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Plasma supports collective modes and particle–wave interactions that lead to complex
behaviour in, for example, inertial fusion energy applications. While plasma can
sometimes be modelled as a charged fluid, a kinetic description is often crucial for
studying nonlinear effects in the higher-dimensional momentum–position phase space that
describes the full complexity of the plasma dynamics. We create a differentiable solver
for the three-dimensional partial-differential equation describing the plasma kinetics
and introduce a domain-specific objective function. Using this framework, we perform
gradient-based optimization of neural networks that provide forcing function parameters
to the differentiable solver given a set of initial conditions. We apply this to an
inertial-fusion-relevant configuration and find that the optimization process exploits a
novel physical effect.
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1. Introduction

Kinetic plasma physics is described, typically, using various formulations or realizations
of Boltzmann-like transport equations for the electron and ion species. A special case that
is frequently studied is that of the dynamics restricted to one spatial dimension and one
momentum dimension (‘1D-1V’) for a single species of particles, given by

∂ f̃
∂ t̃

+ ṽ
∂ f̃
∂ x̃

− Ẽ
∂ f̃
∂ṽ

=
[

δf̃
δt̃

]
coll

, (1.1)

where the normalized electric field is given by solving ∇ · Ẽ = 1 − ∫
f̃ dṽ, and the

normalized particle distribution function is f̃ = f (t, x, v)/nev
3
th. The quantities are

normalized to electrostatic units where ṽ = v/vth, x̃ = x/λD, t̃ = ωpt, m̃ = m/me and
Ẽ = eE/mevthωp. Here, vth is the thermal velocity, ωp is the plasma frequency, λD is the
Debye length, and me, and e, are the electron mass, and charge, respectively.
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The left-hand side of this equation describes the evolution of the particle distribution
in ‘macroscopic’ field E that arises self-consistently from the one-particle distribution
f . The right-hand side provides a description of two-particle and higher correlations
(i.e. collisions). Equation (1.1), along with Gauss’s law and with a particular
form of the collision operator for two-particle interactions, is often termed the
Vlasov–Poisson–Fokker–Planck (VPFP) equation set. Solving the VPFP set is often
analytically intractable, even in 1D-1V. This is because the left-hand side has a stiff linear
transport term, has a nonlinear term in E∂f /∂v and can sustain wave propagation and other
hyperbolic partial-differential equation (PDE) behaviour. Additionally, the right-hand side
is typically represented by a hyperbolic advection–diffusion PDE. Making progress on
kinetic plasma physics often requires computational simulation tools.

Numerical solutions to the 1D-1V VPFP equation set have been applied in research on
laser–plasma interactions in the context of inertial fusion, for example in plasma-based
accelerators (Krall, Joyce & Esarey 1991; Thomas 2016), space physics (Chen, Klein &
Howes 2019), fundamental plasma physics (Pezzi et al. 2019) and inertial fusion (Strozzi
et al. 2007; Fahlen et al. 2009; Banks et al. 2011). Such numerical simulations may be
used to explore initial conditions and forcing functions to understand the behaviour of a
physical effect in response to input parameters. Multi-dimensional ‘brute-force’ scans are,
however, inefficient and costly and it is therefore beneficial to seek a more guided approach
by leveraging optimization techniques.

Optimization techniques can be grouped into gradient-based or gradient-free methods.
Gradient-free methods are typically useful when it is not practical to obtain the gradient
of the desired objective function (Nocedal & Wright 2006). For example, when the
objective function is the outcome of a plasma-based accelerator experiment. In this case,
one can use classical approaches like the Nelder–Mead algorithm (Shalloo et al. 2020)
or more modern alternatives like Bayesian (Shalloo et al. 2020; Jalas et al. 2021) or
evolutionary (He et al. 2015; Smith et al. 2020) algorithms. These algorithms have been
shown to be effective in the small Np regime, where Np is the number of parameters
to optimize. While there has been some success in using gradient-free approaches in
large Np regimes e.g. in reinforcement learning scenarios (Salimans et al. 2017), it
has been when the gradient information is unreliable. In general, as Np � 1, utilizing
gradient-free methods becomes computationally intractable or unstable. In the work
here, we learn functions reparametrized via a neural network, and therefore we seek
the optimal neural network weights and biases. In this work, O(10) ≤ Np ≤ O(103), and
automatic-differentiation-driven, gradient-based methods offer significant advantages.

While not focused on the nonlinear kinetic plasma dynamics, recent works have applied
gradient-based optimization to fusion device design. Analytic approaches have resulted
in the development of adjoint methods for shape derivatives of functions that depend
on magnetohydrodynamic equilibria (Antonsen, Paul & Landreman 2019; Paul et al.
2020). These methods have been used to perform optimization of stellarator design (Paul,
Landreman & Antonsen 2021). Other work uses gradients obtained from analytic (Zhu
et al. 2017) and automatic differentiation1 (AD) (McGreivy, Hudson & Zhu 2021; Conlin
et al. 2022; Dudt et al. 2022; Panici et al. 2022) towards similar device optimization goals.
Here, we propose the application of gradient-based optimization towards understanding
the nonlinear, kinetic plasma dynamics using differentiable kinetic simulations.

Differentiable simulations have been used in a variety of contexts for such guided
searches, for example, learning parameters for molecular dynamics (Schoenholz, Cubuk
& Jax 2019), learning differencing stencils in PDEs (Bar-Sinai et al. 2019; Zhuang et al.

1See Baydin et al. (2018) for a recent machine-learning focused perspective.
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2020; Kochkov et al. 2021) and controlling PDEs (Holl, Koltun & Thuerey 2020). Here,
we apply AD towards learning physical relationships and discovering novel phenomena in
the VPFP dynamical system by training neural networks through differentiable simulations
that solve (1.1).

In the rest of the manuscript, we first develop a conceptual framework for how one
might implement gradient-descent-based optimization of parameters and learning of
functions via differentiable programs. We then apply this framework towards kinetic
plasma physics. Specifically, we extend the findings in Fahlen et al. (2009) of the etching of
nonlinear plasma wavepackets to study the effect of the hot electrons from one wavepacket
on downstream wavepackets using a gradient-based approach. To do this, we train a
neural network that provides control parameters to the PDE solver. By choosing physical
parameters as inputs and control parameters as outputs of the neural network, we enable
the neural network to learn a function that describes the physical relationship between
the plasma parameters and the forcing function parameters e.g. the resonance frequency.
We train the neural network in an unsupervised fashion using a cost function based
on minimizing the free energy and maximizing the non-Maxwellian-ness of the plasma
distribution function. This enables us to create self-learning plasma physics simulations,
where the optimization process provides a physically interpretable function that can enable
physics discovery.

2. Physics Discovery using Differentiable Simulations

In this section, we provide a step-by-step description of how a traditional
simulation-based computational physics workflow may be modified to perform
closed-loop optimization.

2.1. Open loop: manual workflow
Figure 1(a) depicts a typical simulation workflow represented as a cyclic graph. The user
defines the parametric inputs that create the state vector x. This can contain any parameters
that are used to define the simulation e.g. the grid size, the number of solver steps, etc. For
didactic purposes, the physical parameters to the simulation may be separated from x into
a different vector of inputs pd e.g. the forcing function parameters, the viscosity coefficient
etc.

Each of x and pd is passed to the algorithm that solves the PDE which is represented
by the function, V . The output of these simulations is stored in the final state vector xf .
The final state is postprocessed using a domain-specific set of algorithms devised by the
user or otherwise. The results of the postprocessing are interpreted by the user who then
determines the next set of inputs and parameters.

2.2. Closed loop: brute-force parameter scan
Figure 1(b) shows a more automated workflow. We replace the grey-box postprocessing
step with the calculation of a scalar quantity S using a cost function C on the final state xf .
This reduces the complexity of the interpretation of the postprocessing and enables a more
rapid search in parameter space. The decrease in required human effort for completing
one cycle enables the user to execute this loop as a brute-force parameter scan over a
pre-defined parameter space. At the end, the user can look up the minimum/maximum of
the scalar cost function, and find the parameters which provide that minimum.

The parameter scan approach scales with the number of different unique parameters and
the number of values of each parameter. e.g. a two-dimensional search in x and y requires
Nx × Ny calculations. Therefore, the parameter scan approach quickly becomes inefficient
when there are many parameters to scan, or when the required resolution in parameter
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(a) (b) (c) (d)

FIGURE 1. (a) A typical workflow where the user provides the initial conditions and forcing
function parameters to a PDE solve. The output of the solve is stored as the final state
xf . The final state is analysed using domain-specific postprocessing algorithms. (b) A cost
function and a parameter scan are introduced which enables= a closed-loop search. (c) A
gradient-descent-based optimization algorithm replaces the parameter scan to provide a more
efficient search mechanism. This requires the components in the purple background to be written
in an auto-differentiable framework. (d) We add a neural network that generates the forcing
function parameters as a function of other parameters. This generalizes the learnings from (c)
and enables a continuous representation within the learned parameters.

space is very high. To search this parameter space efficiently, and to escape the linear
scaling with each parameter, we can use gradient descent.

2.3. Gradient-descent-based parameter learning
Figure 1(c) includes two modifications. The user/parameter search grey box has been
replaced with a gradient-descent-based optimization algorithm. This algorithm provides
the updated parameters, e.g. ωG, a guess for the resonant frequency of the system, for the
next iteration of the loop. The gradient-descent algorithm requires the calculation of an
accurate gradient.

Symbolic differentiation is out of the question here as we do not have an analytical form
for our system. In the Appendix, we compare the performance of finite differencing to
acquire the gradient and confirm that AD is a superior method for this purpose. Therefore,
by writing our PDE solver V and the cost function C using a numerical framework that
supports automatic differentiation, we are able to perform gradient descent. Since

S = C(xf ) = C(V(x, pd)), (2.1)

the gradient for the update step is given by

∂S
∂pd

= ∂C(V(x, pd))

∂pd
= ∂S

∂V
∂V
∂pd

. (2.2)

For example, if we wish to learn the resonant frequency, ω, that optimizes for the scalar,
S , we compute

∂S
∂ω

= ∂S
∂V

∂V
∂ω

. (2.3)

Assuming a well-behaved solution manifold, performing gradient descent tends to
reduce the number of iterations required to find the minimum in comparison with an evenly
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spaced parameter scan, especially when the required resolution is unknown (Nocedal
& Wright 2006). While gradient-free methods such as the Bayesian framework, genetic
algorithms and others are also often used to perform parametric optimization, we do not
perform a more exhaustive comparison because our primary goal is to learn functions,
rather than parameters. We discuss this in the following section.

2.4. Gradient-descent-based function learning
In the final step, we can replace the lookup-like capability of the parameter optimization
and choose to learn a black-box function that can do the same. Through that process,
we acquire a continuous representation of the function rather than the discrete version
acquired in § 2.3

Here, we choose to use neural networks, with a parameter vector θ , representing the
black-box function and providing the fitting function with a large amount of flexibility.
This allows us to extend the gradient-descent-based methodology and leverage existing
numerical software to implement this differentiable programming loop. Now,

S = C(xf ) = C(V(x, pd)) = C(V(x,G(x, pd; θ)), (2.4)

where G is a function that generates the desired forcing function parameter given a
parameter vector θ . To extend the example from § 2.3, ω is now a function given by
ω = G(x, pd; θ).

We compute the same gradient as in (2.3) and add a correction factor that arises because
the parameter (vector) is now θ , rather than ω. The necessary gradient for the gradient
update is now given by

∂S
∂θ

=
[
∂S
∂V

∂V
∂G

]
∂G(x, pd; θ)

∂θ
. (2.5)

Since neural networks typically have � O(102) parameters, training these via
finite-difference or gradient-free methods is typically avoided except for the most extreme
cases (Zhang, Clune & Stanley 2017). It is for this reason that, while it is possible
to use finite-difference gradients or even a gradient-free method to perform parameter
optimization, these methods are less useful when training neural networks.

3. Discovery of long-lived nonlinear plasma wavepackets

When electrostatic waves are driven to large amplitude, electrons can become
trapped in the large potential (Bernstein, Greene & Kruskal 1957; O’Neil 1965). These
nonlinear electrostatic wavepackets are dynamically evolving, finite-length analogues
of the well-known, time-independent, periodic Bernstein-Greene-Kruskal (BGK) modes
described in Bernstein et al. (1957). Simulations of stimulated Raman scattering (SRS)
in inertial confinement fusion scenarios show that similar large-amplitude waves, but of
finite extent, are generated in the laser–plasma interaction, and that particle trapping is
correlated with the transition to the high-reflectivity burst regime of SRS (Strozzi et al.
2007; Ellis et al. 2012).

Simulating wavepackets, similar to those generated in SRS, but in individual
electrostatic simulations, has isolated their kinetic dynamics. Fahlen et al. (2009) showed
in these isolated simulations that resonant electrons transit through the slower moving
wavepacket. This is because the resonant electrons have velocity v ≈ vph = ω/k, where
ω is the frequency and k is the wavenumber of the wavepacket. On the other hand, the
group velocity of the wavepacket is vg = ∂ω/∂k. Approximating ω = √

1 + 3k2 gives
vph/vg = (3k2 + 1)/3k2. For these wavepackets, this ratio is roughly 3–5. The transit of the
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FIGURE 2. Given a first wavepacket with wavenumber k0 and a desired time of second
wavepacket excitation t1, the task is to learn functions that give the optimal frequency ω1 and
spatial location x1 of the second wavepacket.

resonant electrons from the back of the wavepacket to the front results in the resumption
of Landau damping at the back. The wavepacket is then damped away, as seen in
Fahlen et al. (2009).

Winjum et al. (2019) modelled the interaction of multiple speckles with a magnetic
field acting as a control parameter. Since the effect of the magnetic field is to rotate
the distribution in velocity space, the field strength serves as a parameter by which the
authors control scattered particle propagation. Using this, along with carefully placed laser
speckles, they show that scattered light and particles can serve as the trigger for SRS.

Here, we ask: What happens when a nonlinear electron plasma wavepacket is driven on
top of another? To answer this question, we reframe it as an optimization problem and ask:
What is the best way to excite a wavepacket that interacts with a pre-existing wavepacket?

We start with a large-amplitude, finite-length electrostatic wavepacket driven by a
forcing function with parameters given by

p0 = [x0, ω0, t0, k0] , (3.1)

where xi is the location of excitation, ωi is the frequency, ti is the time of excitation and ki
is the wavenumber, of the ith wavepacket.

Since we seek to excite a second wavepacket that can interact with the detrapped
electrons, we stipulate that the phase velocity of the resonant electrons from both
wavepackets is roughly the same. For this reason, we set the wavenumber k1 = k0. We
reparameterize the resonant frequency, ω1, with a frequency shift, �ω1 and the linear
resonant frequency ω0 such that ω1 = ω0 + �ω1.

We use the time of excitation of the second wavepacket, t1, as an independent variable
along with k0. For each t1 and k0, we seek to learn functions that produce x1 and �ω1
i.e. we seek to learn x1(t1, k0, ω0) and �ω1(t1, k0). The entire parameter vector for the
second wavepacket is given by

p1 = [x1(t1, k0),�ω1(t1, k0), t1, k0] . (3.2)

This framing is also illustrated in figure 2 where, given k0 and t1, we seek functions for ω1
and x1.

We reparameterize �ω1 and x1 with a neural network with a parameter vector, θ∗,
that maximizes the electrostatic energy (minimizes the free energy) and maximizes the
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difference in the kinetic entropy. These relationships are given by

x1 = x1(t1, k0; θ∗), (3.3)

�ω1 = �ω1(t1, k0; θ∗) (3.4)

where2,
θ∗ = argmin

[
Ues(p; θ) − �KE(p; θ)

]
, (3.5)

and

Ues =
tf∑
ti

�t
∑

x

�xE2 (3.6)

�KE =
tf∑
ti

�t
∑

x

�x
∑

v

�v( f log( f ) − fMX log( fMX)), (3.7)

are the electrostatic energy and difference in the kinetic entropy terms in the
loss function, respectively. Also, fMX = fMX(n(t, x), T(t, x)), n(t, x) = ∫

f (t, x, v) dv,
T = ∫

f (t, x, v)v2 dv/n, where fMX is the local Maxwell–Boltzmann distribution.
Equation (3.7) describes the deviation of the local distribution function from the
equivalent Maxwell–Boltzmann distribution function. It has been used as a measure of
the non-Maxwellian-ness by Kaufmann & Paterson (2009). The reason we maximize this
deviation is because we seek to enhance the likelihood of nonlinear kinetic effects.

We vary the independent variables such that

k0 ∈ [0.26, 0.27, . . . , 0.32], (3.8)

t1 ∈ [400, 500, . . . , 800], (3.9)

giving an input space of 35 samples from which we seek to learn these functions.
We are able to reproduce similar model training results using a few different neural

network configurations and learning parameters. To summarize that study, we find vanilla
multi-layer perceptrons 8 nodes wide and 2 layers deep to be effective, especially
when ‘activated’ using the Leaky-Rectified-Linear-Unit function. The specifics behind
the neural network, optimizer, and data normalization parameters are provided in the
Appendix.

The training simulations are performed with the following parameters. The grid
is discretized using Nx = 6656, Nv = 160, Nt = 1200, tmax = 1100ω−1

p , xmax = 6600λD.
Assuming inertial fusion conditions where ne = 1020 cm−3, Te = 2 keV gives a non-zero
collision frequency νee/ωp = 5 × 10−5 (Huba 2011) for the simulations shown here.
Details on the solvers and forcing function parameters are provided in the Appendix.

Figure 3 shows that the loss value is reduced over the duration of the training process.
Each simulation takes approximately 3 minutes to run on a NVIDIA T4 GPU. We train
for 60 epochs. The convergence in the loss metric suggests that we were able to train a
overparametrized neural network with 35 samples of data in 60 epochs. While Metz et al.
(2022) discuss that differentiating through the evolution of chaotic dynamical systems can
be ill posed, ablation studies indicate that the objective function posed here has a robust
minimum. One reason is because the chaotic particle dynamics is subject to dispersion,

2As is convention, we normalize the inputs and outputs to the neural network. Appendix C provides the specific
values and methodology used here.
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FIGURE 3. The loss, a sum of (3.6) and (3.7), is plotted as a function of time. Each cross
represents an epoch, and batch-wise fluctuations are also displayed. The training converges after
roughly 150 GPU hours on a NVIDIA T4 and 2100 simulations, which amounts to 60 epochs.

Landau damping and collisions. This may result in a smoothing of the loss surface.
Second, since the objective functions used here are space, time and velocity integrals over
the chaotic trajectories, the gradients calculated here may benefit from the smoothness
associated with time- and phase-space averaging of a well-behaved ergodic system.

Figure 4 shows the electric field profile for three different simulations. In figure 4(a),
only the first wavepacket is excited, and in figure 4(b), only the second wavepacket is
excited. In figure 4(c), both wavepackets are excited. Early in time, t = 400ω−1

p (green),
when only the first wavepacket has been excited figures 4(a) and 4(c) agree perfectly. The
second wavepacket is excited at t = 500ω−1

p . At t = 900ω−1
p , once some time has passed

after the excitation of the second wavepacket, the first wavepacket has not fully damped
away. It is visible as small bumps in figures 4(a) and 4(c). The second wavepacket is also
present at this time and easily seen in figure 4(b). A larger-amplitude wavepacket is seen
in figure 4(c). Late in time, the difference in amplitude between the second wavepacket
in figures 4(b) and 4(c) is obvious. The second wavepacket has nearly damped away in
figure 4(b). In figure 4(c), the second wavepacket persists, at nearly the same energy
as it was at t = 900ω−1

p . We observe this superadditive behaviour, where f (x) + f ( y) ≤
f (x + y), for all wavenumbers we model.

To determine the mechanism behind this phenomenon, we turn to the phase-space
dynamics. In figure 5, (i) is a space–time plot of the electric field. The two dashed-dot
red lines at the front and back of the wavepacket are parallel and indicate the velocity
of the wavefront. In figure 5(a)(i), the rear of the wavepacket propagates at a seemingly
faster rate than the front. Fahlen et al. (2009) describe this as etching of the wavepacket.
In figure 5(b), the wave survives for a much longer time, as was also illustrated in figure 4.
Figure 5(ii, iii) are phase-space plots with their centre indicated by the intersection of
the horizontal timestamp line and the dashed-dot line at the rear wavepacket. The insets
(iv) and (v) correspond to the intersection with the dashed-dot line at the front. Insets (ii)
and (iv) show the phase space within a window in x̂, while (iii) and (v) are the spatially
averaged distribution function. Insets (iii) and (v) serve as a proxy for approximating the
propensity of Landau damping in that region. In figure 5(a)(ii, iii), we see that the rear
of the wavepacket is Maxwellian. Fahlen et al. (2009) showed this is why the rear of the
wavepacket damps faster than the front, as in figure 5(a)(i).
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(a) (b)

(c)

FIGURE 4. Early in time (green), (c) is the same as (a). Later in time, t = 900ω−1
p (blue),

(a,c) show very similar magnitudes for the first wavepacket near x = 1500λD but the second
wavepacket excitation is larger in (c) than (b). At t = 1300ω−1

p (red), it is clear that (c) is not
a superposition of (a,b) because (b) has damped away, while (c) retains electrostatic energy,
suggesting the involvement of a superadditive process. (a) First wavepacket only; (b) second
wavepacket only; (c) both wavepackets.

(a)

(b)

FIGURE 5. Left – space–time plot of the electrostatic energy shows the long-lived wavepacket
in (b) where the field in (b) survives for a longer duration than in (a). The horizontal line
indicates the timestamp of the snapshots in the middle and right. The diagonal dashed-dot lines
indicate the spatial location of the snapshots in the middle and right. Middle phase-space plots
at the back (top) and front (bottom) of the wavepacket. In (b), the phase space shows significant
activity at the back of the wavepacket while in (a), the distribution function is nearly undisturbed.
Right – T = the spatially averaged distribution function. This confirms the fact that the
distribution function has returned to a Maxwell–Boltzmann at the back of the wavepacket in
(a), while in (b), the distribution function remains flat at the phase velocity of the wave. This is
the reason behind the loss of damping. (a) Second wavepacket only; (b) both wavepackets.
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(a) (b)

FIGURE 6. (a) Learned function for the resonant spatial location as a function of wavenumber
of the first wavepacket and time of excitation of the second. (b) The locus in space–time (in red)
where long-lived wavepackets can be excited for k = 0.28: (a) x1(k0, t1); (b) space–timelocus.

FIGURE 7. The learned function for the frequency shift �ω1(k0, t1) as a function of
wavenumber of the first wavepacket, k0, and time of excitation, t1, of the second.

In the simulations described here, the plots in figure 5(b) show that the distribution
function at the back of the wavepacket has trapped particle activity (figure 5(b)(ii)) and
there is a near zero slope at the phase velocity of the wave (figure 5(b)(iii)). Both plots
show that the slope is negligible because of the arrival of streaming detrapped particles
from the first wavepacket. Due to this effect, the re-emergence of Landau damping that
occurs due to the loss of trapped particles in isolated wavepackets no longer occurs here.
This results in a reduction of the etching and the wavepacket propagates freely for some
time while the particles from the first wavepacket propagate and arrive at the rear of the
second wavepacket.

Figure 6 shows the results of the optimization process for the resonant spatial location.
For t1 < 500ω−1

p , the resonant location decreases as a function of wavenumber. From
analysing phase space, we have determined that the spatial location is related to the
resonant electron transport i.e. x1 ≈ vpht1. Waves with larger wavenumbers have smaller
phase velocities. Because of this, the resonant spatial location decreases as a function of
wavenumber. For a fixed wavenumber, figure 6(b) shows a locus of points in space–time
where long-lived wavepackets can be excited in the presence of a pre-existing wavepacket.
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This suggests the possibility of a critical space–time radius within which collisional
relaxation has yet to occur, and nonlinear effects can be exploited.

Likewise, we also learn the dependence of the optimum frequency shift as a function
of k0 and tc, as shown in figure 7. The learned frequency shift, a few per cent here, is
similar in magnitude as to that observed in previous work related to SRS (Ellis et al. 2012).
Furthermore, the frequency shift increases in magnitude as a function of wavenumber.
As before, waves with larger wavenumbers have smaller phase velocities, and therefore,
interact with more particles. Because of this, waves with larger wavenumbers have a larger
nonlinear frequency shift associated with them, as we see here (Manheimer & Flynn 1971;
Dewar 1972; Morales & O’Neil 1972; Berger et al. 2013).

4. Conclusion

We show how one may be able to discover novel physics using differentiable simulations
by posing a physical question as an optimization problem. This required domain expertise
in determining which functional dependencies to learn using neural networks.

In figure 1, we show how one may adapt an existing computational science workflow to
the autodidactic process described here. In the work performed here, this process enabled
the discovery of functional relationships between optimal parameters in a four-dimensional
search space with known bounds but an unknown resolution requirement. We trained the
model over a coarse grid in k0 and t1, and learned functions for x1 and ω1. Using gradient
descent here allows an escape from the curse of dimensionality and reduces the problem
from a four-dimensional search to a two-dimensional search + two-dimensional gradient
descent.

This discovery process is not limited to differentiable simulations. While in figure 1, V
represents a PDE solve, it only needs to be a AD-enabled function that is a model for a
physical system. For example, rather than a PDE solve, V could represent a pre-trained
neural-network-based emulator for experimental data. In such a scenario, one may be able
to learn forcing function parameters for an experiment using the proposed workflow.

In the neural network literature, the gradient required for the update is ∂S/∂θ =
∂S/∂G × ∂G/∂θ . We see that this is the same as (2.5) after the addition of one more
node in the computational graph for V , the function that models the physical system. This
allows the neural network training process to become unsupervised and data efficient.

It remains to be determined how the physical mechanism discussed here behaves over
a range of amplitudes and collision frequencies in addition to the wavenumber scan we
perform here. Reduced models of the wavepacket dynamics in SRS remain useful for
the development of inertial confinement fusion schemes where laser–plasma instabilities
occur.

Differentiating through an entire simulation, in this case, required the intermediate
storage of all Nt × Nx × Nv arrays representing the distribution function in time and
phase space. To enable this on a single NVIDIA T4 GPU, we use gradient checkpointing
(Griewank & Walther 2000; Chen et al. 2016), as implemented in JAX, at every timestep.
That is, we require that the Jacobian of the function representing a single timestep
recompute its internal linearization points rather than save them to memory during the
forward pass. Another technique by which we can save on the memory cost is by improving
the efficiency of the accumulation of the Jacobian e.g. as proposed in Naumann (2004) and
similar works. An example application towards a PDE is provided by Oktay et al. (2021). A
final route to memory savings we wish to highlight here is by solving a backwards-in-time
ordinary-differential equation for the adjoint (Pontryagin 1987; Chen et al. 2018). For
modelling systems of higher-dimensionality, larger time scales and other constraints that
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require larger in-memory calculations, it will be crucial to leverage methods that help
circumvent the memory burden encountered with differentiable simulations.
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Appendix A. Simulation details

We reproduce the solvers in Joglekar & Levy (2020) using JAX (Bradbury et al. 2018)
and Haiku (Hennigan et al. 2020) to allow the usage of AD, judicious placement of neural
networks as well as the ability to run on GPU.

A.1. Solvers
A.1.1. Vlasov equation

We discretize f (t, x, v) with f n(xi, vj). To calculate f n+1, we use the sixth-order
Hamiltonian integrator introduced in Casas et al. (2017).

As in Joglekar & Levy (2020) and Thomas (2016), the individual components of the
left-hand side of (1.1) are solved using operator splitting, spectral discretizations and
exponential integration as given by

f n+1
v∂xf (xi, vj) = F−1

x

[
Fx

(
f n(xi, vj)

)
exp(−ikx(xi)vj�t)

]
(A1)

f n+1
E∂v f (xi, vj) = F−1

v

[
Fv

(
f n(xi, vj)

)
exp(−ikv(vj)E(xi)�t)

]
, (A2)

where F{x,v} are the Fourier transforms in space and time, respectively. We use a spectral
solver for Gauss’s law such that

En = F−1
x

⎡⎣1 −
Fx

(∑
f n(xi, vj)�v

)
ikx

⎤⎦ . (A3)

A.1.2. Fokker–Planck Equation
Two simplified versions of the full Fokker–Planck operator are implemented. The first

of these implementations is given in Lenard & Bernstein (1958) and has the governing
equation given by (

δf
δt

)
coll

= ν
∂

∂v

(
vf + v2

0
∂f
∂v

)
, (A4)

where

v2
0 =

∫
v2f (x, v) dv, (A5)
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is the thermal velocity of the distribution. We term this the LB operator as per the authors’
names. The second of these implementations is given in Dougherty (1964) and has a
governing equation given by(

δf
δt

)
coll

= ν
∂

∂v

(
(v − v)f + v2

t
∂f
∂v

)
, (A6)

where

v =
∫

vf (x, v) dv, (A7)

is the mean velocity of the distribution and

v2
t =

∫
(v − v)2f (x, v) dv, (A8)

is the thermal velocity of the distribution while accounting for the mean velocity. We term
this the DG operator as per the author’s name. The DG operator extends the LB operator
by enabling momentum conservation for distribution functions that have a non-zero mean
velocity.

We discretize these equations using a backward Euler method with centre differencing
space. This procedure results in the timestep scheme given by

f n = [
LD × (v̄j+1f n+1

j+1 ) + DI × ( f n+1
j ) + UD × (v̄j−1f n+1

j−1 )
]
, (A9)

where

LD = �tν
(

− v2
0,t

�v2
− 1

2�v

)
(A10)

DI =
(

1 + 2�tν
v2

0,t

�v2

)
(A11)

UD = �tν
(

− v2
0,t

�v2
+ 1

2�v

)
, (A12)

where v̄ = v or v̄ = v − v depending on the implementation. This forms a tridiagonal
system of equations that can be directly inverted.

A.2. Parameterizing the Ponderomotive Driver
Similar to that presented by Afeyan et al. (2014), the ponderomotive driver is parametrized
using space–time envelopes created using hyperbolic tangents given by

g( pi,s, s) = 0.5
(

tanh
[

s − pL,s

pr,s

]
− tanh

[
s − pR,s

pr,s

])
, (A13)

where s can be x or t, pR/L = pc ± pw/2, and the rest of the parameters are given by the
set pi = ( pc, pw, pr, k, a, ω,�ω). Using (A13), the overall profile in space and time is
given by ∑

i

�E( pi) =
∑

i

[
gi(t)gi(x) ki ai sin(kix − (ωi + �ωi)t)

]
. (A14)

In the simulations performed in this work, we specify the following.
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(a) (b)

FIGURE 8. We implement thermal-bath boundaries for the plasma by artificially increasing
the collision frequency of the Krook operator at the edges using (A13) and pL = 500, pR =
6000, pwL = pwR = 500. (a) Entire box; (b) zoom in.

(i) For each individual set of driver parameters, pr,x/λD = pr,t/ω
−1
p = pr = 10, pw,x =

400λD and pw,t = 50ω−1
p .

(ii) For the first driver, pc,t = 50ω−1
p , pc,x = 400λD.

This leaves pc for the second driver and the wave parameters, k, a, ω,�ω to be varied
in this work. For readability, in the manuscript body, we use pi,c,x = xi and pi,c,t = ti.

A.3. Physical domain
We initialize the plasma distribution function with a Maxwell–Boltzmann distribution
with n0 = 1.0, vth0 = 1.0, f (t = 0, x, v) = exp(−v2)/

√
π.

In order to ensure that there is no unwanted interference from particles transiting across
the periodic boundary, thermal boundaries are implemented using a Krook-type collision
operator (Bhatnagar, Gross & Krook 1954). The equation is solved directly and exactly,
and the solution at the new timestep is given by

f n+1 = f n(1 − exp(νK�t)) + f n
MX exp(νK�t), (A15)

where fMX(n0, vth0) = n0 exp(−v2/v2
th)/

√
πv2

th.
By having non-zero νK only in a small localized region at the boundary, as also

described by Strozzi et al. (2007), and as shown in figure 8, the particles are absorbed
in a fixed Maxwellian, similar to having a thermal boundary condition. This localization
is also performed using the hyperbolic tangent parameterization from (A13) but using
1 − g( p, x). In this case, pc = 3300, pw = 6500, pr = 10.

Appendix B. Neural network and optimizer details

We implement our solver framework using Haiku (Hennigan et al. 2020). In this work,
we leverage a vanilla multi-layer perceptron constructed using linear (fully connected)
layers and nonlinear (activation) functions. We train this model with the following
architectures:

I → L(4) → R → L(4) → R → L(len(O)) → T , (B1)

I → L(4) → K → L(4) → K → L(len(O)) → T , (B2)

I → L(8) → R → L(8) → R → L(len(O)) → T , (B3)

I → L(8) → K → L(8) → K → L(len(O)) → T , (B4)
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where L(N) is the linear layer with N nodes,

R(x) =
{

0.0 for x < 0
x for x ≥ 0 , (B5)

K(x) =
{

0.01x for x < 0
x for x ≥ 0 , (B6)

and T (x) = tanh(x). Also, I and O are the arrays representing the inputs to and outputs
from the neural network. We observe that the higher capacity architectures we tested
converge faster as does training with the Leaky-ReLU function. We use the ADAM
optimizer (Kingma & Ba 2017) implemented via Optax (Babuschkin et al. 2020). We train
the model using learning rates of 0.05, 0.01, 0.005 and we find that the smallest learning
rate performs the best. We do not perform extensive architecture and hyperparameter
searches because the primary goal here is to discuss and apply the capability of
function approximation towards physics discovery, rather than learning the best possible
approximation.

Appendix C. Data normalization

Much like how simulations are generally conducted in normalized units, neural networks
are typically trained on normalized data. We need to do the same here so we normalize
the inputs between 0 and 1. As specified in the body of the text, our inputs to and outputs
from the neural network are given by

x1 = x1(t1, k0; θ∗), (C1)

�ω1 = �ω1(t1, k0; θ∗). (C2)

We augment the input vector with ω0, k1, ω1 and normalize the inputs to and outputs of
the neural network such that

x1 = xn × x̃1(t̃1, k̃0, ω̃0, k̃1, ω̃1; θ∗) + xs, (C3)

�ω1 = ωn × �̃ω1(t̃1, k̃0, ω̃0, k̃1, ω̃1; θ∗) + ωs. (C4)

It is important to note that, since k0 = k1, ω1 = ω0 and that ω = ω(k) through the
electrostatic dispersion relation, there is no new information being added to the training
process by this augmentation. However, we do provide the training process with a
sophisticated reinterpretation of the existing information by providing ω = ω(k).

We normalize the 5 input parameters to scale between 0 and 1 such that 0.26 < k <

0.34, 1.05 < ω < 1.3 and 400 < t1 < 800 i.e. k̃ = (k − kmin)/(kmax − kmin) and so on.
The output parameters, x̃1, �̃ω1, are renormalized slightly differently because the

outputs range from -1 to 1. For x1, we allow the entire domain except for regions near
the boundaries. We choose the bounds of the frequency shift by measuring typical
nonlinear frequency shifts observed for idealized, periodic nonlinear electron plasma
waves. We normalize each such that 500 < x1 < 6000 and −0.06 < �ω1 < 0.06. This
gives xn = 2750, xs = 3250 and ωn = 0.06, ωs = 0.

Appendix D. Validation tests

We reproduce the tests implemented and shown in Joglekar & Levy (2020).

(i) Gauss’s law.
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(ii) Landau damping.
(iii) Density conservation of both implementations of the Fokker–Planck operators.
(iv) Momentum conservation of the DG implementation of the Fokker–Planck

implementation.
(v) Energy conservation of the LB and DG implementations of the Fokker–Planck

operator.

D.1. Validating the differentiable simulator by recovering known physics
We describe an additional test here which involves recovering the linear, small-amplitude
Langmuir, or electrostatic, resonance using a gradient-based method enabled by this
AD-capable implementation. This ensures that the gradients given by the AD system are
representative of physical phenomenon.

D.1.1. Electrostatic waves
A fundamental wave in plasma physics is the electrostatic wave in unmagnetized

plasmas. The dispersion relation is given in numerous textbooks, and reproduced
here as

1 + ω2
e

k2

∫
dv

dg(v)/dv

ω − kv
= 0, (D1)

where ωe is the plasma frequency, k is the wavenumber, ω is the resonant frequency and
v is the independent variable representing the velocity in the integral. Also, g(v) is the
normalized distribution function of the plasma particles. This equation has been solved
numerically and a lookup table for ω as a function of k is provided in Canosa (1973).

We test the capability of our differentiable simulator framework by reproducing those
calculations. To do so, we implement the functionality in figure 1(c). We choose a loss
function that minimizes free energy given by

C(xf ) = −
∑

x

�xE(k, ω)2. (D2)

In this test, we launch plasma waves using a ponderomotive driver in a box with periodic
boundary conditions. For each optimization, the wavenumber k and the box size xmax
change. We provide a lower bound of 0.5 and an upper bound of 1.4 to the optimization
algorithm. We use the L-BFGS algorithm implemented in SciPy (SciPy 1.0 Contributors
et al. 2020). We set ftol = rtol = 10−12. The remaining parameter is the frequency ω that
will minimize the value given by (D2) and ensure that it is within 2 decimal places of the
direct solution to (D1), which is calculated using the root finder in SciPy.

We optimize for the resonant frequency for 100 random wavenumbers using gradients
acquired using AD and finite difference (FD) and plot the performance. Figure 9 shows
the distributions of the number of iterations required for each gradient-calculation method.
We see that the finite-difference method requires significantly more evaluations where the
maximum number of evaluations is larger by a factor of 2. One of the optimization runs
requires 80 evaluations with FD, and 40 with AD. Similarly the mean and median values
are smaller by a factor of 2 for AD in comparison with those for FD. It is important to
note that these results are for single-variable searches. When the dimensionality of the
search space increases, using FD becomes impractical. When using neural networks that
are parametrized by � O(10) parameters, using FD is simply not possible, and one must
use AD to acquire gradients.
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FIGURE 9. We run 100 optimizations over random wavenumbers in order to quantify the
performance of gradients acquired using finite difference (FD) and AD. The plot shows a
comparison of the number of iterations needed to converge to a local optimum.
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