quite a complicated set of arrangements in the (k⊥, k‖) space) and rather unlikely for a system far from the
threshold. Note also that the restriction ξ < 1 would not apply in a system where the energy-injection rate
is not proportional to k⊥, e.g. one where χ in (2.8) is just a large-scale force and so the injection occurs
only at the scale of the force. Then the non-universal spectrum (2.53) can be steeper than k−3

⊥ , although we
must have ξ < 4 in order for k⊥u⊥ to increase with k⊥ and so for the nonlinear transfer to stay local. The
steepest possible spectrum in this case is, therefore, E⊥ϕ ∝ k−5

⊥ .
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2.5. Hermite ‘cascade’
As the final piece of essential background, let us consider what happens with free
energy in phase space if we treat phase mixing as the dominant process and ignore
nonlinearity – the opposite extreme to that pursued in § 2.4.

Returning to (2.34) and dropping the advection term u⊥ ·∇⊥ for the time being, we
perform a Fourier transform in the parallel direction and introduce the following very
useful functions (Zocco & Schekochihin 2011):

g̃m(k‖)= (i sgnk‖)mgm(k‖), (2.54)

where gm(k‖) are the Fourier–Hermite harmonics. The (linearised) equation (2.34) then
becomes

∂ g̃m

∂t
+ |k‖|vth√

2
(
√

m+ 1g̃m+1 −
√

mg̃m−1)=−νmg̃m. (2.55)

The point of these manipulations is that they have made the phase-mixing term
on the left-hand side of (2.55) look like a derivative with respect to m. Indeed,
assuming, in the limit of m� 1, that we can treat g̃m as though it were continuous
and differentiable in m (an assumption that will come under close scrutiny in § 3.1),
i.e. g̃m±1 ≈ g̃m ± ∂mg̃m, we have

√
m+ 1g̃m+1 −

√
mg̃m−1 =

√
m

(√
1+ 1

m
g̃m+1 − g̃m−1

)

≈ √m
(

g̃m

2m
+ 2

∂ g̃m

∂m

)
= 2m1/4 ∂

∂m
m1/4g̃m. (2.56)

Thus, (2.55) becomes

∂ g̃m

∂t
+√2|k‖|vthm1/4 ∂

∂m
m1/4g̃m =−νmg̃m. (2.57)

Introducing the Fourier–Hermite free-energy spectrum Cm(k‖) = 〈|g̃m(k‖)|2〉 =
〈|gm(k‖)|2〉, we find

∂Cm

∂t
+ ∂

∂m
|k‖|vth

√
2mCm =−2νmCm. (2.58)

In steady state, the solution is (Zocco & Schekochihin 2011; cf. Watanabe & Sugama
2004)

Cm = A(k‖)√
m

e−(m/mc)
3/2
, mc =

(
3|k‖|vth

2
√

2ν

)2/3

, (2.59)

where A(k‖) is the constant of integration. Below the collisional cutoff, m� mc, the
power-law scaling Cm ∝ m−1/2 is the solution corresponding to constant free-energy
flux in Hermite space (the Hermite flux is the expression under ∂m in (2.58)). It is
possible to show quite rigorously (by direct Hermite transformation of the Landau
response function) that this is indeed the Hermite-space solution that arises in a linear
system with external forcing at low m and Landau damping (Kanekar et al. 2015).
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The solution (2.59) has two important properties. Firstly, the free-energy dissipation
associated with it (the last term in (2.38)) is dominated by Hermite moments with
m ∼ mc and does not explicitly depend on the collision frequency (assuming A(k‖)
does not),

D= ν
∑

m

m〈g2
m〉 = ν

∑
k‖

∑
m

mCm(k‖)≈ ν
∑

k‖

∫ ∞
∼1

dm mCm(k‖)=
∑

k‖

|k‖|vthA(k‖)√
2

.

(2.60)

Secondly, the total amount of free energy stored in the phase space in order to achieve
this finite dissipation (corresponding to finite amount of injected power) diverges as
ν→ 0:

W ≈ 1
2

∑
k‖

∫ ∞
∼1

dm Cm(k‖)=
∑

k‖

Γ (1/3)

32/3
√

2

A(k‖)
(|k‖|vth)2/3ν1/3

(2.61)

(Kanekar et al. 2015).
Thus, if we thought that Landau damping in a turbulent system works in the same

way as it does in a linear one, we might have to conclude that, rather than staying in
low m’s and being nonlinearly cascaded to small spatial scales, as in a fluid problem,
the free energy fills up phase space and dissipates in collisions. A dedicated study of
the Hermite spectra of slab ITG turbulence by Hatch et al. (2013, 2014) showed that
this does not happen, with the Hermite spectrum of the free energy following a much
steeper power law than (2.59) and the wavenumber spectrum consistent with (2.48). In
what follows, we will show how such a solution can emerge (§ 4.4.2 has the answer
and appendix C the physical basis for it; see § 4.7 for the nonlinear versions of (2.60)
and (2.61)).

3. Formalism
3.1. Phase mixing and anti-phase-mixing

Our first order of business in constructing an appropriate mathematical description
for phase-space turbulence is to reexamine our rather blithe assumption in § 2.5 that
g̃m(k‖), defined by (2.54) and satisfying (2.55) (to which the nonlinearity will be
restored in § 3.2), can be treated as continuous in m.

Consider

1�m�
( |k‖|vth

ν

)2

. (3.1)

If we assume that the rate of change of g̃m is small compared to
√

m|k‖|vth, equation
(2.55) tells us that, to lowest approximation,

√
m+ 1g̃m+1 −

√
mg̃m−1 = 0 ⇒ g̃m+1 ≈ g̃m−1. (3.2)

This has two solutions:

g̃m+1 ≈±g̃m, (3.3)
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so, in fact, either g̃m or (−1)mg̃m can be treated as continuous in m. We therefore
introduce the following decomposition (which we already used in Kanekar et al. 2015
and Parker & Dellar 2015)

g̃m = g̃+m + (−1)mg̃−m, (3.4)

where

g̃+m =
g̃m + g̃m+1

2
, g̃−m = (−1)m

g̃m − g̃m+1

2
(3.5)

can both be assumed continuous in m. Evolution equations for these two types of
modes can be derived by adding or subtracting evolution equations (2.55) for g̃m and
g̃m+1 and then expanding in large m in the same fashion as we did in § 2.5. The
result is

∂ g̃±m
∂t
±√2|k‖|vthm1/4 ∂

∂m
m1/4g̃±m =−νmg̃±m . (3.6)

Manifestly, the ‘+’ modes are the phase-mixing modes, propagating from small to
large m, whereas the ‘−’ modes propagate from large to small m and thus represent
‘anti-phase-mixing’: free energy coming back from phase space, a possibility earlier
mooted, in somewhat different terms, by Hammett et al. (1993) and Smith (1997).
We shall discuss the energetics of this process more quantitatively in § 3.4

In a linear problem, in the absence of free-energy sources at high m, the only
solution that satisfies the boundary condition g̃m→∞→ 0 is g̃−m = 0, so there will be
no anti-phase-mixing and the treatment in § 2.5 is correct.15 As we are about to see,
the situation changes once nonlinearity is accounted for.

3.2. Nonlinear coupling and plasma echo
Let us now restore the nonlinear advection (the second term on the left-hand side of
(2.34)) and Fourier transform it in the parallel direction:(

∂gm

∂t

)
nl

=−[u⊥ · ∇⊥gm](k‖)=−
∑

p‖+q‖=k‖

u⊥(p‖) · ∇⊥gm(q‖). (3.7)

Then the nonlinear term that must be added to the right-hand side of (2.55) is(
∂ g̃m

∂t

)
nl

=−(i sgnk‖)m[u⊥ · ∇⊥gm](k‖)=−
∑

p‖+q‖=k‖

u⊥(p‖) · ∇⊥
(

sgn k‖
sgn q‖

)m

g̃m(q‖).

(3.8)

15Kanekar et al. (2015) showed that in a (forced) linear problem, the spectrum of the ‘−’ modes is ∝m−3/2

and so subdominant to the spectrum (2.59) of the ‘+’ modes. This does not mean that there is some small
subdominant amount of anti-phase-mixing in a linear system, but is rather due to the interpretation of g̃+m and
g̃−m as being forward and backward propagating modes in m space being correct only to lowest order in 1/m.
Note that this interpretation breaks down also at such large m that the inequality (3.1) is no longer satisfied.
When m� (|k‖vth|/ν)2, the collisional term in the right-hand side of (2.55) is dominant and the solution is
g̃m ≈ (|k‖|vth/ν

√
2m)g̃m−1� g̃m−1. Therefore, in this approximation, the two modes are g̃+m ≈ g̃m/2≈ (−1)mg̃−m ,

and so they formally have the same energy.
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Finally, adding or subtracting the above for the mth and (m+ 1)th Hermite moments,
and using the decomposition (3.4), we find the nonlinear term for (3.6):

∂ g̃±m
∂t
±√2|k‖|vthm1/4 ∂

∂m
m1/4g̃±m + νmg̃±m

=−
∑

p‖+q‖=k‖

u⊥(p‖) · ∇⊥[δ+k‖,q‖ g̃±m(q‖)+ δ−k‖,q‖ g̃∓m(q‖)], (3.9)

where δ±k‖,q‖ = [1± sgn(k‖q‖)]/2, i.e. δ+ is non-zero (and equals unity) only if k‖ and
q‖ have the same sign, and δ− is non-zero (and equals unity) only if they have the
opposite sign.

The key development manifest in (3.9) is that the advecting velocity field can couple
parallel wavenumbers of opposite signs and thus produce anti-phase-mixing ‘−’ modes
out of phase-mixing ‘+’ ones and vice versa; g̃−m=0 is no longer a valid solution. This
is a manifestation of the textbook plasma-physics phenomenon known as plasma echo
(Gould, O’Neil & Malmberg 1967; Malmberg et al. 1968). The importance of it in
our discussion is that once the free-energy flux through phase space is not compelled
to be unidirectional towards high m’s (as it was in the naive treatment of § 2.5), all
bets are off as to the effectiveness of Landau damping/phase mixing as a dissipation
mechanism in a nonlinear system.

3.3. Dual kinetic equation in phase space
Equation (3.9) can be recast in a remarkably simple form if we introduce a change
of variables and a rescaling of g̃±m :

s=√m, f̃ (s, k‖)=m1/4

{
g̃+m(k‖) if k‖ > 0,
g̃−m(k‖) if k‖ < 0.

(3.10)

For any given k‖>0, the original distribution function is reconstructed in the following
way, via (2.54) and (3.4):

gm(k‖)= (−i)m[f̃ (√m, k‖)+ (−1)m f̃ (
√

m,−k‖)], gm(−k‖)= g∗m(k‖). (3.11)

The new function f̃ satisfies

∂ f̃
∂t
+ k‖vth√

2

∂ f̃
∂s
+ νs2 f̃ =−

∑
p‖

u⊥(p‖) · ∇⊥ f̃ (k‖ − p‖). (3.12)

The echo effect in this equation looks explicitly like mode coupling from positive
to negative parallel wavenumbers, or vice versa, whereas the phase mixing and
anti-phase-mixing are simply propagation in s with velocity k‖vth/

√
2. We will make

repeated references to this equation in the scaling arguments of § 4.
Equation (3.12) is a kinetic equation in phase space dual to the original kinetic

equation (2.8), with the variable s (or
√

2 s/vth) effectively acting as a Fourier dual
to v‖ – this is not a huge surprise because for m� 1, Hermite polynomials are well
approximated by trigonometric functions in v‖, with ‘frequency’

√
2m/vth:

Hm(v̂‖)e−v̂
2
‖/2 ≈√2

(
2m
e

)m/2

cos

(√
2m
vth

v‖ − πm
2

)
. (3.13)
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It is worth stressing that, while the functions g̃±m(k‖) are subject to reality conditions,
inherited from gm via g̃m (see definitions (2.54) and (3.5)),

gm(−k‖)= g∗m(k‖) ⇒ g̃m(−k‖)= g̃∗m(k‖) ⇒ g̃±m(−k‖)= [g̃±m(k‖)]∗, (3.14)

the function f̃ (k‖) has no such property because it has been spliced together from the
positive-k‖ values of g̃+m and the negative-k‖ values of g̃−m and there is, a priori, no
symmetry between the ‘+’ and ‘−’ modes.

Let us reinforce this point by showing that a solution of (3.12) can only have the
property

f̃ (−k‖)= f̃ ∗(k‖) (3.15)

if the phase mixing is ignorable (this is worth noting because if (3.15) does hold, then
the free-energy flux in Hermite space vanishes, as per (3.27); we will make good use
of this argument in § 4.3). Taking the complex conjugate of (3.12) and subtracting
from it the same equation written for f̃ (−k‖), we get(

∂

∂t
+ νs2

)
[f̃ ∗(k‖)− f̃ (−k‖)] + k‖vth√

2

∂

∂s
[f̃ ∗(k‖)+ f̃ (−k‖)]

=−
∑

p‖

u⊥(p‖) · ∇⊥[f̃ ∗(k‖ + p‖)− f̃ (−k‖ − p‖)], (3.16)

where have used u∗⊥(p‖) = u⊥(−p‖) and then changed the summation variable p‖→
−p‖ in the sum involving f̃ ∗. Equation (3.16) is compatible with the condition (3.15)
only if the phase-mixing term can be ignored – which might happen because k‖ is
small and/or because f̃ depends on s in such a way that the phase-mixing term is
subdominant at, say, high s.

3.4. Free-energy spectrum and free-energy flux
Since we are going to discuss free-energy spectra and free-energy fluxes in phase
space, let us provide the formal definitions and evolution equations for them.

We define, in the same way as we did in § 2.5,

Cm(k‖)= 〈|g̃m(k‖)|2〉 = 〈|gm(k‖)|2〉. (3.17)

Then, using (2.55) with the nonlinear term given by (3.8), we have

∂Cm

∂t
+ Γm − Γm−1 + 2νmCm = 2Re

〈(
∂ g̃m

∂t

)
nl

g̃∗m

〉
≡
(
∂Cm

∂t

)
nl

, (3.18)

where the free-energy flux in Hermite space is (cf. Watanabe & Sugama 2004)

Γm(k‖)=
√

2(m+ 1)|k‖|vthRe〈g̃m+1g̃∗m〉 =
√

2(m+ 1)k‖vthIm〈gm+1g∗m〉. (3.19)

These expressions are exact. In the limit of m� 1, both Cm and Γm are continuous in
m (even if g̃m alternates sign, see (3.3)), so we may rewrite equation (3.18) as follows

∂Cm

∂t
+ ∂Γm

∂m
+ 2νmCm =

(
∂Cm

∂t

)
nl

. (3.20)
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Using the definition (3.5) of the ‘±’ modes and defining their spectra

C±m(k‖)= 〈|g̃±m(k‖)|2〉, (3.21)

we notice that, still exactly, for any m,

Γm =
√

2(m+ 1)|k‖|vth(C+m −C−m). (3.22)

Thus, the Hermite flux is exactly proportional to the difference between the spectra
of the ‘+’ and ‘−’ modes. The sum of these spectra is the free energy, but only
approximately, for m� 1:

C+m +C−m =
Cm +Cm+1

2
≈Cm. (3.23)

The evolution equations for C±m at large m are best obtained from (3.9):

∂C±m
∂t
± |k‖|vth

∂

∂m

√
2mC±m + 2νmC±m

=−2Re
∑

p‖+q‖=k‖

〈[g̃±m(k‖)]∗u⊥(p‖) · ∇⊥[δ+k‖,q‖ g̃±m(q‖)+ δ−k‖,q‖ g̃∓m(q‖)]〉. (3.24)

The sum of these two equations gives us back (3.20) with Γm given by (3.22) (with
m� 1). Another, more compact, way to write (3.24) is in terms of the spectrum of
the function f̃ introduced in § 3.3. Defining

F(s, k‖)= 〈|f̃ (s, k‖)|2〉, (3.25)

we infer from (3.12):

∂F
∂t
+ k‖vth√

2

∂F
∂s
+ 2νs2F=−2Re

∑
p‖

〈f̃ ∗(k‖)u⊥(p‖) · ∇⊥ f̃ (k‖ − p‖)〉. (3.26)

Note that, whereas Cm(k‖), C±m(k‖) and Γm(k‖) must all be even in k‖ because of the
reality conditions (3.14), there is no such constraint on F(k‖) and, in fact, it is the
odd part of F(k‖) that sets the Hermite flux: in view of (3.22),

Γm(k‖)≈
√

2|k‖|vth[F(s, |k‖|)− F(s,−|k‖|)]. (3.27)

The next step in the formal solution of the problem is to solve (3.26) for F(s, k‖).
However, even in principle, this is only possible if a suitable closure is found for the
triple correlator in the right-hand side. A particular solvable model will be discussed
in Schekochihin et al. (2016), but it will come at the price of decoupling the advecting
velocity from the advected distribution function (i.e. considering a ‘kinetic passive
scalar’, rather than the fully self-consistent turbulence problem). In general, as always
with turbulence problems, we are reduced to (or blessed with) having to resort to
phenomenological scaling theories, which we will pursue in the next section.
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4. Scaling theory
In constructing the scaling theory for our turbulence in phase space, we shall

continue to consider as sensible and valid the arguments in § 2.4.1 that led to
estimates of the outer scale (2.42) and the amplitude of ϕ at that scale (2.44). We
will, therefore, focus on what happens in the inertial range.

The argument that is presented in this section is quite long because, even within the
inertial range, the phase space splits into several regions, where different physics are
at work – and building the full picture involves investigating each of these regions and
matching free-energy spectra at their boundaries. A road map to what is done where
is provided by the subsection headings and by the overall summary in § 5.1, which
an impatient reader might find it useful to read first.

In what follows, wherever our expressions appear to be dimensionally incorrect, this
is because the wavenumbers are normalised to the outer scale:

k‖
k‖0
= k‖L‖→ k‖,

k⊥
k⊥0
→ k⊥; (4.1)

we will also omit, wherever this makes exposition more rather than less transparent,
such dimensional factors as vth, ρi, etc. We remind the reader that at the outer scale,
the parallel-propagation/phase-mixing and the nonlinear-advection time scales are
assumed comparable, k‖0vth ∼ k⊥0u⊥0.

4.1. Spectra in the phase-mixing-dominated region
The first two terms on the left-hand side of (3.12) describe propagation of a
perturbation in s with time, along the characteristic

s= k‖vth√
2

t. (4.2)

If we consider k‖ > 0, perturbations will phase mix in an unfettered way for at least
a time comparable to the time it takes the nonlinearity to couple these perturbations
to different wavenumbers:

t . τnl ∼ (k⊥u⊥)−1 ∝ k−r
⊥ , (4.3)

where r is the scaling exponent of the nonlinear decorrelation rate. This means that
whatever spectrum, denoted Eϕ(k‖, k⊥), prevails at low s (and so low m), it will simply
propagate to higher s as long as

s . k‖vthτnl ∼ k‖vth

k⊥u⊥
∼ k‖

kr
⊥
. (4.4)

We can rearrange this statement to mean that, for any given m= s2, the part of the
wavenumber space satisfying

k‖vth &
√

mk⊥u⊥ ⇔ k‖ &
√

mkr
⊥ (4.5)

will contain an exact replica of the low-m spectrum:16

Ef̃ (s, |k‖|, k⊥)=
√

mE+m(k‖, k⊥)∼ Eϕ(k⊥, k‖)∼ kb
⊥k−a
‖ . (4.6)

16We assume that there is no discontinuity in the Hermite spectrum at low m, i.e. that the low-s limit of
the solution to (3.12) (which is technically only valid for s=√m� 1) will smoothly connect onto the spectra
of low-m ‘fluid’ moments ϕ, u‖, δT‖, etc. and also that the spectra of these quantities all have the same
scaling with k‖ and k⊥.
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Here we have defined 2-D spectra

Ef̃ (s, k‖, k⊥)= 2πk⊥〈|f̃ (s, k‖, k⊥)|2〉,
E±m(k‖, k⊥)= 2πk⊥〈|g̃±m(k‖, k⊥)|2〉,
Eϕ(k‖, k⊥)= 2πk⊥〈|ϕ(k‖, k⊥)|2〉,

 (4.7)

where ϕ(k‖, k⊥) etc. are Fourier transforms of the original fields in all three spatial
directions. We shall refer to the lower bound on k‖ (or upper bound on k⊥) defined
by the condition (4.5), k‖ ∼√m kr

⊥, as the phase-mixing threshold.
The scaling exponents a and b in (4.6) are as yet unknown. One of them, b, can

be determined in a purely ‘kinematic’ way: since it describes the low-k⊥ (see (4.5))
asymptotic behaviour of the spectrum, it must, in a homogeneous isotropic system,
be b= 3 (the derivation of this result, which is quite standard, is given in appendix A
– it describes the spectrum at perpendicular wavelengths that are longer than the
perpendicular correlation scale of perturbations with a given k‖).

Thus, we have found a phase-mixing-dominated region (as we shall henceforth call
it) of the phase space, with spectra

E+m(k‖, k⊥)∼ k3
⊥k−a
‖√
m
, E−m(k‖, k⊥)� E+m(k‖, k⊥), k‖ &

√
mkr
⊥. (4.8)

These and all subsequent spectra that will emerge are sketched in figure 2, which the
reader is invited to consult for illustration (and preview) of the upcoming results, as
they emerge.

Unsurprisingly, in (4.8) we have a 1/
√

m Hermite spectrum – the standard linear
result already derived in § 2.5. The anti-phase-mixing component of the free energy
(E−m ) must be small compared to the phase-mixing one here because this is the part
of phase space where the nonlinearity has no time to exert any influence and so there
will not be any echo effect.

While we do not yet know the exponent a (it will be deduced, in two different
ways, in §§ 4.2 and 4.4), it is clear that E+m(k‖, k⊥) must decay sufficiently fast with
k‖ in order for the total free energy not to diverge at short parallel wavelengths.
This tendency for the free-energy spectrum to decay sharply at parallel wavenumbers
bounded from below (or, equivalently, at perpendicular wavenumbers bounded from
above) by the phase-mixing threshold k‖vth∼ k⊥u⊥ (one might also call this threshold
the ‘phase-space critical balance’) was recently reported by Hatch et al. (2013, 2014)
(cf. Watanabe & Sugama 2004) in their simulations of slab ITG turbulence (they,
however, had a different explanation for it).

4.2. Spectra of low moments
As we explained in § 4.1, the spectrum (4.8) is inherited (propagated by phase mixing)
from low m’s, so we must have

Eϕ(k‖, k⊥)∼ k3
⊥k−a
‖ , k‖ & kr

⊥. (4.9)

Thus, this is the 2-D spectrum of the electrostatic turbulence on the short-parallel-
wavelength side of the critical-balance condition (2.50).

As we argued in § 2.4.3, the critical balance is essentially a causality condition and
so the spectrum at the long-parallel-wavelength side of the critical balance, k‖ . kr

⊥,
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must reflect the fact that the perturbations at these parallel scales are essentially
uncorrelated. The spectrum of such uncorrelated perturbations is the spectrum of
white noise, so

Eϕ(k‖, k⊥)∼ k0
‖k
−c
⊥ , k‖ . kr

⊥. (4.10)

Matching this with (4.9) along the curve k‖ ∼ kr
⊥ gives

a= 3+ c
r
. (4.11)

If a> 1, then k‖ ∼ kr
⊥ is the energy-containing parallel scale for any given k⊥. The

1-D perpendicular spectrum is, therefore,

E⊥ϕ (k⊥)=
∫

dk‖Eϕ(k‖, k⊥)∼
∫ kr

⊥

0
dk‖k0

‖k
−c
⊥ ∼ k−(c−r)

⊥ . (4.12)

This immediately implies a consistency relation between c and r:17

kr
⊥ ∼ k⊥u⊥ ∼ k2

⊥ϕ ∼ k2
⊥(k⊥E⊥ϕ )

1/2 ⇒ r= 5− c. (4.13)

Finally, the 1-D parallel spectrum for any given k‖ is dominated by k⊥ ∼ k1/r
‖ :

E‖ϕ(k‖)=
∫

dk⊥Eϕ(k‖, k⊥)∼
∫ ∞

k1/r
‖

dk⊥k0
‖k
−c
⊥ ∼ k−(c−1)/r

‖ . (4.14)

4.2.1. Scaling exponents under constant-flux conjecture
Note that so far, we have invoked no cascade physics, but in order to determine the

exponent c, we do now need to make an assumption as to how energy is passed from
scale to scale. Energetically, only the wavenumber region k‖ . kr

⊥ matters because at
larger k‖, the spectrum is assumed (and will be confirmed) to have a steep decay with
k‖ (see (4.9)). We shall call it the advection-dominated region and anticipate that phase
mixing there will not be a significant energy sink, i.e. the anti-phase-mixing energy
flux due to the echo effect will on average cancel the phase-mixing flux, leading to
effective conservation of 〈ϕ2〉. Then we can return to the constant-flux argument of
§ 2.4.2:

ϕ2k⊥u⊥ ∼ const ⇒ k⊥E⊥ϕ (k⊥)∼ ϕ2 ∼ k−r
⊥ ⇒ c= 1+ 2r, (4.15)

where (4.12) was used to obtain the last relation. Combining (4.11), (4.13) and (4.15),
we find

r= 4
3 , c= 11

3 , a= 5. (4.16a−c)

17We remind the reader that ϕ here and in all similar calculations in this paper is not the Fourier transform
of the potential, but rather its amplitude corresponding to the scale k−1

⊥ (this can be thought of, for example,

as the typical magnitude of the potential’s increment across a distance k−1
⊥ ). Its relationship to the Fourier

transform ϕk and to the 1-D spectrum E⊥ϕ (k⊥) was given in (2.48). This can be understood dimensionally

or by noticing that the energy associated with a given scale k−1
⊥ is the integral over the energies contained

in the wavenumber k⊥ and larger, ϕ2 ∼ ∫∞
k⊥ dk′⊥E⊥ϕ (k′⊥)∼ k⊥E⊥ϕ (k⊥) (the latter relation holds as long as the

1-D spectrum is steeper than k−1
⊥ ).
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(b)

(a)

(c)

FIGURE 1. Spectra of low Hermite moments, Eϕ(k‖, k⊥): (a) in the (k⊥, k‖) plane, (c)
versus k‖ at constant k⊥, (b) versus k⊥ at constant k‖. All plots are logarithmic.

This gives us back the Barnes et al. (2011) 1-D spectra:

E⊥ϕ (k⊥)∼ k−7/3
⊥ , E‖ϕ(k‖)∼ k−2

‖ (4.17a,b)

via (4.12) and (4.14), respectively. We have now also learned what the full 2-D
spectrum behind these 1-D ones is: combining (4.9) and (4.10) with the scaling
exponents (4.16), we have

Eϕ(k‖, k⊥)∼
{

k0
‖k
−11/3
⊥ if k‖ . k4/3

⊥ ,

k3
⊥k−5
‖ if k‖ & k4/3

⊥ .
(4.18)

These spectra are sketched in figure 1.
Since we have fixed the value of the spectral exponent a and since the spectra of

ϕ in the phase-mixing-dominated region, where this exponent applies, propagate to
higher m’s, we now also have determined Em(k‖, k⊥) for k‖ &

√
m kr
⊥: see (4.8).

Physically, the validity of the argument that led to the last set of results (see (4.15)
onwards) hinges on our ability to produce phase-space spectra that are consistent with
substantial cancellation of the phase-mixing flux at k‖. kr

⊥ and thus with the majority
of the free energy residing in the low Hermite moments. Note that it is actually not
controversial that the phase mixing should be negligible for k‖ � kr

⊥ because this
means the phase-mixing rate is low compared to the nonlinear-advection rate, k‖vth�
k⊥u⊥, but, as we saw above, the energy is substantially dominated by the critical-
balance curve k‖ ∼ kr

⊥, where the two rates are comparable (recall our critique of the
‘fluid’ theory in § 2.4.4). In what follows, we shall build a case for the spectra that we
have just derived – and so we will carefully avoid using the constant-flux argument
(4.15) and keep all the scaling exponents general.
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(a)

(b) (c)

(d)

(e)

FIGURE 2. Spectra of higher Hermite moments, E±m(k‖, k⊥): (a) in the (k‖, m) plane
at constant k⊥ (E+m and E−m are shown in the right and left panels, respectively; in the
left panel, k‖ increases leftwards), (b) in the (k⊥, k‖) plane at constant m (E+m and E−m
are shown in the upper and lower panels, respectively; in the lower panel, k‖ increases
downwards), (c) versus k‖ at constant k⊥ and m, (d) versus k⊥ at constant k‖ and m, (e)
versus m at constant k‖ and k⊥ (such that k‖ > k4/3

⊥ , otherwise the spectra are E±m ∼m−5/2

at all m). All plots are logarithmic. The spectrum Eϕ(k‖, k⊥) (see figure 1) is given in
(c,d) as a dashed line, for reference. Free-energy flow through phase space as represented
in (a,b) is described in § 5.2.
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4.3. Spectra of higher moments in the advection-dominated region
Let us now consider the higher Hermite moments, m� 1. The condition for the phase-
mixing rate to be negligible compared to the nonlinear-advection rate is the opposite
of the condition (4.5):

k‖vth�
√

mk⊥u⊥ ⇔ k‖�
√

mkr
⊥ (4.19)

(i.e. the part of the phase space on the side of the phase-mixing threshold opposite to
the phase-mixing-dominated region). In § 4.1, the phase-mixing threshold was derived
by arguing that it represented the value of s up to which the ‘+’ perturbations at some
given k‖ and k⊥ could propagate before being diverted to different wavenumbers by
the nonlinear coupling. More generally and more formally, we may simply argue that,
if, say, the s dependence of f̃ is a power law (which it must be; see appendix C),
the size of the phase-mixing term in (3.12) can be estimated as ∼(k‖vth/s)f̃ , which is
negligible compared to the nonlinear term if the condition (4.19) is satisfied.

The advection-dominated region

k‖vth . k⊥u⊥ ⇔ k‖ . kr
⊥, (4.20)

which, as we argued in § 4.2, contains most of the energy content of the low-m
Hermite moments (collectively represented by ϕ) and, therefore, of the advecting
velocity u⊥, is well within the domain of validity of the condition (4.19), provided
m � 1. Therefore, if we restrict our attention to the wavenumbers (4.20), we may
neglect the phase-mixing term (second on the left-hand side) in (3.12) and thus deal
with what is a purely ‘fluid’ equation for f̃ (s) at each s. As we argued at the end of
§ 3.3, we can then have solutions satisfying f̃ ∗(k‖) = f̃ (−k‖), for which the ‘+’ and
‘−’ spectra are the same and the Hermite flux is zero (see (3.27)):

E+m(k‖, k⊥)≈ E−m(k‖, k⊥). (4.21)

Physically, this is because, in the advection-dominated region, the nonlinear coupling
between positive and negative k‖ mediated by the velocity field u⊥ will be vigorous
and fast – assuming, importantly, that interactions between u⊥ and f̃ are local in k‖
and so, in the right-hand side of (3.12), the sum

∑
p‖ is dominated by wavenumber

triads with p‖ ∼ k‖ ∼ k‖ − p‖.
With the phase mixing neglected, the variance of f̃ is (approximately) conserved

at each s. The field f̃ (s) is nonlinearly cascaded to smaller scales (larger k⊥) by the
advecting velocity u⊥, so the standard constant-flux argument gives us

f̃ 2(s)k⊥u⊥ ∼ const(s) ⇒ f̃ 2(s)∝ k−r
⊥ ⇒ E⊥m(k⊥)∝ k−r−1

⊥ , (4.22)

where E⊥m(k⊥) is the 1-D perpendicular spectrum of gm. Note that the spectrum has
an m dependence, which cannot be determined via this argument.

Since, in the advection-dominated region (4.20), the parallel-communication times
are long compared to the nonlinear-decorrelation times, the perturbations can be
expected to have a white-noise spectrum in k‖. Therefore, we can write their 2-D
spectrum as follows

Em(k‖, k⊥)∼ E±m(k‖, k⊥)∼
k0
‖k
−d
⊥

mσ
, k‖ . kr

⊥, (4.23)
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where we have allowed for an as yet unknown scaling with m. The k⊥-scaling
exponent d can be determined via the requirement that (4.23) be consistent with
(4.22): assuming that, for any given k⊥, the region k‖ . kr

⊥ contains most of the
energy,18

E⊥m(k⊥)=
∫

dk‖Em(k‖, k⊥)∼
∫ kr

⊥

0
dk‖

k0
‖k
−d
⊥

mσ
∝ k−(d−r)
⊥ ⇒ d= 1+ 2r. (4.24)

Since, as we have argued here, the Hermite flux is (approximately) zero in this
region of wavenumber space for all higher m’s, there can be very little net free-energy
flow out of low m’s – and so, in retrospect, we were justified in assuming in § 4.2
that the energy of the low-m moments was conserved and so a constant-flux argument
(4.15) could be used to deduce the scaling of ϕ. This allows us to adopt the scaling
exponents (4.16) (which we have thus far avoided using), in particular, r = 4/3, and
so, using (4.24), the free-energy spectrum is (see figure 2 for illustration)

E±m(k‖, k⊥)∼
k0
‖k
−11/3
⊥

mσ
, k‖ . k4/3

⊥ . (4.25)

Unsurprisingly, there is continuity between the scalings of E±m and the scaling of Eϕ .
The scaling exponent σ will be found in § 4.4.1.

Before moving on to complete our scaling theory, we note that jumping to the
result (4.25) already in this section was borne of pure impatience: we will discover in
§ 4.4 that, in fact, it is possible to determine the scaling exponent d without relying
on the as yet perhaps somewhat unconvincing claim that a constant-flux argument
is legitimate for ϕ despite the phase mixing being notionally not small along the
critical-balance curve k‖ ∼ kr

⊥.

4.4. Intermediate region and matching conditions

We now have the form of the free-energy spectra in two regions, k‖ &
√

m kr
⊥ (phase-

mixing dominated, very little free energy, see (4.8)) and k‖. kr
⊥ (advection-dominated

cascade, contains most of the free energy, see (4.25)). It remains to determine the
free-energy spectrum in the intermediate region between these two:

E+m(k‖, k⊥)∼ k−a′
‖ k−d′

⊥
mσ ′ , kr

⊥ . k‖ .
√

m kr
⊥ (4.26)

(the following argument will only apply to the ‘+’ modes; both the reasons for this
and the way to determine the spectrum of the ‘−’ modes will be explained in § 4.5).

We have three new scaling exponents, but we also have the requirement to match
(4.26) with (4.8) and (4.23) along the boundaries of the intermediate region. This gives
us four relations

σ ′ = σ , d′ + a′r= d, d′ + a′r= ar− 3, a′ + 2σ ′ = 1+ a, (4.27a−d)

which we rearrange so:

a′ = d− d′

r
, d= ar− 3, σ = σ ′ = 3+ r+ d′

2r
. (4.28a−c)

18Technically speaking, we do not yet know this. We will justify this assumption a posteriori in § 4.4.1.
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Let us combine these with two equally uncontroversial (i.e. requiring no leaps of
physical intuition) matching and consistency relations from § 4.2: (4.11) and (4.13),
which we can rewrite as

a= 8− r
r
, c= 5− r. (4.29a,b)

The second of equations (4.28) then gives

d= 5− r= c. (4.30)

Thus, the perpendicular scalings of E±m and Eϕ must be the same in the advection-
dominated region k‖. kr

⊥. If we bring in (4.24), i.e. the constant-flux argument (4.22),
we get immediately

r= 4
3 , d= c= 11

3 , a= 5. (4.31a−c)

These are the same as the exponents (4.16), except the need for the ‘fluid’ constant-
flux argument (4.15) for ϕ has now been obviated by the combination of a more
solid phase-space argument (4.22) and a number of inevitable consistency relations.
Equations (4.28) will give us a′, σ ′ and σ if we know d′. In order to determine the
latter, we must now consider why physics in the intermediate phase-space region kr

⊥.
k‖ .
√

m kr
⊥ should be at all different from what happens in the advection-dominated

region k‖ . kr
⊥ considered in § 4.3 (and so why d′ 6= d).

4.4.1. Spectra in the intermediate region
Except at the phase-mixing threshold k‖ ∼√m kr

⊥ (which is considered with more
care in appendix C), phase mixing in the intermediate region is dominated by
nonlinear advection. However, interactions between u⊥ and f̃ cannot, unlike in the
advection-dominated region discussed in § 4.3, be local in k‖. Indeed, we know from
§ 4.2 that there is very little energy left in u⊥ at k‖ � kr

⊥. Assuming interactions
to be local in k⊥, the wavenumber sum in the right-hand side of (3.12) will be
dominated by p‖. kr

⊥ (see appendix B for a careful analysis of the possible non-local
interactions in the intermediate region). If k‖� kr

⊥, then p‖� k‖, f̃ (k‖ − p‖) ≈ f̃ (k‖),
and so (3.12) now describes the advection of f̃ (s, k‖) by an essentially 2-D velocity
field (its parallel scale is much longer than that of f̃ ), with both s and k‖ appearing
as implicit parameters. This means that the variance of f̃ will be conserved for each
individual s and k‖19 – and this in turn, by yet another constant-flux-in-k⊥ argument,
implies

f̃ 2(s, k‖)k⊥u⊥ ∼ const (s, k‖) ⇒ f̃ 2(s, k‖)∝ k−r
⊥ ⇒ Em(k‖, k⊥)∝ k−r−1

⊥ . (4.32)

This scaling is of the 2-D spectrum, not of the 1-D perpendicular one, because k‖ is a
fixed parameter rather than a variable over which there can be any nonlinear coupling.
Comparing (4.26) and (4.32), we read off d′ and hence, with the aid of the first and
third equations (4.28), complete the determination of all scaling exponents:

d′ = r+ 1= 7
3 , a′ = 1, σ ′ = σ = 5

2 . (4.33a−c)

19This, incidentally, addresses a possible objection to the arguments in § 4.3 that might have been troubling
a perceptive reader: were we really justified in assuming that the conserved variance of f̃ (s) could all be
accounted for within the region k‖ . kr⊥, leading to the constant-flux argument (4.22)? The answer is that the
free energy outside that region is either subdominant (§ 4.1) or conserved separately (§ 4.4.1).
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Thus, the free-energy spectrum in the intermediate region is

E+m(k‖, k⊥)∼ k−1
‖ k−7/3
⊥

m5/2
, k4/3

⊥ . k‖ .
√

m k4/3
⊥ , (4.34)

sketched in figure 2. The spectrum of the ‘−’ modes will be discussed in § 4.5.

4.4.2. 1-D spectra
In the run up to (4.24), we assumed that integrating the 2-D spectrum Em(k‖, k⊥)

with respect to k‖ over the advection-dominated region k‖ . kr
⊥ captures most of the

free energy contained in any fixed k⊥. Now in possession of (4.34), we see that this
is not entirely correct: in fact, using now both (4.25) and (4.34), we find the 1-D
perpendicular spectrum to be

E⊥+m (k⊥) =
∫

dk‖E+m(k‖, k⊥)

∼
∫ k4/3

⊥

0
dk‖

k0
‖k
−11/3
⊥

m5/2
+
∫ √mk4/3

⊥

k4/3
⊥

dk‖
k−1
‖ k−7/3
⊥

m5/2
∼ k−7/3

⊥
m5/2

(1+ ln
√

m). (4.35)

So there is logarithmically more free energy in the intermediate region, but this does
not affect the k⊥ scaling, which is what we were after in (4.24), so the derivation in
§ 4.3 survives.

For completeness, let us also calculate the 1-D parallel spectrum. Integration over k⊥
is dominated by the wavenumbers around the phase-mixing threshold k⊥∼ (k‖/√m)3/4,
so

E‖+m (k‖) =
∫

dk⊥ E+m(k‖, k⊥)

∼
∫ (k‖/

√
m)3/4

0
dk⊥

k3
⊥k−5
‖√
m
+
∫ k3/4

‖

(k‖/
√

m)3/4
dk⊥

k−1
‖ k−7/3
⊥

m5/2
∼ k−2

‖
m2
. (4.36)

Note that this m−2 scaling appears to be in decent agreement with the Hermite-space
spectra reported by Hatch et al. (2013, 2014).

A perceptive reader might be feeling a growing resentment over our use of the
spectrum (4.34) at wavenumbers around the phase-mixing threshold k‖∼√m k4/3

⊥ , even
though, technically speaking, we have only justified (4.34) in the region k4/3

⊥ . k‖�√
mk4/3
⊥ , seeing that at k‖∼√mk4/3

⊥ , phase mixing cannot be neglected compared to the
nonlinear advection. In appendix C, we show that it nevertheless makes sense simply
to match the spectrum (4.26) to the phase-mixing-dominated spectrum (4.8) along the
phase-mixing threshold.

4.5. Anti-phase-mixing spectra
The arguments about the intermediate-region spectra presented in § 4.4 only apply to
the spectrum of the ‘+’ modes. Since the advection velocity is effectively 2-D in
the intermediate region (see § 4.4.1), there is no coupling between different parallel
wavenumbers and so no echo effect. Thus, if, as we argued in § 4.3, E−m ≈ E+m ∝
k−d
⊥ in the advection-dominated region, k⊥ & k1/r

‖ , due to vigorous coupling between
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parallel wavenumbers, and E−m � E+m in the intermediate and phase-mixing-dominated
region, k⊥ � k1/r

‖ , due to absence of any such coupling, we must expect that the
energy-containing wavenumbers for the ‘−’ modes are ones along the critical-balance
curve k⊥ ∼ k1/r

‖ .
The k⊥→ 0 asymptotic behaviour of the ‘−’ spectrum must be the same as for any

other field, E−m ∝ k3
⊥, because the reasons for it are purely kinematic (appendix A).

Thus, we posit

E−m(k‖, k⊥)∼ k3
⊥k−a′′
‖

mσ ′′ , k‖ & kr
⊥ (4.37)

and impose matching conditions between this spectrum and (4.23) at k‖ ∼ kr
⊥:

a′′ = d+ 3
r
= 5, σ ′′ = σ = 5

2
. (4.38a,b)

This completes the determination of the phase-space spectra of the anti-phase-mixing
component of the free energy:

E−m(k‖, k⊥)∼ 1
m5/2

{
k3
⊥k−5
‖ , if k‖ & k4/3

⊥ ,

k0
‖k
−11/3
⊥ , if k‖ . k4/3

⊥ .
(4.39)

Figure 2 shows these and illustrates their relationship to other spectra derived above.
The 1-D spectra that follow from (4.39) are

E⊥−m (k⊥)=
∫

dk‖E−m(k‖, k⊥)∼ k−7/3
⊥

m5/2
, (4.40)

E‖−m (k‖)=
∫

dk⊥E−m(k‖, k⊥)∼ k−2
‖

m5/2
. (4.41)

Note that these are both subdominant, in m, to the ‘+’-mode spectra (4.35) and (4.36).

4.6. Effect of collisions
4.6.1. Collisional cutoff for phase-mixing modes

In the phase-mixing-dominated regime (§ 4.1), the collisional cutoff is set, in the
same way as in the linear theory (§ 2.5), by the competition between the phase-mixing
rate ∼k‖vth/

√
m and the collision rate ∼νm. The perturbations are collisionally

damped if

νm &
k‖vth√

m
& k⊥u⊥ ⇔ m &

(
k‖
ν

)2/3

, k‖ &
k2
⊥√
ν
, (4.42)

giving a cutoff in Hermite space (cf. (2.59)).20 In both the intermediate (§ 4.4) and
advection-dominated (§ 4.3) regimes, the relevant comparison is between the collision
rate and the nonlinear-advection rate:

νm & k⊥u⊥ &
k‖vth√

m
⇔ m &

k4/3
⊥
ν
, k‖ .

k2
⊥√
ν
. (4.43)

These cutoffs are sketched in figure 3.
20In the last formula in (4.42), we implicitly non-dimensionalised the collision frequency: νL‖/vth =

L‖/λmfp → ν, so the Hermite cutoff is mc ∼ (k‖λmfp)
2/3, where λmfp = vth/ν is the mean free path. In

other words, in rescaled units, one can replace ν⇔ 1/λmfp wherever this makes things more transparent.
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FIGURE 3. Partition of phase space, viz., (k‖,m) plane at fixed k⊥, showing the collision-
dominated region, cf. figure 2(a). All axes are logarithmic (in the left panel, k‖ increases
leftwards).

At a fixed m, the above relations imply that there is an infrared collisional cutoff
in the (k‖, k⊥) space: perturbations are damped if

k‖ . νm3/2, k⊥ . (νm)3/4. (4.44)

These cutoffs will not, of course, be relevant in comparison with the outer scales (k‖0
and k⊥0; see § 2.4.1) except at high enough m or if the collision frequency approaches
the characteristic phase-mixing and nonlinear-advection rates at the outer scale. In the
latter case, one expects some amount of free energy to drain via collisional dissipation
around the outer scale, petering out at larger (k‖, k⊥), where the collisionless physics
asserts itself (cf. Hatch et al. 2011a,b, 2013, 2014).

4.6.2. Collisional cutoff for anti-phase-mixing modes
The collisional cutoff (4.43) on the free-energy spectrum of the ‘+’ modes in

the advection-dominated regime must extend to the ‘−’ (anti-phase-mixing) modes
because nonlinear coupling is the only source of the latter (see § 4.3). But the
anti-phase-mixing modes propagate from high to low m and so a zero ‘boundary
condition’ at high m will be imprinted onto a region of phase space at lower m’s. To
wit, arguing analogously to § 4.1 and considering now k‖ < 0 in (3.12), we note that
anti-phase-mixing modes propagate along the characteristics

s=−|k‖|vth√
2

t+ s0, (4.45)

where s0 is a constant. Whatever anti-phase-mixing spectrum exists at s= s0, it will
be replicated over all s satisfying (4.45) for times shorter than the nonlinear time, t .
τnl ∼ (k⊥u⊥)−1 ∼ k4/3

⊥ . Assuming that E−m is cut off for s & sc = k2/3
⊥ /
√
ν (see (4.43))

and letting s0 = sc, we conclude that E−m must also be cut off for

s & sc − |k‖|vth

k⊥u⊥
⇔ √

m &
√

mc − |k‖|
k4/3
⊥
, mc = k4/3

⊥
ν
. (4.46)
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This implies, in particular, that there is no anti-phase-mixing energy at any m’s for
wavenumbers satisfying

|k‖|& k2
⊥√
ν
. (4.47)

The collision-dominated region of the phase space is sketched in figure 3.
Whereas the collisional cutoff is safely removed to infinite m in the limit ν→ 0,

in systems with only moderately low collision frequency, one should expect to see a
finite reduction in the anti-phase-mixing flux at higher m’s, as per (4.46).

4.7. Total free energy and dissipation
In the linear problem, where all energy injected into the system had to be removed by
Landau damping (meaning phase mixing followed by collisional dissipation at high m),
the free energy stored in phase space in a steady state had to diverge with vanishing
collisionality (see (2.61)) in order for the dissipation to remain finite (see (2.60)).
In the nonlinear situation with which we are now preoccupied, the Hermite spectra
are steep power laws and so the free energy will be finite and collisional dissipation
vanish, with all of the injected energy having to be removed via dissipation at small
spatial scales (sub-Larmor and so outside the regime of validity of this theory).

To demonstrate this a little more quantitatively, let us repeat the calculation of
the 1-D parallel spectrum (4.36), but now, in integrating the 2-D spectrum over k⊥,
we assume that there is no free energy at perpendicular wavenumbers below the
collisional cutoff k⊥ ∼ (νm)3/4 (see (4.44)). The following three cases correspond
to the collisional cutoff falling into the phase-mixing-dominated, intermediate and
advection-dominated regions, respectively:

E‖+m (k‖)∼



k−2
‖

m2
if m .

(
k‖
ν

)2/3

∼mc,

k−1
‖

νm7/2
if
(

k‖
ν

)2/3

. m .
k‖
ν
,

k0
‖

ν2m9/2
if m &

k‖
ν
.

(4.48)

Note that the last two cases are only relevant at very high m (because k‖ > k‖0 ∼ 1,
the outer scale in our units). Now integrating these spectra over m, we find that the
total free energy in a given k‖ is completely dominated by low m’s:

W(k‖)∼
∫ ∞
∼1

dmE‖+m (k‖)∼ k−2
‖ . (4.49)

The total collisional-dissipation rate vanishes with ν:

D(k‖)∼ ν
∫ ∞
∼1

dm mE‖+m (k‖)∼ k−2
‖ ν

∫ mc

∼1

dm
m
∼ k−2
‖ ν ln

(
k‖
ν

)2/3

→ 0 as ν→ 0.

(4.50)

Equations (4.49) and (4.50) are the nonlinear versions of (2.60) and (2.61),
respectively – we see that, unlike in the linear problem, the free energy remains
finite and collisional dissipation vanishes as ν→+0.

https://doi.org/10.1017/S0022377816000374 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000374


Phase mixing versus nonlinear advection in plasma turbulence 33

5. Conclusion
5.1. Summary of free-energy spectra and of the method of deriving them

Considering the full phase space (k‖, k⊥, m), we posited a set of power-law
relationships for the free-energy spectra and then determined the scaling exponents
from a combination of matching conditions between different regions of the phase
space and physical arguments about the free-energy flows, constrained by conservation
laws. The spectra are, for the phase-mixing modes (i.e. perturbations that propagate
from low to high m),

E+m(k‖, k⊥)∼



k0
‖k
−11/3
⊥

m5/2
if k‖ . k4/3

⊥

(advection dominated),
k−1
‖ k−7/3
⊥

m5/2
if k4/3

⊥ . k‖ .
√

mk4/3
⊥

(intermediate),
k−5
‖ k3
⊥√

m
if k‖ &

√
m k4/3
⊥

(phase-mixing dominated),

(5.1)

for the anti-phase-mixing modes (propagating from high to low m),

E−m(k‖, k⊥)∼



k0
‖k
−11/3
⊥

m5/2
if k‖ . k4/3

⊥

(advection dominated),
k−5
‖ k3
⊥

m5/2
if k‖ & k4/3

⊥

(no echo),

(5.2)

and for the ‘fluid’ (low-m) moments,

Eϕ(k‖, k⊥)∼


k0
‖k
−11/3
⊥ if k‖ . k4/3

⊥
(advection dominated),

k−5
‖ k3
⊥ if k‖ & k4/3

⊥
(phase-mixing dominated).

(5.3)

A graphical summary of these spectra is presented in figure 2.
As is manifest in the above formulae, the phase space is partitioned into several

regions, where different physics controls the distribution of the free energy.

(i) In the phase-mixing-dominated region (§ 4.1), the phase-mixing rate is greater
than the rate of nonlinear advection, k‖vth/

√
m � k⊥u⊥, and so whatever

distribution of free energy exists at these wavenumbers at low m’s will simply be
propagated to larger m’s – this is the part of the wavenumber space where modes
are ‘Landau damped’ in the usual linear sense. The perpendicular spectrum in
this region (∝k3

⊥; see (5.1)) is fixed on purely kinematic grounds (appendix A),
the m scaling (∝m−1/2) is the same as in the linear problem, corresponding to
constant Hermite flux (Zocco & Schekochihin (2011), Kanekar et al. (2015); see
§ 2.5), whereas the scaling exponent of the parallel spectrum (∝k−a

‖ , a = 5) is
fixed by matching with the nonlinear dynamics (§ 4.4; see (4.31)).
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(ii) The continual flow of free energy into high m’s as described above sets the
matching condition at the phase-mixing threshold, where the nonlinear-advection
rate becomes comparable to the phase-mixing rate, k⊥u⊥∼ k‖vth/

√
m. The role of

the nonlinear advection is to divert the free energy from flowing straight to higher
m’s to flowing to higher k⊥’s. The competition between these two processes sets
the prevailing dependence of the free energy on m, giving rise to the m−5/2

scaling of the 2-D spectra (see (5.1); derived in § 4.4.1 and appendix C) and the
m−2 overall scaling (see (4.36); in reasonable agreement with recent numerical
studies by Hatch et al. 2013, 2014). The situation at the phase-mixing threshold
is so crucial because the free-energy spectra rise as k⊥ increases and k‖ decreases
from the phase-mixing-dominated region towards the phase-mixing threshold and
then fall beyond it, at higher k⊥ and lower k‖, so it is along the phase-mixing
threshold that the energy-containing scales in phase space lie.

(iii) The intermediate region comprises the wavenumbers at which the nonlinear-
advection rate is already dominant compared to the phase-mixing rate of the
high-m moments of the distribution function, but not of the low-m moments and,
in particular, of the zeroth moment, ϕ, which is what sets the E×B flow velocity
u⊥ that is doing the advection: k‖vth/

√
m� k⊥u⊥� k‖vth. The energy-containing

wavenumbers for the flow lie along the critical-balance curve k⊥u⊥∼ k‖vth (§ 4.2)
– and so the nonlinear interactions in the intermediate region are non-local in
k‖, with short-parallel-scale perturbations of the distribution function advected
by a longer-scale flow, i.e. an effectively 2-D velocity field (see appendix B).
A constant-flux argument for the free-energy cascade in k⊥ then fixes the k−7/3

⊥
scaling of the 2-D free-energy spectrum in this region, while its k−1

‖ scaling
follows from matching to the spectra at the phase-mixing threshold and at the
critical-balance curve (the second scaling in (5.1); see § 4.4).

(iv) Beyond the critical-balance curve, k⊥u⊥ � k‖vth, the nonlinear advection is
completely dominant over phase mixing, giving rise to the advection-dominated
region. The advecting flow is now 3-D and another constant-flux argument
gives the k−11/3

⊥ scaling of the free-energy spectrum, whereas its k0
‖ scaling

is a white-noise spectrum deduced via a simple causality argument implying
that perturbations with a certain perpendicular scale are decorrelated at parallel
distances long enough that information cannot traverse them at the speed ∼vth

over one cascade time corresponding to that perpendicular scale (the first scaling
in (5.1); see § 4.3).

The above arguments have all focused on the free energy contained in the
perturbations that propagate from low to high m, i.e. ones prone to phase mixing
(whether it is fast or slow compared to nonlinear advection). In a nonlinear system,
an advecting flow that has a parallel spatial dependence, i.e. k‖ 6= 0, can couple
these perturbations to others that have parallel wavenumbers of opposite sign and
so will propagate from high to low m, a phenomenon known as plasma echo
(§ 3.2). Separating all perturbations into these ‘+’ and ‘−’ components (§ 3.1)
allows us to express the free energy as the sum of their spectra and its flux in
Hermite space as proportional to the difference between these spectra (§ 3.4). In the
advection-dominated region, vigorous nonlinear coupling implies that the ‘+’ and
‘−’ spectra are the same and so, statistically, there is no free-energy flux between
different m’s – i.e. the phase-mixing and the anti-phase-mixing energy fluxes cancel
each other (see § 4.3 and the first scaling in (5.2)). In contrast, there is no echo effect
and, therefore, no significant ‘−’ energy either in the intermediate region (because the
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flow velocity there is effectively 2-D and so cannot couple different k‖’s) or in the
phase-mixing-dominated region (because anti-phase-mixing modes do not propagate
to higher m’s). The ‘−’ spectrum outside the advection-dominated region (the second
scaling in (5.2), derived in § 4.5) is, therefore, determined by the kinematic constraint
giving the k3

⊥ scaling at long wavelengths and by the matching conditions along the
boundary of that region – the critical-balance curve.

Finally, the spectra (5.3) of the low-m, ‘fluid’ moments are basically a continuation
of the high-m spectra (5.1) and (5.2) down to low m’s. Physically, since the Hermite
flux between different m’s is on average shut down in the advection-dominated region,
these scalings can be determined by assuming constant flux of the ‘fluid’ part of the
free energy, i.e. effectively, by pretending that the turbulence is fluid-like (Barnes et al.
2011; see §§ 2.4.2 and 4.2). Such a shortcut has always been tempting (e.g. Weiland
1992), but was not a priori justified for a kinetic system (§ 2.4.4).

5.2. Free-energy flows
Although this was implicit in our discussion of the partition of phase space (§ 5.1),
it is worth spelling out what path the free energy takes through it. Let us start from
some (m, k‖, k⊥) in the phase-mixing-dominated region (lower right corner in the right
panel of figure 2a). At first, the free energy will move (phase mix) from there to
higher m (vertically towards the blue line in figure 2a) until it reaches the phase-
mixing threshold m∼ k2

‖/k
8/3
⊥ (equation (4.5) with r= 4/3; the blue line in figure 2a,b).

There it enters the intermediate region, where it is advected by an effectively 2-D
velocity field (see § 4.4.1 and appendix B) to higher k⊥ while staying at fixed k‖
(in the top panel of figure 2b, horizontally from the blue towards the red line) until
it reaches the critical-balance threshold k⊥ ∼ k3/4

‖ (equation (4.20); the red line in
figure 2b). At that point it enters the advection-dominated region, where the advection
is 3-D and the energy flows along the critical-balance curve (diagonally upwards along
the red line in the top panel of figure 2b; see § 4.3). Since a 3-D velocity is effective
at coupling positive and negative k‖’s, this flow of energy involves both ‘+’ and
‘−’ modes (the latter shown in the bottom panel of figure 2b, where the critically
balanced energy flow is also along the red line). There is not much flow of the ‘−’
energy beyond the critical-balance threshold (to the left of the red line in the bottom
panel of figure 2b, or, equivalently, to the lower left of the red line in the left panel
of figure 2a) because it nonlinearly couples back to ‘+’ modes faster than it can
anti-phase-mix to lower m’s.21

5.3. Implications and outlook
The free-energy distribution in phase space summarised above has several important
properties and implications.

The free-energy flux out of the ‘fluid’ moments is heavily suppressed in the
wavenumber region bounded by the critical-balance curve, k‖. k4/3

⊥ , which is also the
region that contains most of the free energy flowing through the inertial range. Thus,
at the energetically relevant wavenumbers of the inertial range, Landau damping is
effectively absent. The resulting Hermite spectra have steep power laws (∝m−2 for

21It is possible for mode coupling in k‖ to combine with anti-phase-mixing to push some ‘−’ energy
towards larger k‖, but that process is diffusive in k‖ and will be slower than direct nonlinear coupling back
into ‘+’ modes. It becomes important when the advecting flow is scale separated from the distribution function
that is advected by it (Schekochihin et al. 2016).
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the total energy; see (4.36)) and so the total free energy contained in the phase space
is finite, dominated by low m’s (the energy in the ‘fluid’ moments) and does not
diverge at vanishing collisionality (see (4.49)) – in sharp contrast to its behaviour in
the linear problem (see (2.61)). Furthermore, the total collisional dissipation vanishes
in the nonlinear problem (see (4.50)), again in contrast to the linear case, where the
dissipation rate is finite and absorbs all of the energy that is injected into the system
(Kanekar et al. 2015; see (2.60)). This means that most of the dissipation occurs at
small spatial scales (i.e. beyond the Larmor scale, a region that we have left outside
our detailed focus). This is indeed what was recently found numerically by Hatch
et al. (2013, 2014): decreasing share of the collisional dissipation with decreasing
collisionality. Note that finite collisionality imposes a cutoff on the free-energy spectra
at high enough m, or, equivalently, at low enough k‖ and k⊥ (see (4.44)); when the
collision frequency approaches the rates of phase-mixing and nonlinear-advection
rates, a certain amount of collisional dissipation will occur at low wavenumbers (cf.
Watanabe & Sugama 2006; Hatch et al. 2011a,b).

It is inevitable that one must ask about the implications our results might have
for the Landau-fluid closures as a viable modelling technique – a subject that has
long been discussed and refined in the context of fusion plasmas (Hammett &
Perkins 1990; Hammett et al. 1992, 1993; Hedrick & Leboeuf 1992; Mattor 1992;
Weiland 1992; Dorland & Hammett 1993; Beer & Hammett 1996; Snyder, Hammett
& Dorland 1997; Snyder & Hammett 2001a,b; Ramos 2005) as well as, more
recently, space and astrophysical ones (Passot & Sulem 2004, 2006, 2007; Goswami,
Passot & Sulem 2005; Passot, Sulem & Hunana 2012). While the basic idea of the
Landau-fluid approach is to include into fluid equations damping terms (∼|k‖|vth)
fit to capture correctly the linear Landau damping, it has long been known in this
field that quantitatively these models work better when more Hermite moments are
retained and this inclusion happens at the level of the highest of them (Smith 1997).
Considering that the free energy scales steeply with m, as shown above, it stands
to reason that, at low collisionality, Landau-fluid closures that retain a certain finite
(independent of the collision frequency) number of moments may be sufficient for
a full characterisation of kinetic turbulence – in that already just this finite number
of moments will be enough to capture most of the echo flux from phase space back
to ‘fluid’ moments. The Landau closure terms affecting the highest of the retained
moments will then serve to regularise the problem in the energetically subdominant
part of the wavenumber space – the phase-mixing region – where the free energy has
a shallow scaling ∼m−1/2 (§ 4.1).

There is clearly space for further development of this line of reasoning, leading to
more quantitative prescriptions for capturing the echo effect within the Landau-fluid
framework. If one thinks of these closures in the same modelling spirit as one does
about large-eddy-simulation techniques in fluid dynamics (Smagorinsky 1963) – and,
more recently, in gyrokinetics (Morel et al. 2011, 2012; Bañón Navarro et al. 2014),
– the m−5/2 spectrum we have derived can serve the useful role of providing the
signature of a well-developed nonlinear phase-space ‘cascade’, which, once formed,
can be promptly and safely cut off by model dissipation terms.

Ranging somewhat further afield, we note that spacecraft measurements of
compressive (density and magnetic-field strength) fluctuations in the inertial range22

22These can be shown to be drift-kinetic fields passively advected by the turbulent velocity field u⊥
associated with Alfvénic perturbations. They satisfy equations that are quite similar to (2.8), although with
an additional complication that particles stream along magnetic field that is also perturbed by the Alfvénic
turbulence and so linear and nonlinear mixing are somewhat intertwined (Schekochihin, Cowley & Dorland
2007; Schekochihin et al. 2009; Kunz et al. 2015).
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of the solar-wind turbulence (Celnikier et al. 1983; Celnikier, Muschietti & Goldman
1987; Marsch & Tu 1990; Bershadskii & Sreenivasan 2004; Hnat, Chapman &
Rowlands 2005; Kellogg & Horbury 2005; Chen et al. 2011, 2014) show healthy
Kolmogorov-like power-law spectra – in what is generally a β ∼ 1 plasma, where the
Landau damping of such fluctuations (Barnes 1966) ought to be of the same order as
their nonlinear cascade rates (Schekochihin et al. 2009). Similarly robust power-law
spectra at sub-ion-Larmor scales have also been measured (Sahraoui et al. 2009, 2010,
2013; Alexandrova et al. 2009, 2012; Chen et al. 2010, 2013) and found in kinetic
simulations (Chang, Peter Gary & Wang 2011; Howes et al. 2011), even though
Landau damping of kinetic Alfvén waves (Howes et al. 2006; Gary & Borovsky
2008) should be quantitatively noticeable at these scales (Howes et al. 2008; Podesta,
Borovsky & Gary 2010). Whereas attempts have been made to argue that in some
of these situations the linear damping might be weak (Lithwick & Goldreich 2001;
Howes et al. 2008; Schekochihin et al. 2009), it is a tempting – and more interesting
– thought that the general mechanism for (statistical) suppression of phase mixing
in a turbulent system proposed here is responsible for making collisionless plasma
turbulence in the solar wind behave in a seemingly more ‘fluid-like’ fashion than
theoreticians might have thought it had a right to do.23 A numerical and theoretical
investigation of this possibility is a subject of our current efforts.

To conclude, the considerations presented above appear to point to a number of
promising directions for numerical experiment and further thought. We hope to explore
some of those in the not so distant future.24
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Appendix A. Long-wavelength scaling of spectra
Here we review the standard argument that the spectrum of a 2-D-isotropic,

homogeneous field ϕ(k‖, r⊥) has the low-wavelength asymptotic form

Eϕ(k‖, k⊥)= 2πk⊥〈|ϕ(k‖, k⊥)|2〉 ∝ k3
⊥ as k⊥→ 0. (A 1)

23An immediate physically interesting conclusion from such an outcome, apart from power-law compressive
spectra being theoretically legitimised, would be that one should not expect any ion heating associated with
the inertial-range turbulence (see (4.50)), with the thermal fate of all turbulent energy determined at the ion
Larmor scale, where the 4-D drift-kinetic phase-space cascade morphs into a more complicated 5-D gyrokinetic
one (Schekochihin et al. 2009; Howes et al. 2011; Told et al. 2015).

24As this paper is going into press, the first dedicated numerical tests of our theory have been undertaken
by Kanekar (2015), Parker (2016) and Parker et al. (2016), so far broadly supporting our conclusions.
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Setting the perpendicular-Fourier-transform conventions to be

ϕ(k‖, r⊥)=
(

L⊥
2π

)2 ∫
d2k⊥eik⊥·r⊥ϕ(k‖, k⊥), (A 2)

ϕ(k‖, k⊥)=
∫

d2r⊥
L2
⊥

e−ik⊥·r⊥ϕ(k‖, r⊥), (A 3)

where L⊥ is the box size, we find

〈|ϕ(k‖, k⊥)|2〉 =
∫

d2r⊥1

L2
⊥

∫
d2r⊥2

L2
⊥

e−ik⊥·(r⊥1−r⊥2)〈ϕ(k‖, r⊥1)ϕ
∗(k‖, r⊥2)〉

=
∫

d2r⊥
L2
⊥

e−ik⊥·r⊥C(k‖, r⊥)= 2π

L2
⊥

∫ ∞
0

dr⊥r⊥J0(k⊥r⊥)C(k‖, r⊥),

(A 4)

where r⊥= r⊥1− r⊥2, C(k‖, r⊥) is the two-point correlation function of ϕ (which only
depends on r⊥= |r⊥| because the field is statistically homogeneous and isotropic), and
J0 is the Bessel function of order zero.

If the correlation function C(k‖, r⊥) decays sufficiently quickly with r⊥, it will
restrict the integral in (A 4) to values of r⊥ that are smaller than or comparable to
the perpendicular correlation length r⊥c of the field ϕ(k‖, r⊥). Note that r⊥c will be a
function of k‖, so it is not necessarily the outer scale – in § 4.2, we argue that it is
the critical-balance scale, r⊥c ∼ k−1

⊥c ∼ k−1/r
‖ . If we now consider k⊥r⊥c� 1, we may

expand the Bessel function J0(k⊥r⊥) = 1 − k2
⊥r2
⊥/4 + · · · in (A 4), which then gives

us

Eϕ(k‖, k⊥)= 2πk⊥〈|ϕ(k‖, k⊥)|2〉 = k⊥

[(
2π

L⊥

)2 ∫ ∞
0

dr⊥r⊥C(k‖, r⊥)

]

+ k3
⊥

[
−1

4

(
2π

L⊥

)2 ∫ ∞
0

dr⊥r3
⊥C(k‖, r⊥)

]
+ · · ·

(A 5)

The first term is proportional to
∫

d2r⊥〈ϕ(k‖, r⊥)ϕ∗(k‖, 0)〉 and so it vanishes if we
assume that

∫
d2r⊥ϕ(k‖, r⊥) = ϕ(k‖, k⊥ = 0) = 0, i.e. that there are no purely 1-

D parallel modes.25 Hence we obtain the desired result (A 1), with the proviso that
C(k‖, r⊥) decays faster than 1/r4

⊥ as r⊥→∞ and so the integral prefactor of k3
⊥ in

(A 5) converges.

Appendix B. Non-local interactions in the intermediate region
Consider the nonlinear coupling expressed by the right-hand side of (3.12), which

we now rewrite as a wavenumber convolution in both parallel and perpendicular

25In the theory of a passive scalar, the quantity
∫∞

0 d2r⊥C(k‖, r⊥) is known as the Corrsin (1951) invariant
– the decay laws for a passive scalar can depend on whether this invariant is zero or finite because that
sets the long-wavelength asymptotic behaviour of the scalar’s spectrum (e.g. Eyink & Xin 2000; Schekochihin
et al. 2004). The fact that this asymptotic behaviour is ∼k3⊥ in our theory, will have implications for the
determination of the Hermite spectrum; see appendix C.
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directions: (
∂ f̃
∂t

)
nl

(k‖, k⊥)=−ik⊥ ·
∑
p‖,p⊥

u⊥(p‖, p⊥)f̃ (k‖ − p‖, k⊥ − p⊥). (B 1)

In the intermediate wavenumber region between the phase-mixing threshold and the
critical balance, √

mk⊥u⊥ & k‖vth & k⊥u⊥ ⇔ √
mkr
⊥ & k‖ & kr

⊥, (B 2)

the coupling in (B 1) must be predominantly between disparate wavenumbers (i.e. the
coupling is non-local) because the energy-containing wavenumbers for u⊥ are p‖. pr

⊥,
which lie outside the region (B 2). There are two basic possibilities: coupling that is
local in k⊥ but non-local in k‖ and coupling that is local in k‖ but non-local in k⊥. In
analysing the rates of such interactions, we will consider f̃ to be at the phase-mixing
threshold, k‖ ∼√m kr

⊥, and u⊥ in critical balance, p‖ ∼ pr
⊥.

Suppose the perpendicular coupling is local, p⊥ ∼ |k⊥ − p⊥| ∼ k⊥. Then

p‖ ∼ kr
⊥ ∼

k‖√
m
� k‖, (B 3)

so the distribution function f̃ (k‖−p‖)≈ f̃ (k‖) is advected by an effectively 2-D velocity
field: back in real space, (B 1) becomes(

∂ f̃
∂t

)
nl

≈−u⊥(z= 0, r⊥) · ∇⊥ f̃ (k‖, r⊥). (B 4)

The rate of nonlinear advection of f̃ (k‖) is, as usual,

k⊥u⊥ ∼ kr
⊥. (B 5)

Note that as there is no coupling in k‖, there can be no echo.
Now suppose instead that it is the parallel coupling that is local, p‖∼ |k‖− p‖| ∼ k‖.

Then

p⊥ ∼ k1/r
‖ ∼m1/2rk⊥� k⊥, (B 6)

so the distribution function f̃ is advected by a much-smaller-scale (in the perpendicular
direction) velocity field. The net effect of such an advection will be turbulent diffusion
of f̃ with the effective mixing length ∼1/p⊥ and the effective diffusion coefficient

Dturb ∼ u⊥
p⊥
∼ pr−2

⊥ ∼ kr−2
⊥ m(r−2)/2r. (B 7)

The rate of nonlinear advection associated with this process is then

Dturbk2
⊥ ∼

kr
⊥

m(2−r)/2r
� kr

⊥, (B 8)

provided r< 2 (which it is, considering it will turn out to be r= 4/3). This is much
smaller than the local in k⊥, non-local in k‖ advection rate (B 5). Thus, the latter type
of interactions will be the dominant ones – the claim we make in § 4.4.1, which this
appendix is meant to back up.

Note that other kinds of interaction – of various degree of non-locality in both
k‖ and k⊥ – cannot prove faster because non-locality in k⊥ will always slow down
coupling (diffusion is slower than advection) while more or less non-locality in k‖
simply makes the velocity u⊥ more or less 2-D compared to f̃ , without changing the
rate of advection.
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Appendix C. Spectra near phase-mixing threshold and the free-energy decay in
Hermite space

In a statistical steady state, the free-energy spectrum is independent of time and so
described by (3.26):

k‖vth√
2

∂F
∂s
=−2Re

∑
p‖

〈f̃ ∗(k‖)u⊥(p‖) · ∇⊥ f̃ (k‖ − p‖)〉 − 2νs2F. (C 1)

Let us consider the wavenumbers around the phase-mixing threshold, for which
k‖vth ∼ k⊥u⊥, so the phase-mixing term is comparable to the nonlinear term.
Ignoring collisions, assuming locality in k⊥ (see appendix B) and expanding in
p‖ ∼ k⊥u⊥/vth�√mk⊥u⊥/vth ∼ k‖, we have (cf. (B 4))

k‖vth√
2

∂

∂s

〈
|f̃ (k‖)|2

〉
≈−〈u⊥(z= 0, r⊥) · ∇⊥|f̃ (k‖)|2〉. (C 2)

Formally, this looks like an equation for the spectrum of a passive 2-D field f̃ (k‖, r⊥),
parametrised by k‖, advected by a 2-D velocity field u⊥(z= 0, r⊥) and decaying with
s, which plays the role of time. While devising a specific quantitative closure for the
triple correlator in the right-hand side of (C 2) is outside the scope of this paper, it
is plausible that the solutions around the phase-mixing threshold k‖vth ∼ sk⊥u⊥ will
satisfy, roughly,

∂ f̃ 2

∂s
∼ k⊥u⊥

k‖vth
f̃ 2 ∼ f̃ 2

s
⇒ f̃ 2(s, k‖)∝ 1

sµ
. (C 3)

Thus, the decay must be a power law, as we indeed assumed in (4.26). This decay law
is set at the ‘outer scale’, which is the phase-mixing threshold: k⊥ ∼ (k‖/s)1/r (k‖ is
fixed). Below this scale, i.e. at k⊥� (k‖/s)1/r, the phase-mixing term is small and the
f̃ (s, k‖) is simply cascaded subject to the constant-flux argument proposed in § 4.4.1
(i.e. the right-hand side of (C 2) must vanish to lowest order in 1/s). This gives a
spectrum of the form (4.26), inheriting its decay law ∼1/mσ ′ from the ‘outer scale’.
The decay law of the spectrum in the advection-dominated region k⊥ & k1/r

‖ , equation
(4.25), is then the same, σ = σ ′, via matching at the critical-balance curve k⊥ ∼ k1/r

‖
(see (4.28)).

What is the relationship between µ and σ ′ and how is this scaling exponent
determined? Equation (C 3) effectively sets the 1-D parallel-wavenumber spectrum,
i.e. as explained above, the free-energy content of all wavenumbers k⊥ & (k‖/s)1/r:
using (4.26), we get

f̃ 2(s, k‖)
s
∼ E‖m(k‖)∼

∫ ∞
(k‖/
√

m)1/r
dk⊥E+m(k‖, k⊥)∼ k−a′−(d′−1)/r

‖
mσ ′−(d′−1)/2r

, (C 4)

so µ = 2σ ′ − 1 − (d′ − 1)/r. This decay exponent, or, equivalently, σ ′, is deduced
(along with a′) by matching the decay law (C 3) with the decay law of the total
variance of f̃ 2(k‖) contained at long wavelengths k⊥ . (k‖/s)1/r: using the asymptotic
form (4.8), we get

f̃ 2(k‖)
s
∼ E‖m(k‖)∼

∫ (k‖/
√

m)1/r

0
dk⊥E+m(k‖, k⊥)∼ k−a+4/r

‖
m1/2+2/r

, (C 5)
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so µ = 4/r. Matching (C 4) and (C 5), we get two relations constraining σ ′ and a′,
which, combined with matching conditions at the critical-balance curve k⊥ ∼ k1/r

‖ , are
the same as (4.28). Note that using the set of exponents (4.31) and (4.33), we happily
recover the 1-D parallel spectrum (4.36) from either of (C 4) and (C 5). We also find
that µ= 3.

Note that deducing the decay law of a turbulent field by fixing the long-wavelength
asymptotic behaviour of its spectrum (Em ∝ k3

⊥ in our case) is a standard trick of
the trade in turbulence theory (e.g. Kolmogorov 1941a; Corrsin 1951; Saffman 1967;
Eyink & Xin 2000; Schekochihin, Haynes & Cowley 2004; Davidson 2010, 2013).
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