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SMOOTHING THE DOMAIN OUT FOR POSITIVE SOLUTIONS

YAPING LIU

For a given nonlinear partial differential equation defined on a bounded domain with
irregular boundary, the available analytical tools are very limited in relation to the
study of positive solutions. In this paper we first use weak convergence methods
to show that for an elliptic equation of a certain type, classical positive solutions
on nearby smooth domains approach a generalised positive solution on the given
domain. The idea is then applied to sublinear elliptic problems to obtain existence
and uniqueness results.

1. INTRODUCTION

In the modelling of many ecological problems using partial differential equations,
the natural habitat of a certain species is usually formulated as a bounded domain in
an n-dimensional Euclidean space. Since the pioneering work of Benoit Mandelbrot on
fractals, a prevailing viewpoint is that a natural region has a highly irregular boundary.
Theoretically, the presence of irregular points on the boundary makes it difficult to apply
many of the analytical tools that are available. (Some definitions of regular boundary
points can be found in [13] and [24].) For a given application problem, the usual practice
is to take a domain with smooth or piece-wise smooth boundary, presuming that the
solution behaviour of the problem in question should not display any dramatic change if
the corners or edges of the domain are rounded off locally without affecting the domain
shape on a large scale. But is this mathematically justified? This proves to be too general
a question to have any definite answer.

In this paper we consider the following semilinear elliptic equation

(1) - Au = f(x, u) in ft, u = 0 on dft

where ft is a bounded domain in Rn with boundary dft. It is known that the solutions
of (1) near an irregular point on the boundary can display singular behaviour, even if
the problem is linear, that is, / is independent of u. This is of course impossible if dQ
is smooth (with appropriate regularity assumption on / ) . On the other hand, we are
going to show that as far as the existence of positive solutions of (1) is concerned, we can
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smooth the domain out to facilitate the mathematical analysis. More precisely, we first
approximate Q by a sequence of smooth domains (fin)- Then we use weak convergence
methods in Lebesgue and Sobolev spaces to show that the sequence of classical solutions
(un) on the smooth domains (fin) approaches a generalised solution u on Q.. It follows
that if u displays singular behaviour, then the classical solution un on fin becomes more
and more singular-like as n —>• oo. When the methods are applied to a class of sublinear
problems, a well known result is generalised to general bounded domains.

Domain perturbations have been studied in [8, 9, 10, 12] with certain restrictions
on the domain Q. In our case the domain is arbitrary. We use monotone convergence to
study the existence of positive solutions. For simplicity of presentation, we only consider
the Laplace operator in equation (1). Most of the following results can be extended to
general second order selfadjoint uniformly elliptic operators. In fact, the ideas used here
clearly apply to a wider class of problems than elliptic equations.

2. GENERAL EXISTENCE RESULTS

We first introduce the following definitions and notations.

1. A function u G Wo>2(0,) D L°°(fi) is a solution of (1) if f VuV4>

- f{x, u)4> = 0 for all <t> € W^{Q).

2. A solution u is positive if u > 0 almost everywhere in ft.

Since functions differing on a zero measure set are considered the same, a
function u is positive on ft if u(x) > 0 for all x € ft.

3. A function u € W1>2(fi) n Z,°°(ft) is a lower solution of (1) if f VuV</>
Jn

- f{x, u)(j> ^ 0 for all <j> e Wo>2(ty+ := {w e W^2(n) : w > 0 on fi} and
u ^ 0 on dSl in the sense that max{u, 0} € W0

1>2(O).
An upper solution of (1) is defined by reversing the above inequalities, while
u ^ 0 on dCl means min{u, 0} € WQ'2{Q).

4. A sequence of domains (fln) converges to fi from inside if for any compact
subset K of Q, we have K C Qn C Q, for all large n. Similarly, a sequence
of domains (f2n) converges to fi from outside if for any compact subset
K of Ul\ we have K C $lc

n C flc for all large n. Here flc denotes the
complement of Q in Rn.
It is easy to see that for any bounded domain f2 there exists a sequence of
smooth domains (f2n) that converge to Q from inside. In fact, the sequence
(f2n) can be made increasing in the sense that fin C fin+1. In this case,
^ = U fin- We can also choose the sequence (fin) such that Hn C ft
for every n. Similar results hold for convergence of smooth domains from
outside.
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5. Any function u defined on a domain f2 is also viewed as a function on any
E C Q and on any F D Cl, where u on E is defined by restriction and u on
F is extended by zero, that is, u — 0 on F \ Q.

6. Ai(fi) denotes the principal eigenvalue of the problem — Au = Xu in fi,
u = 0 on dfl.

Note that on any bounded domain the principal eigenvalue of a selfadjoint second
order uniformly elliptic operator is defined. As the minimum value of the Rayleigh
quotient of the operator, it is real, simple, and its corresponding eigenfunction can be
chosen positive (see [13, Chapter 8]). Recently it was shown in [5] that similar results
are true for non-selfadjoint elliptic operators.

LEMMA 1 . Let Q be a bounded domain in Rn, let f be a Caratheodory function
defined onClx R such that for some a(x) e L2(Q) and some b > 0, \f(x,t)\ < a(x) +b\t\
on ft x R, and let (f2n) be a sequence of smooth domains that converge to Q from inside.
If on each Cln equation (1) has a solution un and the sequence (un) is bounded in L2(Vt),
then every weak limit point of (un) in L2(Q) is a solution of equation (1) on fi.

PROOF: Because un € Wo'2(Qn), the natural extension un = 0 on fi \ f2n puts
un € WQ'2(Q). Thus (un) can be viewed as a sequence in either W0

ll2(fi) or L2(f2).

By the boundedness of (un) and the weak compactness theorem, (un) has a weak
limit point in L2(Q). On the other hand, let u be an arbitrary weak limit point of (un)

in L2(fi) and we show that u is a solution of (1). By [2, Theorem 2.1], the superposition
operator F : L2(Q) -4 L2(fl) defined by Fu(x) — f(x,u(x)j maps bounded sets into
bounded sets. Thus f(-,un(-)j is a bounded sequence in L2(f2). Then by Holder's

inequality, the sequence / fix, un)un is bounded. Using the facts that un = Vun = 0 on
_ Jn

Q \ fin, m(dQn) = 0 because dCln is smooth, m denoting the Lebesgue measure in Rn,
and un is a solution on f2n, we have

/ |Vun|2 - f(x,un)un - [_ \Vun\2 - f(x,un)un = / |Vun|2 - f(x,un)un = 0.

This shows that (un) is bounded in W0
1>2(f2). The compact imbedding W0

1>2(fi) <->• L2(f2)
is valid for an arbitrary bounded domain fi because of the zero boundary condition.
Thus by the reflexivity of W0

1>2(fi), (un) has a subsequence, which we still denote by
(un), that converges to some v 6 W0

1>2(ft) weakly in W0
1>2(f2) and strongly in L2(Q). It

follows easily that v = u in L2(f2). By the results in [2] again we see that the sequence
/(•,)(„(•)) converges strongly and thus weakly to f(-,u(-)) in L2(f2). Now for any fixed
<j> £ Co°(f2), we have supp ^ c Q n for all large n. Therefore

J VuV0 - f(x, u)4> = li^ J^ VunV0 - f{x, un)<t> = Jiin J VunV0 - f(x, un)<j>=Q.

By the denseness of Co°(f2) in WQ'2(Q), we conclude that u is a solution of (1) on Q. D
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NOTE. If (un) is uniformly bounded, then the conditions on / in Lemma 1 can be fulfilled
by the simple assumption / g C°(Q x Ft). Clearly, this implies that / is Caratheodory.
We can modify f[x,u) for |u| large so that the conditions in Lemma 1 are satisfied.

Combined with the classical monotone method, the above lemma enables us to study
the existence of positive solutions to a semilinear elliptic equation defined on an irregular
domain by considering the problem on nearby smooth domains.

THEOREM 1. Let E C F be bounded smooth domains and let Q, be any domain
such that E C ft C F. Assume that f(x, 0) ^ 0 for x € Q and f € Ca(T x [0, oo)) for
some 0 < a < 1. If equation (1) has a lower solution uonE and an upper solution u on
F with 0 ^ u ^ u and 0 ^ u € M^2'2(f2), then equation (1) has a positive solution u on
Q, with u^u^u. In addition, u is the limit of a sequence of classical positive solutions
on smooth domains converging to Cl from inside.

PROOF: First we can define f(x, u) for u < 0 and redefine f(x, u) for u > u so that
Lemma 1 applies. Take any increasing sequence of smooth domains (£„) that converge
to Cl from inside with Ei = E. It is easy to see that u is an upper solution of (1) on
each En- By the monotone method, there is a classical solution u\ of (1) on E\ with
u ^ U\ < u. By the strong maximum principle, ui > 0 on E\. Because E\ has a smooth
boundary, u\ with natural extension is a lower solution on £2 (see [4]). This implies the
existence of a classical solution u2 on E2 with u\ < u2 ^ u. By induction, we can find an
increasing sequence (un) with un $J u so that each un is a classical solution of (1) on En.
It follows from the Monotone Convergence Theorem that the pointwise limit u of (un) is
a strong limit of (un) in L2(Q). Then Lemma 1 shows that u is a positive solution of (1)
onfl. D

3. APPLICATIONS TO SUBLINEAR PROBLEMS

In this section we apply the ideas used above to a class of sublinear elliptic equations.
First we can easily extend [19, Lemma 2.1] to its weak version.

LEMMA 2 . Let c(x) € L°°(Q.) and let /ui(-A + c) denote the principal eigen-
value of the Schrodinger operator —A + c on £1. Define a bilinear form C by £(u, v)

= f VuVv + cuv for u,v £ W0
ll2(fi).

Jn
(a) If there exists a function u G WQ'2{Q) such that C(u,u) < 0, then

Hii-A + c) < 0.

(b) If there exists a function u € W0
1>2(Q)+, u # 0 such that £{u, v) ^ 0 for all

v e W^2(n)+, then ^ ( - A + c) > 0.

PROOF:

(a) The result follows directly from the variational characterisation of the min-
imum eigenvalue.
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(b) Note that the condition here implies (—A + c)u ^ 0 in the weak sense. An
argument similar to that in [19] works.

D
To present the next theorem, we propose the following hypotheses on / :

(HI) / € Ca(U x [0, oo)), 0 < a < 1.

(H2) liminf f(x,t)/t > A,, (ft) uniformly for i € ft.
t->o+

(H3) limsup f{x,t)/t < Ax(ft) uniformly for a; 6 ft.
t-++oo

It is well known that if ft; has a smooth boundary, then hypotheses (H1)-(H3) imply
the existence of a classical positive solution to equation (1). If in addition, f(x,t)/t
is strictly decreasing in t, then the positive solution is unique. This result has been
developed by many authors in different forms and employed in many situations during
the past few decades. See, for example, [1, 4, 18, 20, 21, 22]. In particular, it is
an indispensible tool for the decoupling technique in the study of elliptic systems (see
[6, 7, 15, 21]). On domains with irregular boundaries, we first prove the existence of
positive solutions. For this purpose we replace (HI) and (H3) by the following technical
condition:

(H3') There is a smooth bounded domain F D ft such that f eCa(~Fx [0, oo)) and
limsup/(:r,i)/t < Xi(F) uniformly for x £ F.

t-H-oo

THEOREM 2 . Let (H2) and (H3') be satisfied. Then equation (1) has a positive
solution.

PROOF: It is easy to see that the following one-sided continuous dependence of the
principal eigenvalue on the domain holds: if a sequence of domains (ftn) converge to ft
from inside, then Ai(ftn) —> Ai(ft). Also well known is the fact that Ai(ft) decreasingly
depends on the domain in the sense that fli C ft2 implies Ai(ftx) ^ Ai(ft2). Thus we
can find a smooth subdomain E C ft such that (H2) holds when ft is replaced by E. It
follows that there are arbitrarily small positive lower solutions on E that can take the form
ect>(x) for a positive eigenfunction <t> on E and a small e > 0. (H3;) implies that there are
arbitrarily large upper solutions on F. In fact, an upper solution can be given by Kip(x),
where K is large positive number and T/> satisfies ip(x) > 0 on F, —A^ ^ Xip in F for some
A that is close to the principal eigenvalue of the problem -Au — Xu in F, u = 0 on dF.
Note that (H2) implies f(x, 0) ^ 0 for all x 6 ft. Theorem 1 then implies that (1) has a
positive solution on ft. D

NOTE. Consider the special case when f(x, t) = f(t) is independent of x. (H3') is trivially
satisfied if l imsup/(t)/ t ^ 0. (This is the case for many logistic growth population

models.) In general, (H3() follows from (H3) and the right continuous dependence of
the principal eigenvalue on the domain in the sense that as (ftn) converges to ft from
outside, Ai(ftn) -* Ai(ft). One sufficient condition for such a continuous dependence is
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the "stability" of Wo' (Q) [3]. This condition also makes it possible to approach positive
solutions on fi by classical positive solutions on smooth domains that converge to Q from
outside. Many other conditions are known that ensure the stability of W0

ll2(fi) (see, for
example, [23, 25, 26]).

Next we show the uniqueness of positive solutions. To do this, we first prove the
existence of the smallest positive solution. This is again accomplished by using a sequence
of classical positive solutions on smooth subdomains of fl.

THEOREM 3 . Let (HI) and (H2) be satisfied.

(a) If equation (1) has positive solutions then it has a smallest positive solution.

(b) Iff(x, t)/t is strictly decreasing in t for (x, t ) e f t x (0, oo), then the positive
solution is unique.

P R O O F : (a) Let <S denote the collection of all positive solutions to (1). Assuming <S
is nonempty, we show that it contains a smallest element. Motivated by the method used
in [11], we first apply Zorn's lemma to S to show the existence of minimal elements. Let
(ut)teT be a decreasing transfinite sequence in S and let u = inf{ut : t € T}. Using the
idea in the proof of [14, Lemma 1.1] we can show that (ut) has a countable subsequence
(un) that converges strongly to u in L2(Q.). As in the proof of Lemma 1, this implies
that u is a nonnegative solution of (1). We claim that u / 0. Otherwise, un —t 0 in
L2(fi). By (H2), there exists an e > 0 such that for small t > 0, f(x,t)/t > Ai(fi) + e
for all x G fi. Define an(x) = g(x,un(x)) A (Ai(fi) + e j where g is the growth function
g(x,t) = f(x,t)/t for t > 0 and g(x,0) = liminff(x,i)/t. Then f{x,un) ^ anun. It
follows from (HI), (H2) and the fact m € L°°(Q) (by definition) that an G L°°(fi).
Let 8 be a positive eigenfunction corresponding to Ai(f2). It is easy to see that for all

large n, / |V0|2 - an9
2 < 0. By Lemma 2(a), / i i ( -A - an) < 0. On the other hand,

Jo.
f VunV<£ - anun<t> ^ J VunV(j) - f(x,un)<j> = 0 for all <p e W0

1|2(ft)+. Lemma 2(b)
implies that Hi(—A — an) ^ 0. This contradiction shows that u is nontrivial. Because
u € L°°(Q,), we can choose P > 0 large so that ( - A + P)u = f(x, u) + Pu^ 0. Thus u
is a positive solution by the strong maximum principle for weak solutions [13, Theorem
8.19]. It follows that u is a lower bound of [ut)ter in S. So 5 has minimal elements.

Now let u\,u-i be two positive solutions to (1) and define w =• min(ui,u2)- Let
E be a smooth subdomain of Q such that E C fi and such that (H2) is true with Q
replaced by E. uuu2 € L°°(Q,) implies that f(ui),f(u2) G L°°(fi). By [13, Theorem
8.22], ux,u2 G C0{E) for some /? > 0. Thus ui, u2 > 0 on E~, which implies that w > 0
on E. It is clear that u\,u2 are upper solutions of (1) on E. So w is also an upper
solution on E (see [11] or [27]). Hence there exists a classical positive solution uo on E
satisfying u0 < w. Applying this argument to an increasing sequence of smooth domains
(£n) with ~En C fi = \JEn, and using the idea in the proof of Theorem 1, we see that
there is a positive solution v on Q with v ^ w. We conclude that (1) has a smallest
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positive solution.

(b) To show the uniqueness, let u be an arbitrary positive solution of (1) and let v
be the smallest positive solution of (1). Then by the definition of solutions we have

/
Jn

- f(x, u)v = 0 = f V w V u - f{x, v)u.
Jn
f
n

Thus / f(x,u)v= / f(x,v)u. This immediately implies u = v by the fact that f(x, t)lt
Jn Jn

is strictly decreasing in t for (x, t) € fi x (0, oo). D

As an easy application of the above results, we consider in the following a logistic
equation defined on a 2-dimensional domain Ao := DR \ {(0,0)}, where DR C R2 is the
open disk with radius R centred at the origin. Note that the boundary dA0 contains an
isolated irregular point (0,0).

COROLLARY 1 . Let a, b be real constants and let b > 0. Then the equation

-Au = u(a — bu) in Ao, u = 0 on dAQ

has a unique positive solution if and only if a > (joti/R)2, where jo,i *» 2.4048 is the
smallest positive root of the first Bessel function J0(x).

PROOF: Consider the annulus AT = {(x,y) : r2 < x2 + y2 < i?2} for 0 < r < R.
We have AT C Ao C DR. Thus Xi(AT) > Xi{A0) ^ \i{DR). Let xo,i be the smallest
positive root of the equation Jo(x)Yo(xR/r) — Yo(x)Jo(xR/r) = 0, where YQ(X) is the first
Bessel function of the second kind. We have Xi(DR) = (joti/R)2 and Ai(,4r) = (xo,i/r)2

(see [17]). As r -> 0, AT -*• Ao. It can be shown that (R/r - l)zo,i -> Jo.i ( s e e [16]).
Thus xo, i / r ->• Jo,i/R and therefore \i{AT) -)• \i(DR). It follows that Ai(i40) = \i{DR).
Now let g(t) = a — bt be the growth function in the equation. We have g(0) = a and
lim g(t) = —oo < XI(AQ). The existence of a unique positive solution then follows from

Theorems 2 and 3. Because g is strictly decreasing in t, the condition a > Ai(i40) is
clearly also necessary. D
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