
BULL. AUSTRAL. MATH. SOC. 20D99

VOL. 74 (2006) [219-226]

ENSURING A FINITE GROUP IS SUPERSOLUBLE

R.A. BRYCE

A special case of the main result is the following. Let G be a finite, non-supersoluble
group in which from arbitrary subsets X, Y of cardinality n we can always find x € X
and y 6 7 generating a supersoluble subgroup. Then the order of G is bounded by
a function of n. This result is a finite version of one line of development of B.H.
Neumann's well-known and much generalised result of 1976 on infinite groups.

1. BACKGROUND

A group is Abelian, of course, if every pair of its elements generates an Abelian
subgroup. In [10] Neumann generalised this showing that a group is centre-by-finite if in
every infinite subset of it there is a pair of elements that generates an Abelian subgroup.
This result has itself been generalised by many authors, although usually proving results
that are vacuous in a finite group. The present article gives a finite version of some of
the post-Neumann work.

Our motivation includes the following results. Firstly Lennox and Wiegold [7]
proved, among other things, that a finitely generated soluble group is finite-by-nilpotent
if and only if in every infinite subset of it there is a pair generating a nilpotent sub-
group; and Groves [5] showed that this result remains valid when 'nilpotent' is replaced
by 'supersoluble'. Spiezia [12] and Longobardi, Mai and Rheumtulla [8] strengthened
Neumann's basic hypothesis; and this is used in Edimioni [4] to prove a result having
the following as a corollary: a finitely generated soluble group G is nilpotent if, whenever
X, Y are infinite subsets of G, there exists x € X and y € Y so that {x, y) is nilpo-
tent. Earlier Lennox [6] had shown the weaker result that a finitely generated soluble
group is nilpotent if every two-generator subgroup of it is nilpotent; and subsequently
Trabelsi [14] was able to replace Endimioni's 'nilpotent' by 'nilpotent-by-finite'. In [13]
Tomkinson showed that, given a positive integer n, a finitely generated soluble group has
hypercentre of index bounded by a function of n if every subset of cardinality n of the
group contains a pair generating a nilpotent subgroup.

Our main result is Theorem 6 given at the beginning of Section 3. Corollaries of this
show that for each of the properties supersolubility, nilpotence and Abelianness there is
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a function / on the positive integers with the following property. Suppose G is a finite
group in which, whenever X, Y are subsets of G of cardinality n, there exists x € X and
y € Y for which (x, y) is supersoluble, nilpotent or Abelian: then, whenever \G\ > /(n),
G is supersoluble, nilpotent or Abelian, as the case may be.

Many articles in the literature build on the work of Lennox and Wiegold [7]; a search
for references in this area could usefully start with those given in Trabelsi's articles [14]
and [15]. Our notation and terminology is generally that of Doerk and Hawkes [3].

2. PRELIMINARY DEFINITIONS AND RESULTS

For a class 2) of finite groups and a positive integer n we define the class of finite
groups 2)'"' as follows. A group G is in 2j(n' if, whenever X, Y are subsets of cardinality n
in G, there exists x € X and y € Y for which (x, y) € 2). This definition is motivated by
that of Spiezia [12] in the context of infinite groups. We adopt the convention that 2)'"'
contains all groups of order less than n. Then 2j'n' is s-closed and is Q-closed whenever
2) is.

In Theorem 6 we show that, for certain classes 2) and for all positive integers n,
2}["1 is 'almost' equal to 2) in the sense that groups in 2)'"' \ 2) have order bounded by a
function of n.

The classes 2J we consider are formations with two extra properties. Firstly a finite
group G is in 2J whenever every pair of its elements generates a 2J-group: this is the
property Doerk and Hawkes call ^-completeness, (82 being the class of 2-generator
groups ([3, p. 516]). Secondly there is a unique Sylow p-subgroup in an 2J-group when p
is the largest prime dividing its order. That is 2) is contained in the class T> of Sylow
tower groups with the inverse order on the set of primes ([3, pp. 358-359]). A formation
2J with these two, extra, properties we shall term a star class. The classes 2t, 9t, of
finite Abelian and finite nilpotent groups respectively, are star classes, being formations
satisfying the extra properties. U, the class of finite supersoluble groups, is a star class
by a result of Carter, Fischer and Hawkes [2]. (In [2] groups are soluble; however the
proof of Corollary 2 below shows that a finite group is necessarily soluble if every pair
of its elements generates a supersoluble subgroup.) A proof by induction using another
result from [2] - see [3, 6.15 on p. 523] - shows that product classes S P l S P 2 . . . 6P r are
^-complete, so are star classes whenever the sequence of primes (p*) is decreasing, that
the minimal simple groups are all two-generator.

In what follows we shall appeal often to the lemmas of this section. Throughout <j>
denotes the Euler totient, function and o(x) is the order of the element x of a group.

LEMMA 1. Let X be a star dass, G a group in XW and x,yeG with (j>{o{x)) ^ n.
Then (x, y) € X.

P R O O F : There are in (x) distinct generators x i , x 2 , . . . , x n and the elements
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XiV (1 ^ i ^ n) are also distinct. Because G G 3^"' there are integers i,j for which

X3(Xi,xjy) = (x,y). D

COROLLARY 2 . Let X be a star ciass and suppose that G € Jf"1. If p is the
largest prime dividing \G\ and ifp > n then G has unique Sylow p-subgroup.

PROOF: Let i , y 6 G b e p-elements. Then, since <l>(o{x)) ^ p - 1 ^ n, H := {x,y)
G X by Lemma 1. But p is the largest prime dividing \H\ so x, y G OP(H). Consequently
xy is a p-element of G. It follows that the set of p-elements of G is a subgroup, so G has
a unique Sylow p-subgroup. D

LEMMA 3 . Suppose that X is a star class, that G G £(n' and that N <G with
\N\ > n. Then G/N G X.

PROOF: Choose elements giN,g2N e G/N. Since \giN\ = \g2N\ > n it follows
that, for some elements ni,n2 e N, K := (gini, g2n2) e X. Hence, in G/N,

(giN, g2N) = KN/N £ K/K nNzX

because X is Q-closed. As X is a star class, therefore, G/N G X D

The next result enables us in Section 3 to reduce to the case of soluble groups; it
relies on the classification of finite simple groups.

PROPOSITION 4 . Let Xbea star class of soluble groups and n a positive integer.
The number of isomorphism classes of insoluble groups in 3C'"' is bounded.

PROOF: Let G G £M \ 6 , where & is the class of finite soluble groups, and suppose
that |G| > n(n\). Define N := Gx and note that N ^ {1} so that there is a chief factor
N/M of G. It follows from Lemma 3 that \M\ ^ n. Write C := CG{M). Then, from
\G\ = \C\ • \G : C\ ^ \C\ • n\, we deduce that \C\ > n. By Lemma 3 again, G/C G X
so N < C. In particular M ^ Z(N) so M is Abelian. Both M and G/N are soluble so
N/M is insoluble. Hence N/M = Si x S2 x • • • x St where St = Sy (1 ^ i ^ t) and Si is
a non-Abelian simple group.

Let Co := CQ{N/M) and note that Co n N = M. G/CQ is insoluble, so not in
X. Hence, by Lemma 3, |Co| ^ n. If t > 1, Lemma 3 shows that \N/M\ ^ n2 so
\G\ = |Co| • |G/Co| < n • (n2)!. In the case t = 1 we invoke Corollary 2 to conclude that
all primes dividing \S\\ are less than n. By the classification of finite simple groups there
is a number s(n) bounding the order of such groups. Then |G| = |Co| • |G/Co| ^ n • s(n)\
and it follows that

|G|«$max{n-(n2)!,n-s(n)!}.

This shows that the orders of insoluble groups in X^ are bounded, establishing the
Proposition. D

It will be convenient to have an explicit bound for a natural number in terms of its
Euler function value.
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LEMMA 5 . For every positive integer m, m < 2<j>{m)2.
T

PROOF: Suppose m = Ylpf where the piS are distinct primes in increasing order
«=i

and with a< ^ 1 (1 < t < r). Then, on the one hand,

so m ^ 2r0(m); and on the other

t=l i=l

giving m < 2</>(m)2. D

3. T H E MAIN THEOREM

THEOREM 6 . Let X be a subgroup closed and saturated star class of groups con-
tained in 9121. There is a function fx : N -> N for which groups in X^ \ X have order at
most fx(n).

The classes 91, it, of nilpotent and supersoluble groups respectively, satisfy the hy-
potheses of this theorem so we have the following corollaries immediately.

COROLLARY 7 . There is a function fnup : N ->• N for which groups in 9tfnl \ 91
have order at most fnup{n).

For soluble groups this is consistent with Tomkinson's result [13] in the following
sense. Every subset of 2n elements of a group in 91'"' has a pair that generates a nilpotent
subgroup so, by [13], soluble groups in 91'"' have hypercentre of bounded index; and
Corollary 7 ensures this.

COROLLARY 8 . There is a function f,tol : N -> N for which groups in itf") \ iX
have order at most fs,oi(n).

The class a is not saturated so does not satisfy the the hypotheses of Theorem 6.
Nevertheless a similar result holds for it.

COROLLARY 9 . There is a function / ^ : N -t N for which groups in &'"' \ 21 iave
order at most fob{n).

We now begin the proof of the Theorem.
Proposition 4 reduces the question to showing that, for each n ^ 1, soluble groups

in X^ \ X have bounded order. We suppose the theorem to be false and derive a con-
tradiction. That is, we suppose that, for some positive integer n, there are groups of
arbitrarily large order in Sjn := (Xtn) \ X) D 6.
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Our first step is to show that f)n contains arbitrarily large primitive groups. To this
end let £ be an arbitrary natural number and let G G Sjn have order at least n£. Write
N := Gx; it is non-trivial so there is a chief factor N/M of G. Now X is saturated so
N/M £ $(G/M) and N/M has a complement C in G; that is G = CN, C(lN = M. C
is a maximal subgroup of G as N/M is an Abelian chief factor of G. The factor group
G/corec(C) is primitive with a stabiliser C/corec(C), and kernel (that is, unique minimal
normal subgroup) NcoTeG(C)/coTeG(C). The latter is the (non-trivial) X-residual of
G/coreG(C). By Lemma 3, |corec(C)| ^ n s o that |G/coreG(G)| ^ £. That is, writing
*}3n for the class of primitive groups in Sjn with stabilisers in X,

(1) there are arbitrarily large groups in ^3n.

We observe that ^3n contains groups with arbitrarily large kernels because, if G = KU
€ ^pn where if is a stabiliser and U is the kernel, \K\ < \U\\.

Using the same notation suppose that G = KU G $$„ is a Frobenius group with
K generated by two elements, a,b say. If \U\ > 2n there are disjoint subsets U\,U%
of U of cardinality n and la^'l = |6Uj| = n. Then, as G e fjn, for some ux € U\
and u2 € f/2, #o := (au i ,6u j ) G X. Note that H0U = G so HonU <G. Since 17 is
minimal normal in G it follows that either Ho = G or H0C\U = {1}. But G & X so
H0DU = {1}. Now # 0 n tfUl ^ {1} ? t f fon AT"2 so, since G is Frobenius, KUl = AT"2

thus t t iuj1 G [/ D NG(K) = {1} contradicting that ui ^ u2. That is |t/|, and therefore
|G|, is bounded. In particular groups in ^3n with Abelian, and that is cyclic, stabilisers
are Frobenius so have bounded orders.

Now let f be arbitrary and suppose that H := KU G ̂ 3n where K is a non-Abelian
stabiliser, and U the kernel of order greater than n£. We denote by p, a prime, the
exponent of U; then OP(K) = {1} and, since K is nilpotent-by-Abelian, K' is a p'-group.
Let L be a minimally non-Abelian subgroup of K. Note that J := LU G f)n- Since L'
acts faithfully by conjugation on U, Cu{L') < U\ < U where U/U\ is a chief factor of J
and U has no non-identity fixed points in U/Ui so [V, U]Ui = £/. We have J/Ui & X or
else J/tA G Ora which leads to [L',U]UX = [L',U,L']Ui = Uu a contradiction. It follows
from Lemma 3 that \Ui\ ^ n and hence \U/Ui\ > f. Also LU\/U\ is maximal in J/C/i;
its core intersects L'U/Ui trivially; and modulo its core it is minimally non-Abelian. It
follows that J has a primitive factor group in ^Jn with kernel U/U\ and minimally non-
Abelian stabilisers. Let ^3* be the subclass of ^Jn of non-Frobenius groups with minimally
non-Abelian stabilisers. Since a minimally non-Abelian group is 2-generator the upshot
of (1), this paragraph and the last is that

(2) there are groups in ^3* with arbitrarily large kernels.

Our aim now is to show that, on the contrary, the groups in ^}* do have uniformly
bounded orders, thus contradicting our assumption that the theorem is wrong. To this
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end let G = KU € Vn using the usual notation. We first show that

(3) the exponent of U is at most n.

Let p be the exponent of U. If p \ \K\ then, since OP(K) = {1}, G has no normal Sylow
p-subgroup so, by Corollary 2, p ^ n. If, on the other hand, p { \K\, there is a ^-element
a € L \ {1} and an element u € U \ {1} for which ou = ua. Because non-identity central
elements of K have no fixed points in U, a £ Z(K) so, for some b € K, (a, b) = K. Then
(au, b) = (a, u, b) = G & X. Hence, by Lemma 1,

n > t(o(au)) = <t>(o{a)o{u)) = <f>(o{a))<t>(o(u)) 2 <t>{o{u)) = p - 1

so, in both cases, p ^ n as claimed in (3). We note for future reference that much the
same argument as in the last sentence, together with Lemma 5, shows that o(b) ̂  2n2.

Suppose that K has a unique maximal normal subgroup, KQ say; \K : Ko\ is prime
since K is soluble. K is not nilpotent because it is not cyclic. Minimality means that \KQ\
and \K : Ko\ are both prime and each, by Corollary 2, is at most n, so \K\ ^ n2. Now
FPK, the regular AT-module over the field of p elements, contains a section isomorphic to
U, so \G\ < p"2 • n2 ^ n"2+2, using (3).

If, on the other hand, K has different maximal normal subgroups K\,Ki then

K = KXK2, K' = [ATx,tf2] < Kx n *T2

and /f is nilpotent of class 2. By minimality A" is a g-group for some prime q^p\ and
q ^ nby Corollary 2. Also Z(K) is cyclic and no non-identity element of it centralises a
non-identity element of U as U is faithful and irreducible for the conjugation action of K.
Because G is not Probenius there exists a € K \ {1} and u € U \ {1} for which au = ua;
and, as no non-identity power of a is central, we may suppose that o(a) = q. As above,
for some b e K, (a, b) is not Abelian and therefore it is K. However 1 = [a«, b] = [a, b]q

meaning that K' has order q. The sentence ending the penultimate paragraph shows that
o(b) ^ 2n2. Consequently \K/K'\ < 2n2 • q ^ 2n3 so \K\ < 2n3 • q = 2n4; and then, as in
the last paragraph, |G| is functionally bounded.

The last two paragraphs show that there is a uniform bound on the orders of the
groups in (JJJ. This contradicts (2) and with it the assumption that there are in 3^"' \ X
groups of unbounded order. The proof of Theorem 6 is therefore complete. D

PROOF OF COROLLARY 9: Since 21 C <Jt it follows from Corollary 7 that a group G
in St'"' of order greater then fnaP(n) is nilpotent and therefore the direct product of its
Sylow subgroups, one of which, a ^-subgroup Q, say, is non-Abelian. Let N be & normal
subgroup of G maximal with respect to not containing Q'. Then G/N is non-Abelian so,
by Lemma 3, |iV| ^ n. Also Q'N/N is the unique minimal normal subgroup of H := G/N
which therefore has class 2 and cyclic centre. Moreover H €E 21'"] \ 2t.
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It suffices, therefore, to show that groups H of class 2 and with cyclic centre in a'"'
have bounded order. Now if is a central product of non-Abelian two-generator groups
Hi = (aj,6j) (1 ^ i < m) of class 2 with cyclic centre and, possibly, a cyclic group (see
[1, Theorem 2.1]). By Lemma 1 an element h with <j>(o(h)) ^ n is central so each Hi
has bounded exponent and therefore bounded order. Moreover with 6 := 6162 • • • bm and
A := {ai,a2,...,am}, \A\ = \Ab\ = m so, if m > n then, for some j,k, 1 = [aj,akb]
= [a.j, bj] a contradiction. It follows that H is a central product of a group Ho of bounded
order and a cyclic group C = (c). If the result claimed is false then there are such groups
H in Stf"' with arbitrarily large C. If o(c) > o(aj) then o(a\c) = o(c) so <j>(o(c)) > n would
mean, by Lemma 1, that aye, and therefore a\, were central, a contradiction. Hence, by
Lemma 5, \H\ is bounded. D

4. FINAL COMMENTS

Our definition of 2)'"' is a one-parameter version of a two-parameter definition noted
by Neumann [11]. He defines a class we might write as 2)lm'"l consisting of those groups
in which, whenever X, Y are subsets of cardinalities m, n respectively, there is an x € X
and &y £Y such that (x, y) 6 2J.

Direct proofs may be given for Corollaries 7 and 9 independently of our main theorem
and not depending on the classification of finite simple groups. By way of example a
sketch of a direct proof of Corollary 9 goes like this. If the result is false then there is
a smallest n ^ 2 for which 21'"' \ 21 contains a non-Abelian group G of order greater
than /oe,(n - 1). There are subsets X, Y of cardinality n - 1 in G for which no x 6 X
commutes with a y € Y. Observe that 0(1), o(y) are bounded by 2n2 for x € X and
y € Y by Lemmas 1 and 5. Either every g e G \ Y commutes with some element of X,
in which case

G={J(y)u{JCG(x);

or, for some y' € G \ Y, y1 commutes with no element of X, and then

G=\J(x)u\JCG{y)uCG{y').

In the first of these unions not every (y), and in the second not every (1), is omissible.
That is G is an irredundant union of at most 2n — 1 subgroups whose intersection has
order at most 2n2. The theorem of Neumann [9] then shows that \G\ is bounded by a
function of n.

A proof of Corollary 7 in this style is somewhat more complicated.
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