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Abstract

We present a numerical method to compute the survival function and the moments of the
exit time for a piecewise-deterministic Markov process (PDMP). Our approach is based
on the quantization of an underlying discrete-time Markov chain related to the PDMP.
The approximation we propose is easily computable and is even flexible with respect to
the exit time we consider. We prove the convergence of the algorithm and obtain bounds
for the rate of convergence in the case of the moments. We give an academic example
and a model from the reliability field to illustrate the results of the paper.
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1. Introduction

The aim of this paper is to propose a practical numerical method to approximate the survival
function and the moments of the exit time for a piecewise-deterministic Markov process based
on the quantization of a discrete-time Markov chain naturally embedded within the continuous-
time process.

Piecewise-deterministic Markov processes (PDMPs) were introduced by Davis [5] as a
general class of stochastic models. PDMPs are a family of Markov processes involving
deterministic motion punctuated by random jumps. The motion depends on three local charact-
eristics, namely the flow �, the jump rate λ, and the transition measure Q, which specifies the
post-jump location. Starting from the point x, the motion of the process follows the flow�(x, t)
until the first jump time T1, which occurs either spontaneously in a Poisson-like fashion with
rate λ(�(x, t)) or when the flow�(x, t) hits the boundary of the state space. In either case, the
location of the process at the jump time T1 is selected by the transition measureQ(·,�(x, T1))

and the motion restarts from this new pointX(T1) denoted by Z1. We similarly define the time
S2 until the next jump; the next jump time is T2 = T1 + S2, the next post-jump location
Z2 = X(T2), and so on. Thus, associated to the PDMP we have discrete-time Markov chains
(Zn, Tn)n∈N, given by the post-jump locations and the jump times, and (Zn, Sn)n∈N, given by the
post-jump locations and the inter-jump times. Suitable choices of the state space and the local
characteristics �, λ, and Q provide stochastic models covering a great number of problems in
operations research; see, for example, [4], [5], and the corrosion model presented in this paper.
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Numerical computation of the moments of the exit time for a Markov process has been
studied by Helmes et al. [8]. Starting from an assumption related to the generator of the
process, they derived a system of linear equations satisfied by the moments. In addition to
these equations, they included finitely many Hausdorff moment conditions that are also linear
constraints. This optimization problem is a standard linear programming problem for which
a lot of efficient software is available. Lasserre and Prieto-Rumeau [9] introduced a similar
method, but they improved the efficiency of the algorithm by replacing the Hausdorff moment
conditions with semidefinite positivity constraints of some moment matrices. Nevertheless,
their approach cannot be applied to PDMPs because the assumption related to the generator
of the process is generally not satisfied. In [5, Section 33] Davis gave an iterative method to
compute the mean exit time for a PDMP, but his approach involved solving a large set of ordinary
differential equations whose forms are very problem specific, depending on the behaviour of
the process at the boundary of the state space. Besides, and in the context of applications to
reliability, it seems important to also study the distribution of the exit time.

There exists extensive literature on quantization methods for random variables and processes.
The interested reader is referred to, e.g. [7], [10], and the references therein. Quantization
methods have been developed recently for numerical probability or optimal stochastic control
problems with applications in finance (see, e.g. [1]–[3] and [10]). The quantization of a Markov
chain (�n)n∈N consists in finding, for each n, an optimally designed discretization of the state
space of �n providing the best possible Lp-approximation by a random variable �̂n taking
its values in a grid �n of finite and fixed size as well as a transition measure of the quantized
chain (�̂n)n∈N. As explained for instance in [10, Section 3], provided that the Markov kernel is
Lipschitz, bounds for the rate of Lp-convergence of the quantized process towards the original
process are obtained.

In the present work, we consider a PDMP (Xt )t≥0 with state space E and we present
approximation methods to compute the moments and the survival function of the exit time from
a set U ⊂ E, given that the PDMP exits the set U before the N th jump time TN . Roughly
speaking, we estimate the moments and the survival function for τ∧TN . In our approach, the first
step consists in expressing the j th moment (respectively the survival function) as the last term
of some sequence (pk,j )k≤N (respectively (pk)k≤N ) satisfying a recursion pk+1,j = ψ(pk,j )

(respectively pk+1 = ψ(pk)) specifically built within our paper.
In this context, a natural way to deal with these problems is to follow the idea developed

in [6], namely to write the recursions in terms of an underlying discrete-time Markov chain
and to replace it by its quantized approximation. The definitions of (pk,j )k and (pk)k involve
some discontinuities related to indicator functions, but, as in [6], we show that they occur with
small enough probabilities. However, an important feature that distinguishes the present work
from [6] and which prevents a straightforward application of the ideas developed therein, is
that an additional important difficulty appears in the definitions of the sequences (pk,j )k and
(pk)k . Indeed, the mapping ψ such that pk+1,j = ψ(pk,j ) and pk+1 = ψ(pk) is not Lipschitz
continuous. One of the main results of this paper is to overcome this difficulty by deriving new
and important properties of the Markov chain (Zn, Tn)n∈N, combined with a sharp feature of
the quantization algorithm. We are able to prove the convergence of the approximation scheme.
Moreover, in the case of the moments, we even obtain bounds for the rate of convergence. It is
important to stress that these assumptions are quite reasonable with regards to the applications.

An important advantage of our method is that it is flexible. Indeed, as pointed out in [1],
a quantization-based method is ‘obstacle free’, which means, in our case, that it produces,
once and for all, a discretization of the process independently of the set U . Consequently, the
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approximation schemes for both the moments and the distribution of the exit time are flexible
with respect to U . Indeed, if we are interested in the exit time from a new set U ′, it will
be possible, provided that U ′ satisfies the same assumptions as U , to obtain in a very simple
way the moments and the distribution of this new exit time. Indeed, the quantization grids are
computed only once, stored offline, and may therefore serve many purposes.

The paper is organized as follows. We first recall the definition of a PDMP and state our
assumptions. In Section 3, we introduce the moments and the distribution problems, and
present recursive methods to solve them. Section 4 contains the main contributions of this
paper, namely the approximation schemes, the proofs of convergence, and bounds for the rates
of convergence. Two numerical examples are developed in Section 5 and the advantages of our
approach are discussed in Section 6.

2. Definitions and assumptions

For any metric space X, we denote by B(X) its Borel σ -field and by B(X) the set of real-
valued, bounded, and measurable functions defined on X. For a, b ∈ R, a ∧ b = min(a, b)
and a ∨ b = max(a, b).

2.1. Definition of a PDMP

In this section we define a PDMP and introduce some general assumptions. Let M be a
finite set, called the set of the modes, that represents the different regimes of evolution of the
PDMP (M is supposed to be a finite space although it could be countable); for each m ∈ M ,
the process evolves in Em, an open subset of R

d(m) (where d : M → N
∗). Let

E = {(m, ξ), m ∈ M, ξ ∈ Em}.
This is the state space of the process (Xt )t∈R+ = (mt , ξt )t∈R+ . Let ∂E be its boundary, let Ē
be its closure, and, for any subset Y of E, let Y c denote its complement.

Define on E the following distance: for x = (m, ξ) and x′ = (m′, ξ ′) ∈ E,

|x − x′| =
{

+∞ if m �= m′,
|ξ − ξ ′| otherwise.

Moreover, for any x ∈ E and Y ⊂ E, denote by d(x, Y ) the distance between the point x and
the set Y , i.e. d(x, Y ) = infy∈Y |x − y|.

A PDMP is defined by its local characteristics (�m, λm,Qm)m∈M .

• For each m ∈ M , �m : R
d(m) × R → R

d(m) is a continuous function called the flow in
mode m. For all t ∈ R, �m(·, t) is an homeomorphism and t → �m(·, t) is a group,
i.e. for all ξ ∈ R

d(m), �m(ξ, t + s) = �m(�m(ξ, s), t). For all x = (m, ξ) ∈ E, define
the deterministic exit time from E by

t∗(x) = inf{t > 0 such that �m(ξ, t) ∈ ∂Em}.
Here and throughout, we use the convention that inf ∅ = +∞.

• For all m ∈ M , the jump rate λm : Ēm → R
+ is measurable and satisfies the following

condition:

for all (m, ξ) ∈ E, there exists ε > 0 such that
∫ ε

0
λm(�m(ξ, t)) dt < +∞.
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• For all m ∈ M , Qm is a Markov kernel on (B(Ē), Ēm) which satisfies the following
condition:

for all ξ ∈ Ēm, Qm(E \ {(m, ξ)}, ξ) = 1.

From these characteristics, it can be shown (see [5, p. 57]) that there exists a filtered probability
space (�,F ,Ft , (Px)x∈E) on which a process (Xt )t∈R+ is defined. Its motion, starting from
a point x ∈ E, may be constructed as follows. Let T1 be a nonnegative random variable with
survival function

Px(T1 > t) =
{

e−�(x,t) if 0 ≤ t < t∗(x),
0 if t ≥ t∗(x),

where, for x = (m, ξ) ∈ E and t ∈ [0, t∗(x)],

�(x, t) =
∫ t

0
λm(�m(ξ, s)) ds.

We then choose an E-valued random variable Z1 with distribution Qm(·,�m(ξ, T1)). The
trajectory of Xt for t ≤ T1 is

Xt =
{
(m,�m(ξ, t)) if t < T1,

Z1 if t = T1.

Starting from the point XT1 = Z1, we select the next inter-jump time T2 − T1 and the next
post-jump location Z2 in a similar way.

Davis showed (see [5]) that the process so defined is a strong Markov process (Xt )t≥0 with
jump times (Tn)n∈N (with T0 = 0). The process (�n)n∈N = (Zn, Tn)n∈N, where Zn = XTn is
the post-jump location and Tn is the nth jump time, is clearly a discrete-time Markov chain.
Besides, we denote by Sn = Tn − Tn−1 and S0 = 0 the inter-jump times.

The following assumption about the jump times is standard (see, for example, [5, Sec-
tion 24]).

Assumption 2.1. For all (x, t) ∈ E × R
+, Ex[∑k 1{Tk<t}] < +∞.

Assumption 2.1 implies that Tk → +∞ almost surely (a.s.) when k → +∞.
For notational convenience, any functionh defined onEwill be identified with its component

functions hm defined on Em. Thus, we write

h(x) = hm(ξ) when x = (m, ξ) ∈ E.
We also define a generalized flow � : E × R

+ → E such that

�(x, t) = (m,�m(ξ, t)) when x = (m, ξ) ∈ E.
2.2. Notation

For any function w in B(Ē), we introduce

Qw(x) =
∫
E

w(y)Q(dy, x), Cw = sup
x∈Ē

|w(x)|,

and, for any Lipschitz continuous function w in B(Ē), we denote its Lipschitz constant by

[w] = sup
x �=y∈Ē

|w(x)− w(y)|
|x − y| ,

with the convention that 1/∞ = 0.
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Remark 2.1. For w ∈ B(Ē) and from the definition of the distance on E, we have [w] =
supm∈M [wm].

3. Exit time

For allm ∈ M , let Um be a Borel subset of Em and let U = {(m, ξ), m ∈ M, ξ ∈ Um}. We
are interested in the exit time from U , denoted by τ and given by

τ = inf{s ≥ 0 such that Xs �∈ U}.
Denote by µ the distribution of the initial state of the process Z0. Since the present paper
concerns numerical computations, the following assumption appears natural.

Assumption 3.1. The process starts in U and eventually leaves it a.s., i.e. the support of µ is
included in U and Pµ(τ < +∞) = 1.

The aim of this paper is to provide approximation schemes for the survival function and
moments of the process. Our method has a high practical interest because it will provide
numerical approximations as soon as the process can be simulated. Our approach is based
on a recursive computation using the underlying discrete-time Markov chain (Zn, Tn)n∈N.
Therefore, we will study τ ∧TN rather than τ for someN ∈ N called the computation horizon.
Indeed, thanks to Assumption 2.1, when N goes to ∞, we have

τ ∧ TN → τ Pµ-a.s.

One may approximate τ by τ ∧ TN if N is chosen such that Pµ(τ > TN) is small enough (the
choice of N will be discussed in Section 3.3) because the evolution of the process beyond TN
will have little impact on the law or the moments of the exit time. In the rest of this section
we present the two problems we are interested in and describe the recursive methods we use to
solve them.

Definition 3.1. Let us define u∗(x) for all x ∈ U to be the time for the flow starting from the
point x to exit from U , i.e.

u∗(x) = inf{s ≥ 0 such that �(x, s) �∈ U}.
We now introduce some technical assumptions that will be in force throughout the paper.

The first three assumptions will be crucial, while the two last assumptions can be made without
loss of generality.

Assumption 3.2. The function u∗ is

(a) Lipschitz continuous,

(b) bounded by Cu∗ .

Assumption 3.3. For all m ∈ M , the set Um is convex.

Assumption 3.4. For α > 0, let Uα = {x ∈ E such that d(x, ∂U) ≤ α}. There exist C > 0
and β > 0 such that, for all k ∈ {0, . . . , N}, Pµ(Zk ∈ Uα) ≤ Cαβ .

Remark 3.1. Assumption 3.4 can be checked in most of the applications. We will see, in the
examples developed in Section 5, how it can be derived quite generally when Zk has a bounded
density. Moreover, it could be replaced by the following assumption, similar to an hypothesis
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introduced in [5, Section 24] and presented as quite general in applications: there exists ε > 0
such that, for all x ∈ U , Q(Uε, x) = 0, where Uε = {x ∈ E such that d(x, ∂U) ≤ ε}, i.e. for
all k ∈ {0, . . . , N}, Pµ(Zk ∈ Uε) = 0.

Assumption 3.5. The process cannot go back to U once it has left it, i.e. for all z ∈ U c,
Pz(there exists t ≥ 0, Xt ∈ U) = 0.

Assumption 3.6. The function t∗ is bounded by Ct∗ .

In our discussion, Assumption 3.5 does not imply any loss of generality and Assumption 3.6
stems from Assumption 3.2(b). Indeed, if any of the two previous assumptions is not satisfied
by the process (Xt )t∈R+ , we introduce the process killed at time τ , denoted by (X̃t )t∈R+ and
defined by

X̃t =
{
Xt for t < τ ,

� for t ≥ τ ,

where � denotes a cemetery state. The state space of the killed process is Ẽ = U ∪ {�} and
Assumption 3.5 is fulfilled since the killed process remains in � after leaving U . In addition,
t̃∗, the deterministic exit time from Ẽ for the killed process, equals u∗, which is bounded and
Lipschitz continuous according to Assumption 3.2.

3.1. Distribution

The first goal of this paper is to compute an approximation for the law of the exit time τ .
More precisely, we intend to approximate Pµ(τ > s | τ ≤ TN) for s > 0.

Our approach is of huge practical interest because we will see that, after some initial compu-
tations, any value of the survival function of τ may be quickly obtained. More importantly, our
approach is even flexible with respect toU in the sense that the survival function of the exit time
τ ′ from a new set U ′ ⊂ U will also be directly available (provided that Assumptions 3.2–3.5
are still fulfilled by U ′).

Definition 3.2. For all s > 0, define the sequences (pk(s))k≥0, (qk)k≥0, and (rk(s))k≥0 as
follows:

pk(s) = Pµ(τ > s | τ ≤ Tk),

qk = Pµ(τ ≤ Tk),

rk(s) = Pµ({τ > s} ∩ {Tk < τ ≤ Tk+1}).

Remark 3.2. The conditional probability pk(s) does not exist when qk = 0. We then choose
to extend the sequence by setting pk(s) = 0.

Our objective is to approximate pN(s), where N represents the computation horizon. The
following proposition provides a recursion for the sequence (pk)k≤N ; note that pN may be
computed as soon as the sequences (qk)k≤N and (rk)k≤N−1 are known.

Proposition 3.1. Under Assumption 3.1, for all k ∈ N and s > 0, p0(s) = 0 and

pk+1(s) =
⎧⎨⎩
pk(s)qk + rk(s)

qk+1
if qk+1 �= 0,

0 otherwise.
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Proof. First, recall that T0 = 0 so that we havep0 = 0 since the process starts inU according
to Assumption 3.1. Then, let k ∈ N such that qk+1 �= 0 and note that {τ ≤ Tk+1} = {τ ≤
Tk} ∪ {Tk < τ ≤ Tk+1}. Then we have

pk+1(s) = Pµ({τ > s} ∩ {τ ≤ Tk+1})
Pµ(τ ≤ Tk+1)

= Pµ({τ > s} ∩ {τ ≤ Tk})+ Pµ({τ > s} ∩ {Tk < τ ≤ Tk+1})
qk+1

= pk(s)qk + rk(s)

qk+1
,

completing the proof.

Now, before turning to computations, let us present the second problem we are interested in.

3.2. Moments

Our second goal is to approximate the moments of the exit time from U , i.e. for all j ∈ N,
we are interested in Eµ[τ j | τ ≤ TN ]. This is a very classical problem and some results are
already available. First, it is possible to use a Monte Carlo method, and we will point out
why the method we propose is more efficient and flexible. Furthermore, Helmes et al. [8]
introduced a numerical method for computing the moments of the exit time based on linear
programming. Lasserre and Prieto-Rumeau [9] improved this method by using semidefinite
positivity moment conditions. These methods are quite efficient, but they require an assumption
related to the generator of the process which is generally not fulfilled by the PDMP. The method
we introduce now is based on the use of the Markov chain (�n)n∈N = (Zn, Tn)n∈N associated
to the continuous-time process (Xt )t∈R+ .

Definition 3.3. For all j ∈ N, introduce the sequences (pk,j )k≥0 and (rk,j )k≥0 defined as
follows:

pk,j = Eµ[τ j | τ ≤ Tk], rk,j = Eµ[τ j 1{Tk<τ≤Tk+1}].
Our objective is to approximate pN,j , where N still represents the computation horizon.

Similarly to the previous section, the sequence (pk,j )k≤N satisfies a recursion whose parameters
are the sequences (qk)k≤N , previously introduced, and (rk,j )k≤N−1.

Proposition 3.2. Under Assumption 3.1, we have, for all k, j ∈ N, p0,j = 0 and

pk+1,j =
⎧⎨⎩
pk,j qk + rk,j

qk+1
if qk+1 �= 0,

0 otherwise.

Proof. The proof is similar to that of Proposition 3.1.

Before turning to the approximation method itself, let us discuss the crucial question of the
computation horizon.

3.3. The computation horizon

In this subsection we study more precisely the construction of the process (Xt ) in order to
obtain some results concerning the jump times (Tk)k∈N. For this purpose, we introduce, in this
section only, two additional hypotheses.
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Assumption 3.7. The jump rate λ is bounded by Cλ.

Assumption 3.8. There exists ε > 0 such that, for all x ∈ E,Q(x,Aε) = 1, whereAε = {x ∈
E such that t∗(x) ≥ ε}. Roughly speaking, the jumps cannot send the process too close to the
boundary of E.

Assumption 3.7 is satisfied in a large majority of applications; Assumption 3.8 is quite
general too and was introduced in [5, Section 24].

Let (�,A,P) be a probability space on which is defined a sequence (�k)k∈N of independent
random variables with uniform distribution on [0; 1]. Let x = (m, ξ) ∈ E and ω ∈ �, and let
us focus on the construction of the trajectory {Xt(ω), t > 0} of the process starting from the
point x. Let

F(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if t ≤ 0,

exp

(
−

∫ t

0
λ(m,�m(ξ, s)) ds

)
if 0 ≤ t < t∗(x),

0 if t ≥ t∗(x).

It is the survival function of the first jump time T1. Define its generalized inverse by

�(u, x) =
{

inf{t ≥ 0 : F(t, x) ≤ u},
+∞, if the above set is empty.

Let S1(ω) = T1(ω) = �(�1(ω), x) and, for all t < T1(ω),

Xt(ω) = (m,�m(ξ, t)).

If T1(ω) < +∞, choose XT1 with distribution Q(·,�m(ξ, T1)). Assume that the trajectory is
constructed until time Tk . If Tk(ω) < +∞, let

Sk+1(ω) = �(�k(ω),XTk ), Tk+1(ω) = Tk(ω)+ Sk+1(ω).

If Tk+1(ω) < +∞, choose XTk+1 with distribution Q(·,�mTk (ξTk , Sk+1)). The trajectory is
finally constructed by induction.

With the same notation as above, we state the following lemma.

Lemma 3.1. Let H be a survival function such that, for all t ∈ R and all x ∈ E, H(t) ≤
F(t, x). There exists a sequence of independent random variables (S̃k)k∈N with distributionH
and such that, for all K ∈ R and N ∈ N,

Pµ(TN < K) ≤ Pµ(T̃N < K),

where T̃N = ∑N
k=0 S̃k .

Proof. Let H be such a survival function, and let �̃ be its generalized inverse, i.e.

�̃(u) =
{

inf{t ≥ 0 : H(t) ≤ u},
+∞, if the above set is empty.

The assumption made on H yields, for all x ∈ E, �̃(u) ≤ �(u, x). Let, for all k ∈ N and all
ω ∈ �,

S̃k(ω) = �̃(�k(ω)).

Note that we are using the same�k as in the definition of Sk , allowing us to write S̃k ≤ Sk a.s.
and, therefore, T̃k ≤ Tk a.s. The result follows.
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Similarly to Davis [5, Section 33], we approximated τ by τ ∧ TN since τ ∧ TN → τ as
N → +∞ thanks to Assumption 2.1. It is therefore necessary to choose N large enough
such that Pµ(TN < τ) is small. It is difficult to estimate this probability for a general process
because the links between τ and the jump times are largely problem dependent. For instance,
the geometry of U can be very complex. Therefore, N will generally be estimated through
simulations. Indeed, we can compute Pµ(TN < τ) for some fixed N thanks to a Monte Carlo
method and increase the value of N until this probability becomes small enough. However,
we introduce another method to bound this probability that may prove useful in applications.
First, note that, for any K > 0,

{TN < τ } ⊂ {TN < K} ∪ {τ > K}.
This implies that

Pµ(TN < τ) ≤ Pµ(TN < K)+ Pµ(τ > K).

This will prove especially useful whenever τ is bounded, which happens quite often in appli-
cations, because there exists a K such that Pµ(τ > K) = 0. When τ is not bounded, it is
sometimes possible to obtain K such that Pµ(τ > K) is small.

Example 3.1. (A crack propagation model.) We adapt here an example studied by Chiquet and
Limnios [4], which models a crack propagation. Here Yt is a real-valued process representing
the crack size and satisfying

Y0 > 0, Ẏt = AtYt for all t ≥ 0,

whereAt is a Markov process with state space {α, β}, 0 < α ≤ β. We are interested in the time
τ before the crack size reaches a critical size yc. Consider the PDMP Xt = (At , Yt ), where At
represents the mode at time t . It is possible to bound the exit time by considering the slowest
flow: we clearly have, for all t ≥ 0, Yt ≥ Y0eαt and, thus,

Pµ

(
τ >

1

α
ln

(
yc

Y0

))
= 0.

We now intend to bound Pµ(TN < K) for a fixed K > 0. Let

H(t) =

⎧⎪⎨⎪⎩
1 if t ≤ 0,

e−Cλt if 0 ≤ t < ε,

0 if t ≥ ε.

Distribution H represents, roughly speaking, the worst distribution of the inter-jump times
Sk in the sense that it is the distribution that gives the most frequent jumps. Indeed, denote by
Fk the survival function of Sk . We haveH ≤ Fk for all k ∈ N. Therefore, Lemma 3.1 provides
a random variable T̃N = ∑N

k=0 S̃k , where the S̃k are independent and have survival functionH ,
such that

Pµ(TN < K) ≤ Pµ(T̃N < K).

We now bound Pµ(T̃N < K). Standard computations yield Eµ[T̃N ] = Nm and varµ[T̃N ] =
Nσ 2, where

m := Eµ[S̃1] = 1

Cλ
(1 − e−Cλε),

σ 2 := varµ[S̃1] = 1

C2
λ

(1 − 2Cλεe
−Cλε − e−2Cλε).
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Assume now that N is such that Nm > K , and note that

Pµ(T̃N < K) ≤ Pµ(|T̃N − Eµ[T̃N ]| > Eµ[T̃N ] −K).

Tchebychev’s inequality yields

Pµ(T̃N < K) ≤ Nσ 2

(Nm−K)2
.

The right-hand side term goes to 0 when N goes to ∞.
Finally, when τ is bounded with a high probability and when Assumptions 3.7 and 3.8 are

fulfilled, we are able to choose N a priori such that Pµ(TN < τ) is small. These conditions are
satisfied in a large class of applications.

4. Approximation scheme

4.1. The quantization algorithm

First, we describe the quantization procedure for a random variable and recall some important
properties that will be used in the sequel. There exists extensive literature on quantization
methods for random variables and processes. We do not pretend to present here an exhaustive
panorama of these methods. However, the interested reader is referred to, e.g. [1], [7], [10],
and the references therein. Consider X, an R

q -valued random variable such that ‖X‖p < ∞,
where ‖X‖p denotes the Lp-norm of X, i.e. ‖X‖p = (E[|X|p])1/p.

Let K be a fixed integer. The optimal Lp-quantization of the random variable X consists
in finding the best possible Lp-approximation of X by a random vector X̂ taking at most K
values: X̂ ∈ {x1, . . . , xK}. This procedure consists of the following two steps.

1. Find a finite weighted grid � ⊂ R
q with � = {x1, . . . , xK}.

2. Set X̂ = X̂� , where X̂� = proj�(X), a Borel nearest-neighbour projection on �.

The asymptotic properties of theLp-quantization are given by the following result; see, e.g. [10].

Theorem 4.1. If E[|X|p+η] < +∞ for some η > 0 then we have

lim
K→∞K

p/q min|�|≤K ‖X − X̂�‖pp = Jp,q

∫
|h|q/(q+p)(u) du,

where the law of X is PX(du) = h(u)λq(du) + ν with ν ⊥ λq , Jp,q a constant, and λq the
Lebesgue measure in R

q .

Note that X needs to have finite moments up to the order p + η to ensure the above
convergence. There exists a similar procedure for the optimal quantization of a Markov chain
{Xk}k∈N. There are two approaches to provide the quantized approximation of a Markov
chain. The first approach, based on the quantization at each time k of the random variable Xk ,
is called the marginal quantization. The second approach, which enhances the preservation
of the Markov property, is called the Markovian quantization. Note that, for the latter, the
quantized Markov process is not homogeneous. These two methods are described in detail
in [10, Section 3]. In this work, we use the marginal quantization approach for simplicity
reasons.

Our approximation methods are based on the quantization of the underlying discrete-time
Markov chain (�k)k≤N = (Zk, Tk)k≤N . The quantization algorithm provides, for each time
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step 0 ≤ k ≤ N , a finite grid �k of E × R
+ as well as the transition matrices (Q̂k)0≤k≤N−1

from �k to �k+1. Let p ≥ 1 such that, for all k ≤ N , Zk and Tk have finite moments at least
up to order p and let proj�k be the nearest-neighbour projection from E × R

+ onto �k . The
quantized process (�̂k)k≤N = (Ẑk, T̂k)k≤N with value for each k in the finite grid�k ofE×R

+
is then defined by

(Ẑk, T̂k) = proj�k (Zk, Tk).

In practice, we begin with the computation of the quantization grids, which merely requires
us to be able to simulate the process. These grids are computed only once and may be stored
offline. Our schemes are then based on the following simple idea: we replace the process by
its quantized approximation within the different recursions. The results are obtained in a very
simple way since the quantized process has finite state space.

Remark 4.1. In addition, we recall a technical property of the quantization algorithm proved
by Bouton and Pagès in [3]: the quantized process evolves within the convex hull of the support
of the law of the original process. Therefore, and it will be required below, it follows from
Assumption 3.3 that if Zk ∈ U a.s. for some k ∈ {0, . . . , N} then Ẑk ∈ U a.s.

4.2. Approximation scheme of the distribution and proof of convergence

We already noted in Proposition 3.1 that pN(s) = Pµ(τ > s | τ ≤ TN) may be computed
as soon as the sequences (qk)k≤N and (rk)k≤N−1 are known. Therefore, we find expressions
of these sequences depending on the Markov chain (Zk, Tk)k≤N , which we replace by the
quantized process (Ẑk, T̂k)k≤N in order to define their quantized approximations (̂qk)k≤N and
(̂rk)k≤N−1.

First, note that {Tk < τ } = {Zk ∈ U} and {τ ≤ Tk} = {Zk �∈ U} thanks to Assumption 3.5.
Moreover, on {Zk ∈ U, Zk+1 �∈ U}, we have τ = (Tk + u∗(Zk)) ∧ Tk+1 a.s., where u∗(x) is
the deterministic exit time from U starting from the point x (see Definition 3.1), and we have

qk = Eµ[1U c(Zk)], rk(s) = Eµ[1{(Tk+u∗(Zk))∧Tk+1>s} 1U(Zk) 1U c(Zk+1)]. (4.1)

The above equations are crucial in our discussion and, from now on, we will use them without
referring to Assumption 3.5.

Before turning to the approximation scheme itself, let us state some properties of the sequence
(qk)k≤N that will be important in the following proofs. Indeed, the sequence (qk)k increases
since {τ ≤ Tk} ⊂ {τ ≤ Tk+1} for all k ≤ N−1. Moreover, note that q0 = 0 and limn→+∞ qn =
1 thanks to Assumption 3.1. Therefore, there exists an index, denoted by k̃ ≥ 1, such that

• for all k < k̃, we have qk = 0,

• for all k ≥ k̃, we have qk > 0.

We denote by q̃ = q
k̃

the first positive value of the sequence so that qk ≥ q̃ for all k ≥ k̃. Then
we obtain the following definition.

Definition 4.1. Let

k̃ = inf{k ≥ 0 such that qk > 0}, q̃ = q
k̃
,

i.e. q̃ is the first strictly positive value of the sequence (qk)k∈{0,...,N}.

We now naturally define the quantized approximations of the previous sequences.
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Definition 4.2. For all s > 0, define the sequences (̂qk)k∈{0,...,N} and (̂rk)k∈{0,...,N−1} by

q̂k = Eµ[1U c(Ẑk)],
r̂k(s) = Eµ[1{(T̂k+u∗(Ẑk))∧T̂k+1>s} 1U(Ẑk) 1U c(Ẑk+1)].

It is important to note that both q̂k and r̂k(s) may be computed easily from the quantization
algorithm. Indeed, we have

q̂k =
∑

θ=(z,t)∈�k
z �∈U

P(�̂k = θ),

r̂k(s) =
∑

θ=(z,t)∈�k
z∈U

∑
θ ′=(z′,t ′)∈�k+1

z′ �∈U

1{(t+u∗(z))∧t ′>s} P(�̂k = θ)Q̂k(θ; θ ′).

Recall from Proposition 3.1 that the sequence (pk)k≤N satisfies a recursion that depends on
the two parameters (qk)k≤N and (rk)k≤N−1, which we are now able to approximate. Hence,
replacing them by their quantized approximations within the same recursion leads to a new
sequence, denoted by (p̂k)k≤N . The rest of this section is dedicated to the proof of the
convergence of (p̂k)k≤N towards (pk)k≤N . This convergence is far from trivial because, on
the one hand, the definitions of the sequences (qk)k≤N and (rk)k≤N−1 contain many indicator
functions that are not Lipschitz continuous and, on the other hand, the recursive function giving
pk+1 from pk , qk , qk+1, and rk is not Lipschitz continuous either.

Definition 4.3. For all s > 0 and all k ∈ {0, . . . , N − 1}, let p̂0(s) = 0 and

p̂k+1(s) =
⎧⎨⎩
p̂k(s)̂qk + r̂k(s)

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

The two following propositions will be necessary to prove the convergence of the approxi-
mation scheme. They respectively state the convergences of (̂qk)k≤N and (̂rk)k≤N−1 towards
(qk)k≤N and (rk)k≤N−1.

Proposition 4.1. Under Assumptions 3.4 and 3.5, for all k ∈ {0, . . . , N}, q̂k converges towards
qk when the quantization error ‖�k − �̂k‖p goes to 0. More precisely, the error is bounded by

|qk − q̂k| ≤ Cp/(p+β)
((

β

p

)p/(p+β)
+

(
p

β

)β/(p+β))
‖Zk − Ẑk‖pβ/(p+β)

p ,

where C and β are defined in Assumption 3.4.

Proof. For all k ∈ {0, . . . , N}, (4.1) yields

|qk − q̂k| = |Eµ[1U(Zk)− 1U(Ẑk)]|.
The difference between the indicator functions is nonzero if and only if Zk and Ẑk are on either
side of ∂U . Therefore, in this case, for all α > 0, if |Zk − Ẑk| ≤ α then d(Zk, ∂U) ≤ α.
Hence, either |Zk − Ẑk| > α or Zk ∈ Uα . The Markov inequality and Assumption 3.4 yield

Eµ | 1U(Zk)− 1U(Ẑk)| ≤ Pµ(|Zk − Ẑk| > α)+ Pµ(Zk ∈ Uα)

≤ ‖Zk − Ẑk‖pp
αp

+ Cαβ.
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This bound reaches a minimum when

α =
(
p‖Zk − Ẑk‖pp

βC

)1/(p+β)
,

and the result follows.

Proposition 4.2. Under Assumptions 3.2(a), 3.4, and 3.5, for all k ∈ {0, . . . , N−1} and almost
every s > 0 with respect to the Lebesgue measure on R,

r̂k(s) → rk(s)

when the quantization errors ‖�l − �̂l‖p for l ∈ {k, k + 1} go to 0.

Proof. Let k ∈ {0, . . . , N − 1} and s > 0. Equation (4.1) yields

|rk(s)− r̂k(s)| ≤ A+ B,

where
A = |Eµ[(1{(Tk+u∗(Zk))∧Tk+1>s} − 1{(T̂k+u∗(Ẑk))∧T̂k+1>s}) 1U(Zk) 1U c(Zk+1)]|,
B = |Eµ[1{(T̂k+u∗(Ẑk))∧T̂k+1>s}(1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1))]|.

In theA term, we crudely bound 1U(Zk) and 1U c(Zk+1) by 1 and turn to the difference between
the two indicator functions. This difference is nonzero if and only if (Tk +u∗(Zk))∧ Tk+1 and
(T̂k + u∗(Ẑk)) ∧ T̂k+1 are on either side of s, implying that they both belong to [s − η; s + η],
where η = |(Tk + u∗(Zk)) ∧ Tk+1 − (T̂k + u∗(Ẑk)) ∧ T̂k+1|. Then we have

|1{(Tk+u∗(Zk))∧Tk+1>s} − 1{(T̂k+u∗(Ẑk))∧T̂k+1>s}| ≤ 1{|(Tk+u∗(Zk))∧Tk+1−s|≤η}

so that
A ≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ η).

The following discussion consists in noting that either η and the probability that (Tk +
u∗(Zk)) ∧ Tk+1 belongs to the interval [s − η; s + η] are small, or η is large, but this happens
with a small probability too when the quantization error goes to 0. For all α > 0, we have

A ≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ η, η ≤ α)+ Pµ(η > α)

≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ α)+ Pµ(η > α)

≤ |ϕk(s + α)− ϕk(s − α)| + ‖η‖pp
αp

,

where ϕk denotes the distribution function of (Tk + u∗(Zk)) ∧ Tk+1. Let ε > 0, and assume
that s is not an atom of this distribution, so that there exists α1 > 0 such that |ϕk(s+α1)−ϕk(s−
α1)| ≤ ε. Besides, thanks to Assumption 3.2(a), the Lipschitz continuity condition on u∗, we
have η ≤ |Tk − T̂k| + [u∗]|Zk − Ẑk| + |Tk+1 − T̂k+1|. Moreover, since the quantization error
goes to 0, we may assume that ‖η‖p ≤ α1ε

1/p. Setting α = α1 in the previous computations
yields

A ≤ |ϕk(s + α1)− ϕk(s − α1)| + ‖η‖pp
α
p
1

≤ 2ε.
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Note that the set of atoms of the distribution function of (Tk+u∗(Zk))∧Tk+1 is at most countable,
so the previous discussion is true for almost every s > 0 with respect to the Lebesgue measure.
Let us now bound the B term:

B ≤ Eµ |1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1)|
≤ Eµ[1U c(Zk+1)|1U(Zk)− 1U(Ẑk)|] + Eµ[1U(Ẑk)|1U c(Zk+1)− 1U c(Ẑk+1)|]
≤ |qk − q̂k| + |qk+1 − q̂k+1|,

which goes to 0 thanks to Proposition 4.1.

The convergence of the approximation scheme of the distribution of the exit time is now a
straightforward consequence of the following proposition.

Proposition 4.3. We assume that Assumptions 3.1, 3.3, 3.4, and 3.5 hold. Let (σk)k≤N−1 and
(̂σk)k≤N−1 be two sequences of [0, 1]-valued real numbers. Let (πk)0≤k≤N and (π̂k)0≤k≤N be
defined as follows: π0 = π̂0 = 0,

πk+1 =
⎧⎨⎩
πkqk + σk

qk+1
if qk+1 �= 0,

0 otherwise,

π̂k+1 =
⎧⎨⎩
π̂kq̂k + σ̂k

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

For 0 ≤ k ≤ N , if the quantization error is such that, for all l ≤ k,

Cp/(p+β)
((

β

p

)p/(p+β)
+

(
p

β

)β/(p+β))
‖Zl − Ẑl‖pβ/(p+β)

p ≤ 1

2
q̃,

then

|πk − π̂k| ≤ 2

q̃
(π sup|qk−1 − q̂k−1| + |πk−1 − π̂k−1| + |σk−1 − σ̂k−1|)

+ 2(π sup + 1)

q̃2 |qk − q̂k|,

where π sup = max0≤k≤N πk .

Proof. The difficulty with proving this result lies in the fact that the recursive function giving
πk+1 from πk , qk , qk+1, and σk is not Lipschitz continuous because of the division by qk+1. To
overcome this drawback, we will use the strictly positive lower bound for qk described earlier.
Indeed, recall from Definition 4.1 that there exists a step k̃ such that qk ≥ q̃ > 0 for all k ≥ k̃

and qk = 0 for all k < k̃. What is more, a similar bound will be derived for the quantized values
q̂k thanks to the convergence of q̂k towards qk .

We now prove by induction that π̂k converges towards πk . First, we have π̂0 = π0 = 0.
Then, let k ∈ {1, . . . , N}.

If k < k̃ then qk = 0 and Assumption 3.3 yields q̂k = 0 too. Indeed, qk = 0 means that
Zk ∈ U a.s. Since U is a convex set, Remark 4.1 implies that Ẑk ∈ U a.s. too. In other words,
q̂k = 0. Finally, from the definitions, we have πk = π̂k = 0.

If k ≥ k̃ then qk ≥ q̃ > 0. In order to bound the error between πk and π̂k , it is indeed
necessary to have a strictly positive lower bound for qk because of the division by qk within the
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recursion. Now we need to obtain the same kind of bound for q̂k . This can be achieved thanks
to Proposition 4.1, giving the convergence of q̂k towards qk . Indeed, assume from now on that
the number of points in the quantization grids is large enough such that the quantization error
is sufficiently small to ensure that, for all j = k̃, . . . , N , |qj − q̂j | ≤ 1

2 q̃. Hence, the required
lower bound is q̂k ≥ 1

2 q̃ > 0. Therefore,

|πk − π̂k| ≤
∣∣∣∣πk−1qk−1 + σk−1

qk
− π̂k−1q̂k−1 + σ̂k−1

q̂k

∣∣∣∣
≤ πk−1

q̂k
|qk−1 − q̂k−1| + q̂k−1

q̂k
|πk−1 − π̂k−1| + 1

q̂k
|σk−1 − σ̂k−1|

+ |πk−1qk−1 + σk−1| |qk − q̂k|
qkq̂k

≤ π sup

q̂k
|qk−1 − q̂k−1| + 1

q̂k
|πk−1 − π̂k−1| + 1

q̂k
|σk−1 − σ̂k−1|

+ (π sup + 1)
|qk − q̂k|
qkq̂k

≤ 2

q̃
(π sup|qk−1 − q̂k−1| + |πk−1 − π̂k−1| + |σk−1 − σ̂k−1|)

+ 2(π sup + 1)

q̃2 |qk − q̂k|,

where π sup = max0≤k≤N πk .

Remark 4.2. Note that a bound for the rate of convergence of π̂k towards πk may be obtained
as soon as a bound for the rate of convergence of σ̂k towards σk and an upper bound for the
sequence (πk)0≤k≤N are available.

We now state one of our main results, namely the convergence of the approximation scheme
of the distribution of the exit time.

Theorem 4.2. Under Assumptions 3.1, 3.2(a), 3.3, 3.4, and 3.5, for all k ∈ {0, . . . , N} and
almost every s > 0 with respect to the Lebesgue measure on R,

p̂k(s) → pk(s)

when the quantization errors ‖�j − �̂j‖p for j ∈ {0, . . . , k} go to 0.

Proof. Let s > 0 such that (̂rk(s))k converges towards (rk(s))k and apply Proposition 4.3
with (σk)k = (rk(s))k and (̂σk)k = (̂rk(s))k so that (πk)k = (pk(s))k and (π̂k)k = (p̂k(s))k .
Finally, note that (pk(s))k is bounded by 1.

Remark 4.3. It may be useful to note that, although it will be crucial in the moments approxi-
mation scheme, the boundedness condition on u∗ (Assumption 3.2(b)) was unnecessary in this
section. Hence, the distribution approximation can be achieved without this hypothesis.

We now obtain an easily computable approximation for the survival function of the exit time.
Let us now consider its moments. Of course, they can be derived from the distribution, but
we present in the following subsection a method to approximate them directly. An important
advantage of this method will be to provide a bound for the rate of convergence.
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4.3. Approximation scheme of the moments and rate of convergence

Similarly to the distribution, the moments can be approximated thanks to the quantization of
the process (�k)k≤N = (Zk, Tk)k≤N . However, it is important to stress that we will be able to
derive a rate of convergence for our approximation scheme. We note from Proposition 3.2 that,
similarly to the case of the distribution, pN,j = Eµ[τ j | τ ≤ TN ] can be computed as soon
as the sequences (qk)k≤N and (rk,j )k≤N−1 are known. The first sequence has already been
approximated in the previous section, but we still need to find an expression for the second
sequence, dependent on the Markov chain (Zk, Tk)k to define its quantized approximation
(̂rk,j )k≤N−1. Thanks to Assumption 3.5, the same arguments give

rk,j = Eµ[((Tk + u∗(Zk)) ∧ Tk+1)
j 1U(Zk) 1U c(Zk+1)].

Hence, we can now naturally define the quantized approximation of the sequences (rk,j )k≤N−1
and (pk,j )k≤N .

Definition 4.4. For all j ∈ N, define the sequence (̂rk,j )k∈{0,...,N−1} by

r̂k,j = Eµ[((T̂k + u∗(Ẑk)) ∧ T̂k+1)
j 1U(Ẑk) 1U c(Ẑk+1)]

and the sequence (p̂k,j )k∈{0,...,N} by p̂0,j = 0 and

p̂k+1,j =
⎧⎨⎩
p̂k,j q̂k + r̂k,j

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

As for q̂k and r̂k(s) defined in the previous section, r̂k,j may be computed easily from the
quantization algorithm. Indeed, we have

r̂k,j =
∑

θ=(z,t)∈�k
z∈U

∑
θ ′=(z′,t ′)∈�k+1

z′ �∈U

((t + u∗(z)) ∧ t ′)j P(�̂k = θ)Q̂k(θ; θ ′).

The following proposition proves the convergence of r̂k,j towards rk,j .

Proposition 4.4. Under Assumptions 3.2(a), 3.4, 3.5, and 3.6, for all k ∈ {0, . . . , N−1} and all
j ∈ N, r̂k,j converges towards rk,j when the quantization errors ‖�l − �̂l‖p for l ∈ {k, k+ 1}
go to 0. More precisely, the error is bounded by

|rk,j − r̂k,j | ≤ j ((k + 1)Ct∗)
j−1(‖Tk − T̂k‖p + [u∗]‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)

+ ((k + 1)Ct∗)
j (|qk − q̂k| + |qk+1 − q̂k+1|).

Proof. Let k ∈ {0, . . . , N − 1} and j ∈ N. We have

|rk,j − r̂k,j | ≤ A+ B,

where

A = |Eµ[(((Tk + u∗(Zk)) ∧ Tk+1)
j − ((T̂k + u∗(Ẑk)) ∧ T̂k+1)

j ) 1U(Zk) 1U c(Zk+1)]|,
B = |Eµ[((T̂k + u∗(Ẑk)) ∧ T̂k+1)

j (1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1))]|.
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It follows fromAssumption 3.6 that the inter-jump timesSi are a.s. bounded byCt∗ , soTi ≤ iCt∗
a.s. and (Ti + u∗(Zi)) ∧ Ti+1 ≤ (i + 1)Ct∗ a.s. By Remark 4.1, these bounds are equally true
for the quantized process T̂i ≤ iCt∗ and (T̂i + u∗(Ẑi)) ∧ T̂i+1 ≤ T̂i+1 ≤ (i + 1)Ct∗ a.s.

Let us first consider the term A. We crudely bound the indicator functions by 1. Moreover,
define η = |(Tk + u∗(Zk)) ∧ Tk+1 − (T̂k + u∗(Ẑk)) ∧ T̂k+1| and note that the function x → xj

is Lipschitz continuous on any set [0,M] with Lipschitz constant jMj−1. Then

A ≤ Eµ[j ((k + 1)Ct∗)
j−1η] ≤ j ((k + 1)Ct∗)

j−1‖η‖p,
and thanks to Assumption 3.2(a), the Lipschitz continuity condition on u∗, we have

A ≤ j ((k + 1)Ct∗)
j−1(‖Tk − T̂k‖p + [u∗]‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p).

Moreover, the term B is bounded by

B ≤ ((k + 1)Ct∗)
j Eµ |1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1)|

≤ ((k + 1)Ct∗)
j (|qk − q̂k| + |qk+1 − q̂k+1|).

Using Proposition 4.1 completes the proof.

We may now state the other important results of our paper, namely the convergence of the
approximation scheme of the moments of the exit time with a bound for the rate of convergence.

Theorem 4.3. Under Assumptions 3.1, 3.2(a), 3.3, 3.4, 3.5, and 3.6, for all k ∈ {0, . . . , N}
and all j ∈ N, p̂k,j converges towards pk,j when the quantization errors ‖�j − �̂j‖p for
j ∈ {0, . . . , k} go to 0.

More precisely, if the quantization error is such that, for all l ≤ k,

Cp/(p+q)
((

q

p

)p/(p+q)
+

(
p

q

)q/(p+q))
‖Zl − Ẑl‖pq/(p+q)

p ≤ 1

2
q̃,

then

|pk,j − p̂k,j | ≤ 2

q̃
((NCt∗)

j |qk−1 − q̂k−1| + |pk−1,j − p̂k−1,j | + |rk−1,j − r̂k−1,j |)

+ 2((NCt∗)j + 1)

q̃2 |qk − q̂k|.

Remark 4.4. The rate of convergence depends on the quantity q̃ whose exact value might be
unknown in some complex applications. In that case, it may still be approximated through
Monte Carlo simulations (see the examples in Section 5). Nevertheless, Theorems 4.2 and 4.3
prove the convergence of our approximation schemes regardless of the value of q̃.

Proof of Theorem 4.3. Let j ∈ N, and apply Proposition 4.3 with (σk)k = (rk,j )k and
(̂σk)k = (̂rk,j )k such that (πk)k = (pk,j )k and (π̂k)k = (p̂k,j )k . Finally, according to
Remark 4.2, a bound for the rate of convergence is obtained since the sequence (pk,j )0≤k≤N is
bounded by

pk,j = Eµ[τ j | τ ≤ Tk] ≤ Eµ[T jk | τ ≤ Tk] ≤ Eµ[(kCt∗)j | τ ≤ Tk] ≤ (kCt∗)
j ≤ (NCt∗)

j .

This completes the proof.
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5. Examples and numerical results

5.1. A Poisson process example

Let Nt be a Poisson process with parameter λ = 1, and let Yt = t + Nt . Here (Yt )t≥0
is a PDMP with state space E = R; the inter-jump times Sk have independent exponential
distribution with parameter λ = 1; the flow is defined on (R+)2 by �(x, t) = x + t ; and,
finally, the post-jump locations satisfy, for all x ∈ E, Q({x + 1}, x) = 1. An example of a
trajectory of the process is represented in Figure 1. We are interested in the exit time problem
for the process (Yt )t≥0. The study of this process is especially interesting because it is possible
to compute the exact value of its distribution function in order to compare it with the numerical
value given by our approximation scheme.

Let us turn now to the numerical simulations. Let b = 10, i.e. U = (−∞, 10). We
may choose N = 10 since YTN = TN +NTN = TN +N ≥ N . Besides, it is clear that, for
all y ∈ (−∞, 10), u∗(y) = 10 − y. Assumptions 3.2 and 3.3 are clearly satisfied and so is
Assumption 3.4 thanks to the following lemma.

Lemma 5.1. For all α > 0 and all k ∈ {0, . . . , N},
Pµ(Zk ∈ Uα) ≤ 2α.

Proof. SinceZ0 = 0 a.s., Pµ(Z0 ∈ Uα) = Pµ(Z0 ∈ [10 − α, 10 + α]) = 1{α≥10} ≤ 1
10α ≤

2α.
Now let k ∈ {1, . . . , N}. Denote by fγ (k,1) the density of the distribution γ (k, 1), and let

its bound be denoted by

Ck = 1

(k − 1)!
(
k − 1

e

)k−1

.

Since Tk has distribution γ (k, 1), Zk = k + Tk has density fZk (·) = fγ (k,1)(· − k), which is
also bounded by Ck . Eventually, we have

Pµ(Zk ∈ Uα) = Pµ(Zk ∈ [10 − α, 10 + α]) ≤ 2Ckα ≤ 2α.

Indeed, the sequence (Ck)k decreases so that, for all k ∈ {1, . . . , N}, Ck ≤ C1 = 1.

20

18

16

14

12

10
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6

4

2

0
0 1 2 3 4 5 6 7 8 9 10

Figure 1: A trajectory of the process (Yt ) drawn until the 10th jump time.
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Table 1: Simulation results for the mean exit time.

Number of points in the Relative error to 5.125
quantization grids p̂N,1 (%)

20 5.050 1.46
50 5.096 0.56

100 5.095 0.58
200 5.118 0.13
300 5.128 0.06
500 5.123 0.03

Table 2: Simulation results for the second moment.

Number of points in the Relative error to 27.5
quantization grids p̂N,2 (%)

20 26.66 3.05
50 27.20 1.11

100 27.21 1.05
200 27.43 0.25
300 27.54 0.13
500 27.49 0.03

Moreover, Assumption 3.5 is satisfied since the process increases but Assumption 3.6 is not,
because t∗(x) = +∞ for all x ∈ E. However, as pointed out in Section 3, this can be solved
by considering the process killed at time τ .

The mean exit time. Table 1 displays the simulation results for the approximation of the
mean exit time. For different numbers of points in the quantization grids, the value of p̂N,1
which approximates the mean exit time is given. A reference value is obtained thanks to the
Monte Carlo method (106 simulations): E[τ10]Monte Carlo = 5.125.

The second moment. We present the results of the approximation of the second moment in
Table 2. Our Monte Carlo reference value (106 simulations) is E[τ 2

10]Monte Carlo = 27.5.
For the first and second moments, the empirical convergence rates are presented in Figure 2.

Through a regression model the empirical convergence is estimated as −1.23 for the first
moment and −1.39 for the second moment. Note that they are roughly of the same order as the
rate of convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 1.

The exit time distribution. As mentioned earlier, we can obtain the exact value of the survival
function of the exit time.

Proposition 5.1. Denote by fl(·) the floor function. For all s, b ∈ R
+, we have

P(τb ≥ s) =
{

P(Tfl(b−s)+1 > s) for all s ≤ b,

0 otherwise.

Remark 5.1. Note that Tk has distribution γ (k, 1), so the right-hand side term in the above
proposition can be computed easily.
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First moment
Second moment

103102101
10–3

10–2

10–1

100

101

Figure 2: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the first and second moments of the Poisson process.
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Figure 3: Survival function of τ10 and its quantized approximation with 500 points in the quantization
grids. The functions appear indistinguishable.

Proof of Proposition 5.1. Let s > 0. Note that Ys ≥ s; thus, τb < s a.s. when s > b.
Assume now that s ≤ b. We have

P(τb ≥ s) = P(Ys ≤ b) = P(Ns ≤ b − s) = P(Ns ≤ fl(b − s)) = P(Tfl(b−s)+1 ≥ s).

This completes the proof.

Figure 3 shows both the exact survival function of the exit time and its quantized approx-
imation. Table 3 contains the empirical error between the two functions. For the survival
function, the empirical convergence rate is presented in Figure 4. Through a regression model
the convergence rate is estimated as −1.05. Note that it is roughly of the same order as the rate
of convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 1.
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Table 3: Simulation results for the distribution.

Number of points in the
quantization grids maxs |pN(s)− p̂N (s)|

20 0.090
50 0.077

100 0.057
200 0.011
300 0.007
500 0.005

103102101
10–3

10–2

10–1

100

Figure 4: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the survival function of the Poisson process.

Remark 5.2. We already insisted on the fact that our approach is flexible with respect to U .
In this example we could very quickly obtain the mean exit time or the exit time distribution
for a different set U ′ = (−∞, b′] for any 0 < b′ ≤ b = 10. Indeed, P(τb′ > T10) = 0, so it is
not necessary to compute new quantization grids.

Remark 5.3. Recall that the value of Tk may be obtained from Zk since Tk = Zk − k, so
it is sufficient to quantize the process (Zk)k≤N instead of (Zk, Tk)k≤N . The reduction of the
dimension of the process that has to be quantized results in an improvement of the convergence
rate and it appears that the approximations presented in the previous tables indeed converge
very quickly.

Convergence rate for the exit time distribution. We note from the proof of Proposition 4.2
that a bound for the rate of convergence for the exit time distribution can be obtained as soon as,
for all k ∈ {0, . . . , N−1}, the survival function of (Tk+u∗(Zk))∧Tk+1 denoted ϕk is piecewise
Lipschitz continuous. Although it is difficult to state general assumptions under which this is
true, the following proposition proves that the condition is fulfilled in our example.

Proposition 5.2. For all k ∈ {0, . . . , N − 1}, the survival function ϕk of (Tk +u∗(Zk))∧Tk+1
is Lipschitz continuous on (−∞; b− k) and on (b− k; +∞) with Lipschitz constant [ϕk] ≤ 1.
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Proof. Let k = 0 and s > 0. We have

ϕ0(s) = Pµ((T0 + u∗(Z0)) ∧ T1 > s)

= Pµ(b ∧ T1 > s)

= 1{b>s} Pµ(T1 > s)

= 1{b>s} e−s (since T1 has exponential distribution with parameter 1).

Therefore, the function ϕ0 is equal to 0 on [b; +∞) and is Lipschitz continuous with Lipschitz
constant 1 on (0; b).

Let k ≥ 1 and s > 0, and recall that the random variables (Sj )j≥0 are independent and have
exponential distributions with parameter 1 so that, in particular, Tk and Sk+1 are independent
and Tk has distribution γ (k, 1). Moreover, recall that Zk = k + Tk and that u∗(x) = b − x.
Then

ϕk(s) = Pµ((Tk + u∗(Zk)) ∧ Tk+1 > s)

=
∫
(R+)2

1{(t+(b−k−t))∧u>s} fγ (k,1)(t)fγ (k+1,1)(u) dt du,

where fγ (j,1) denotes the density function of the distribution γ (j, 1) for j ∈ {k, k + 1}.
Let s′ > s > 0. We have

|ϕk(s′)− ϕk(s)| ≤
∫
(R+)2

| 1{(b−k)∧u>s′} − 1{(b−k)∧u>s} |fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤
∫
(R+)2

1{(b−k)∧u∈(s;s′]} fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤
∫
(R+)2

(1{b−k∈(s;s′]} + 1{u∈(s;s′]})fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤ 1{b−k∈[s;s′]} + Cfγ(k+1,1) |s′ − s|

≤ 1{b−k∈[s;s′]} + |s′ − s|
(

since Cfγ(k+1,1) = 1

(k)!
(
k

e

)k
≤ 1

)
.

If s and s′ both belong to (0; b − k) or if they both belong to (b − k; +∞), we have |ϕk(s′)−
ϕk(s)| ≤ |s′ − s|. The completes the proof.

Consequently, in this example, we are now able to state a bound for the rate of convergence
of the exit time distribution approximation scheme. The following proposition is therefore an
improvement over Proposition 4.2 and Theorem 4.2.

Proposition 5.3. For all k ∈ {0, . . . , N − 1}, let s > 0 and assume that the quantization error
is small enough to ensure that(

p

2

)1/(p+1)

(‖Tk − T̂k‖p + ‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)p/(p+1) < |b − k − s|.

Then we have

|rk(s)− r̂k(s)| ≤ 2

(
p

2

)1/(p+1)( 1

p
+ 1

)
× (‖Tk − T̂k‖p + ‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)p/(p+1)

+ |qk − q̂k| + |qk+1 − q̂k+1|.

https://doi.org/10.1239/aap/1331216650 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216650


218 A. BRANDEJSKY ET AL.

Moreover, for all k ∈ {0, . . . , N}, if the quantization error is such that, for all l ≤ k,

2

(
p

2

)1/(p+1)( 1

p
+ 1

)
‖Zl − Ẑl‖p/(p+1)

p ≤ 1

2
q̃,

then we have

|pk(s)− p̂k(s)| ≤ 2

q̃
(|qk−1 − q̂k−1| + |pk−1(s)− p̂k−1(s)| + |rk−1(s)− r̂k−1(s)|)

+ 4

q̃2 |qk − q̂k|.

Proof. The proof follows directly from the proofs of Proposition 4.2 and Theorem 4.2.
Simply note that the A term may be bounded thanks to the piecewise Lipschitz continuity of
the functions ϕk on (−∞; b − k) and on (b − k; +∞). Let s > 0, s �= b − k, and let α > 0
such that b − k �∈ [s − α; s + α], i.e. α < |b − k − s|. Then

A ≤ |ϕk(s + α)− ϕk(s − α)| + ‖η‖pp
αp

(from the proof of Proposition 4.2)

≤ 2[ϕk]α + ‖η‖pp
αp

,

which reaches a minimum when α = (p‖η‖pp/2[ϕk])1/(p+1). Note that [ϕk] = 1 and [u∗] = 1.

Remark 5.4. We can calculate the exact value of q̃ that is the first nonnegative value of the
sequence (Pµ(Zk �∈ U))k . We have q̃ = Pµ(Z1 �∈ (−∞; 10)) = Pµ(T1 ≥ 9) = e−9 because
T1 has an exponential distribution with parameter 1.

5.2. A corrosion model example

Let us consider the structure of aluminium corroded successively in three different environ-
ments. Corrosion is prevented by some protection until a random time γ when corrosion starts.
Then, in each environment i ∈ {1; 2; 3}, the loss of thickness satisfies

di(t) = ρi(t − γ + ηi(e
−(t−γ )/ηi − 1)) 1{t≥γ },

where ρi is the corrosion rate (ρi has a uniform distribution on an interval that depends on the
environment i) and ηi is a constant transition time. The structure goes from environment 1 to
environment 2, then from 2 to 3, from 3 to 1, and so on. It remains in environment i for a
time Ti , which has an exponential distribution with parameter λi . When the loss of thickness
reaches 0.2 mm, the piece is said to be unusable; this will be the exit criterion. Table 4 gives
the values of the different parameters.

The loss of thickness will be represented by a PDMP whose modes are the different envi-
ronments. Let M = {(i, j) : i ∈ {1, 2, 3}, j ∈ {0, 1}}. For m = (i, j) ∈ M , i represents
the environment and j is worth 1 if the protection γ is still active and 0 otherwise. For each
m ∈ M , let Em = R

4 and, for ξ ∈ Em, ξ represents the family (d, s, ρ, γ ), where d is the
corroded thickness and s is the time since the last jump. The set Um will therefore be, for all
m ∈ M , Um = (−∞; 0.2]×R

3. This set is convex, so Assumption 3.3 is satisfied. Finally, the
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Table 4: Numerical values of the parameters of the corrosion model.

Environment

1 2 3

λi (h−1) (17 520)−1 (131 400)−1 (8760)−1

ηi (h) 30 000 200 000 40 000
ρi (mm/h) [10−6, 10−5] [10−7, 10−6] [10−6, 10−5]
γ (h) Weibull distribution with α = 2.5 and β = 11 800

flow in mode m = (i, j) is

�(i,0)

⎛⎜⎜⎝
⎛⎜⎜⎝
d

s

ρ

0

⎞⎟⎟⎠ , t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
d + dm(t + s)− dm(s)

t + s

ρ

0

⎞⎟⎟⎠ ,

�(i,1)

⎛⎜⎜⎝
⎛⎜⎜⎝

0
s

ρ

γ

⎞⎟⎟⎠ , t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

t + s

ρ

(γ − t) 1{γ≥t}

⎞⎟⎟⎠ .

The parameters d and γ evolve continuously between the jumps, but ρ is chosen independently
after each jump and is constant along the flow.

Let us consider the approximation of the distribution and of the mean exit time. Consider
the first moment. We note that Eµ[τ ] = Eµ[γ ] + Eµ[τ ′], where γ has Weibull distribution and
τ ′ represents the exit time in the case of a process without initial protection against corrosion
(i.e. γ = 0). Therefore, it is sufficient to check whether τ ′ satisfies the required assumptions.
Hence, let γ = 0 and note that u∗ is then bounded since ρ ≥ 10−7 and η ≤ 200 000, so
dm(t) ≥ 10−7(t − 200 000) and eventually u∗ ≤ 0.2 × 107 + 200 000 = 2.2 × 106 h. Denote
this bound by Cu∗ . Consider the distribution. Assumption 3.2(b) (the boundedness condition
on u∗) is not required according to Remark 4.3. Moreover, from the proofs of Propositions 4.2
and 4.4, it follows that Assumption 3.2(a) (the Lipschitz continuity condition on u∗) becomes
useless in this example thanks to Lemma 5.3. Assumption 3.4 follows from Lemma 5.2 below.
Eventually, Assumption 3.5 is satisfied, but Assumption 3.6 is not. However, considering the
process killed at time τ solves this issue.

Lemma 5.2. For all α > 0 and all k ∈ {0, . . . , N},
Pµ(Zk ∈ Uα) ≤ 5α.

Proof. For notational convenience, let Mk , Dk , Rk , and Gk denote the values of m, d, ρ,
and γ after the kth jump, so Zk = (Mk,Dk, Rk,Gk). Note now that

Pµ(Zk ∈ Uα) = Pµ(|Dk − 0.2| ≤ α).

We therefore study more precisely the law of Dk . Let K = inf{k ≥ 0 such that Gk = 0};
K is the jump that occurs at the end of the protection period against corrosion. Define F(s) =
s + η(e−s/η − 1). Then we have

Dk =
{

0 for k ≤ K ,

Dk−1 + RkF(Sk) for k > K .
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Let us now prove that, for all k, the random variable RkF(Sk) has a bounded density. Recall
that Rk has a uniform distribution on [ak; bk] ⊂ [10−7; 10−5] and that Sk has an exponential
distribution with parameter λk . Now let h be a real, bounded, measurable function. Then

Eµ[h(RkF (Sk))] =
∫ +∞

0

∫ bk

ak

h(ρF (s))
1

bk − ak
λke

−λks dρ ds.

Introduce the transformation
u = ρ, v = ρF(s),

whose Jacobian is worth (1/u)(F−1)′(v/u), so

Eµ[h(RkF (Sk))] =
∫ +∞

0
h(v)

(∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du

)
dv.

Hence, we obtain the density of the random variable RkF(Sk) and integration by parts yields∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du = 1

bk − ak

∫ bk

ak

u
λke−λkF−1(v/u)(F−1)′(v/u)

u2 du

= 1

bk − ak

(
[ue−λkF−1(v/u)]bkak −

∫ bk

ak

e−λkF−1(v/u) du

)
.

Finally, the density of the random variable RkF(Sk) is bounded by∣∣∣∣∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du

∣∣∣∣ ≤ ak + bk

bk − ak
+ 1 ≤ 2bk

bk − ak
≤ 2.

Let j ∈ N. We now study the distribution of the random variables (Dk)k∈N conditionally on
the event {K = j}. An induction argument shows that, conditionally on the event {K = j}, the
random variableDk has distribution δ0 for k ≤ j and has a density ψk bounded by 2 for k > j .
Indeed, in the second case, the density of Dk may be obtained by convolution since Dk−1 and
RkF(Sk) are independent random variables. Therefore, for k ≤ j ,

Pµ(|Dk − 0.2| ≤ α | K = j) = 1{α≥0.2} ≤ 5α

since Dk = 0 for k ≤ j and, for k > j ,

Pµ(|Dk − 0.2| ≤ α | K = j) =
∫ 0.2+α

0.2−α
ψk(v) dv ≤ 4α

since ψk ≤ 2. Eventually,

Pµ(Zk ∈ Uα) = Pµ(|Dk − 0.2| ≤ α) =
∑
j∈N

Pµ(|Dk − 0.2| ≤ α | K = j)Pµ(K = j) ≤ 5α.

This completes the proof.

Lemma 5.3. For all k ∈ N, let

ηk = |((Tk + u∗(Zk)) ∧ Tk+1)− ((T̂k + u∗(Ẑk)) ∧ T̂k+1)|.
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We have, for all α > 0,

‖ηk‖p ≤ ‖Tk − T̂k‖p + 2‖Tk+1 − T̂k+1‖p +
(

[u∗]α/2 + 4Cu∗

α

)
‖Zk − Ẑk‖p + 10Cu∗α1/p,

where [u∗]α = (1 + Cu∗ + 4 × 105)/(10−7(1 − e−α/2)).

Proof. Let α > 0. Let Ũα = [0, 0.2 − α] × {0} × [10−7; 10−5] × {0}. We will prove that
the function u∗(d, 0, ρ, 0) is Lipschitz continuous on this set. The function u∗(d, 0, ρ, 0)
satisfies the following equivalent equations:

d + dm(u
∗) = 0.2 ⇐⇒ d + ρ(u∗ + η(e−u∗/η − 1)) = 0.2.

The implicit equation satisfied by u∗ yields, on the set Ũα , u∗ ≥ α/ρmax = 105α. This
lower bound will be crucial to prove the Lipschitz continuity. Let d, d ′ ≤ 0.2 − α, and define
u = u∗(d, 0, ρ, 0) and u′ = u∗(d ′, 0, ρ, 0). Note that d + dm(u) = d ′ + dm(u

′) because they
are both equal to 0.2. Consequently, |dm(u)− dm(u′)| = |d ′ − d| and, noting that η ≤ 2 × 105,
we have

|d − d ′| = ρ|u− u′ + η(e−u/η − e−u′/η)|
≥ ρ(1 − e−u∧u′/η)|u− u′|
≥ 10−7(1 − e−α/2)|u− u′|,

which proves the Lipschitz continuity of u∗ with respect to d on Ũα .
Similarly, let ρ, ρ′ ∈ [10−7; 10−5], and define u = u∗(d, 0, ρ, 0) and u′ = u∗(d, 0, ρ′, 0).

Note that d + ρ(u+ η(e−u/η − 1)) = d + ρ′(u′ + η(e−u′/η − 1)) because they are both equal
to 0.2. Subtracting d + ρ(u′ + η(e−u′/η − 1)) from both terms yields

ρ|u− u′ + η(e−u/η − e−u′/η)| = |ρ − ρ′||u′ + η(e−u′/η − 1)|.
A lower bound for the left-hand side term has already been computed, while the right hand-side
is easily bounded by (Cu∗ + 4 × 105)|ρ − ρ′|, since η ≤ 2 × 105, so we have

(Cu∗ + 4 × 105)|ρ − ρ′| ≥ 10−7(1 − e−α/2)|u− u′|,
which proves the Lipschitz continuity of u∗ with respect to ρ on Ũα . Eventually, for all
α > 0, the function u∗ is Lipschitz continuous on Ũα with Lipschitz constant [u∗]α =
(1 + Cu∗ + 4 × 105)/10−7(1 − e−α/2).

Let k ∈ N. We now intend to bound ‖ηk‖p. Define, as in the proof of Lemma 5.2, the
random variableK = inf{k ≥ 0 such that Gk = 0}; K is the jump that occurs at the end of the
protection period against corrosion.

First, note that, on the event {k ≤ K} (i.e. when protection against corrosion is still active),
we have Zk ∈ E(i,1) for some i ∈ {1, 2, 3} and, since the projection defining Ẑk from Zk
ensures that they are in the same mode, we also have Ẑk ∈ E(i,1). Moreover, u∗(x) = +∞ for
all x ∈ E(i,1), so

‖ηk 1{k≤K}‖p = ‖(Tk+1 − T̂k+1) 1{k≤K}‖p ≤ ‖Tk+1 − T̂k+1‖p.
Furthermore, if Zk = �, where � denotes the cemetery state, then Ẑk = proj�k (Zk) = �

too and we have ηk = 0, so

‖ηk 1{k>K}‖p ≤ ‖ηk 1{k>K} 1{Zk �=�}‖p
≤ ‖Tk − T̂k‖p + ‖Tk+1 − T̂k+1‖p + ‖(u∗(Zk)− u∗(Ẑk)) 1{k>K} 1{Zk �=�}‖p.
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Eventually, we intend to bound the last term of the previous sum; therefore, we consider the
event {k > K} ∩ {Zk �= �}. On the one hand, the random variables Zk and Ẑk both belong to
E(i,0) for some i ∈ {1, 2, 3}. On the other hand, althoughUm = (−∞; 0.2]×R

3 for allm ∈ M ,
we actually have Zk ∈ [0; 0.2] × {0} × [10−7; 10−5] × R

+ a.s. and, according to Remark 4.1,
Ẑk ∈ [0; 0.2] × {0} × [10−7; 10−5] × R

+ a.s. too. Combining the two previous remarks, we
have Zk ∈ Ũ and Ẑk ∈ Ũ , where Ũ = [0; 0.2] × {0} × [10−7; 10−5] × {0}. Finally, let α > 0
and note that Ũ ⊂ Ũα ∪Uα . We have

‖(u∗(Zk)− u∗(Ẑk)) 1{k≥K} 1{Zk �=�}‖p ≤ A+ B,

where

A = ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{k≥K}‖p, B = ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Uα} 1{k≥K}‖p.

The termB is easily bounded thanks to Lemma 5.2: B ≤ 2Cu∗ Pµ(Zk ∈ Uα)1/p ≤ 10Cu∗α1/p.
We now turn to the term A and use the Lipschitz continuity of u∗ on Ũβ for any β > 0. We
have

A ≤ ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{Ẑk∈Ũα/2} 1{k≥K}‖p
+ ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{Ẑk �∈Ũα/2} 1{k≥K}‖p

≤ [u∗]α/2‖Zk − Ẑk‖p + 2Cu∗‖1{Zk∈Ũα} 1{Ẑk �∈Ũα/2}‖p.

Note now that 1{Zk∈Ũα} 1{Ẑk �∈Ũα/2} ≤ 1{|Zk−Ẑk |≥α/2}, so, finally,

A ≤ [u∗]α/2‖Zk − Ẑk‖p + 2Cu∗
(

Pµ

(
|Zk − Ẑk| ≥ α

2

))1/p

≤ [u∗]α/2‖Zk − Ẑk‖p + 4Cu∗
‖Zk − Ẑk‖p

α
,

completing the proof.

The mean exit time. Simulation results for the approximation of the mean exit time are given
in Table 5. In order to have a value of reference, a Monte Carlo method (106 simulations) yields
the value E[τ ]Monte Carlo = 526×103 h. For the first moment, the empirical convergence rate is
presented in Figure 5. Through a regression model the empirical convergence rate is estimated
as −0.38. Note that it is roughly of the same order as the rate of convergence of the optimal
quantizer (see Theorem 4.1), as here the dimension is 4.

Table 5: Simulation results for the mean exit time.

Number of points in the Relative error to 526 × 103 h
quantization grids p̂N,1 (×103 h) (%)

20 572 8.7
50 569 8.2

100 557 5.9
200 551 4.8
500 539 2.5
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Figure 5: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the first moment of the corrosion process.
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Figure 6: Survival function of τ obtained using Monte Carlo simulations (dashed line) and the quantized
approximation (solid line), and the error with 500 points in the quantization grids.

The exit time distribution. Considering the approximation scheme for the exit time distri-
bution, we note that the quantized value p̂N (s) is not necessarily smaller than 1. Therefore, it
appears natural to replace p̂N (s) by p̂N (s) ∧ 1. This does not change the convergence theorem
and can only improve the approximation error. It is equally possible, and this is done in the
results below, to replace p̂N (s) by p̂N (s)/p̂N(0) since p̂N (0) goes to 1.

Figure 6 presents the survival function of τ obtained using Monte Carlo simulations (dashed
line) and our approximation scheme (solid line), and the error. Table 6 contains the empirical
error for different numbers of points in the quantization grids. For the survival function, the
empirical convergence rate is presented in Figure 7. Through a regression model the empirical
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Table 6: Simulation results for the distribution.

Number of points in the
quantization grids maxs |pN(s)− p̂N (s)|

20 0.145
50 0.119

100 0.040
200 0.039
500 0.020
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100

Figure 7: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the survival of the corrosion process.

convergence rate is estimated as −0.63. Note that it is roughly of the same order as the rate of
convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 4.

The convergence of the approximation scheme in the corrosion model appears to be slightly
slower than in the previous example. This is due to the higher dimension of the process that has
to be quantized, which is 4 in the case of the corrosion model and 1 in the case of the Poisson
process.

Remark 5.5. Using Monte Carlo simulations, we can approximate the value of q̃. We have
q̃ � 0.0187 for 107 histories.

6. Advantages and practical interest of our approach

Let us describe the practical interest of our approach.

• The quantization grids only have to be computed once and can be used for several
purposes. Moreover, once they are obtained, the procedures leading to p̂N (s) and to
p̂N,j can be achieved very simply since we only have to compute finite sums.

• Concerning the distribution, since p̂N (s) can be computed almost instantly for any value
of s, the whole survival function can be obtained very quickly. Similarly, concerning
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the moments, p̂N,j can be computed very quickly for any j , so any moment is almost
instantly available.

• Furthermore, in both cases, one may decide to change the setU and consider the exit time
τ ′ from a new set U ′. This will yield new sequences (̂qk)k , (̂rk,j )k , and (p̂k,j )k in the
case of the j th moment approximation or new sequences (̂qk)k , (̂rk(s))k , and (p̂k(s))k
if we are interested in the distribution. These new sequences are obtained quickly and
easily since the quantized process remains the same and we only have to compute finite
sums. Of course, the set U ′ must be such that Assumptions 3.2–3.5 remain true and such
that Pµ(TN < τ ′) remains small without changing the computation horizon N . This last
condition is fulfilled if, for instance, U ′ ⊂ U . This flexibility is an important advantage
of our method over, for instance, a Monte Carlo method.
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