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LOCAL COMPACTNESS IN FREE TOPOLOGICAL GROUPS

P E T E R NICHOLAS AND MIKHAIL TKACHENKO

We show that the subspace An(X) of the free Abelian topological group A(X) on a
Tychonoff space X is locally compact for each n € u> if and only if A2(X) is locally
compact if and only if ^ ( X ) is locally compact if and only if X is the topological
sum of a compact space and a discrete space. It is also proved that the subspace
Fn(X) of the free topological group F(X) is locally compact for each n G w if and
only if Fn(X) is locally compact if and only if Fn(X) has pointwise countable type
for each n e w i f and only if F^{X) has pointwise countable type if and only if X is
either compact or discrete, thus refining a result by Pestov and Yamada. We further
show that An{X) has pointwise countable type for each n € w if and only if A2(X)
has pointwise countable type if and only if •FM-Y) has pointwise countable type if
and only if there exists a compact set C of countable character in X such that the
complement X \ C is discrete. Finally, we show that Fi(X) is locally compact if and
only if F3(X) is locally compact, and that Fz(X) has pointwise countable type if and
only if F$(X) has pointwise countable type.

1. INTRODUCTION

Understanding the topological properties of free and free Abelian topological groups
is one of the main objectives in the study of topological groups in general. It is well
known that the groups F(X) and A(X), the free topological group over a Tychonoff
space X and its Abelian analogue, respectively, are metrisable if and only if the space X
is discrete [6, Section 6, Statement C]. Similarly, the groups F{X) and A(X) are locally
compact if and only if X is discrete. The latter follows from the more general result
of Dudley [4] that the only locally compact HausdorfF topological group topology on an
abstract free (or free Abelian) group is the discrete topology. The result also follows, at
least in the non-Abelian case, from the observation of Arhangel'skii [2] that if F(X) is
a Baire space, then X is discrete. We add almost metrisability to the list of properties
in free topological groups implying discreteness: if one of the groups F(X) or A(X) is
almost metrisable, then X is discrete (see Proposition 4.2).
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For every non-negative integer n, let Fn(X) be the subset of F(X) which consists of
all elements having reduced length less than or equal to n with respect to the basis X, and
define the subset An(X) of A(X) in a similar way. Yamada proved in [22, Theorem 4.9]
that Fn(X) is metrisable for each integer n € u i f and only if F4(X) is metrisable if
and only if X is compact metrisable or discrete. The Abelian case is different: An(X)
is metrisable for each integer n if and only if A2(X) is metrisable if and only if X
is metrisable and the set X' of non-isolated points of X is compact. We conclude in
particular that the metrisability of all finite levels Fn(X) of the group F(X) does not
imply the metrisability of F(X), and that neither does the metrisability of the levels
An(X) imply that of A{X). (One can, however, see this easily by a direct argument,
since results known to Graev [6] show that if X is an infinite compact metric space,
then the finite levels of F(X) and A(X) are compact and metrisable, while the groups
themselves are not metrisable.)

The local compactness of the spaces Fn(X) was considered by Yamada under the ad-
ditional assumption that X is metrisable. He showed in [21, Proposition 3.3] that, under
this assumption, the levels Fn(X) are locally compact if and only if X is either compact or
discrete. Afterwards, Pestov and Yamada proved in [15] that, for an arbitrary TychonofT
space X, if each Fn(X) is locally compact, then X is discrete or pseudocompact. In fact,
pseudocompactness in this assertion can be strengthened to countable compactness [15,
Coroollary 3.6]. Here we show that the spaces Fn(X) are locally compact for all n G w if
and only if F^X) is locally compact if and only if X is either discrete or compact, thus
finishing the work started in [21, 15]. Exactly the same conclusion remains valid if one
weakens local compactness to pointwise countable type (see Theorem 2.9). It turns out
that n = 4 is the minimal integer with this property, in both cases: by Theorem 2.13 and
Proposition 2.14, F2{X) is locally compact if and only if F3(X) is locally compact if and
only if X is the topological sum of a compact space and a discrete space, and F2(X) has
pointwise countable type if and only if F3(X) has pointwise countable type if and only
if there exists a compact set C of countable character in X such that the points of the
complement X \C are isolated in X (see Theorem 3.3 and Proposition 3.7). Further,
F2(X) is locally compact if and only if A2(X) is locally compact if and only if An(X) is
locally compact for all n € u>, with a similar equivalence holding in the case of pointwise
countable type (Theorems 2.13 and 3.5). Finally, it turns out that F2(X) has pointwise
countable type if and only if F2(X) is Cech-complete, and the same equivalence holds in
the Abelian case (Theorem 3.8).

This article is organised as follows. Section 1.1 introduces notation and terminology
used throughout the paper. In Section 1.2 we present in summary form a few basic results
about free (Abelian) topological groups which have several applications in the main body
of the article. The local compactness and pointwise countable type of the finite levels
of the groups F(X) and A(X) are studied in Section 2. We show in Lemma 2.1 that if
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F?(X) has pointwise countable type, then the set X' of all non-isolated points of X is
bounded in X. After several steps, in Corollary 2.7, we strengthen this result and deduce
that the set X' is compact. Almost all subsequent results essentially lean on this fact.
In Section 3, we characterise the spaces X such that F2(X) and A2{X) have pointwise
countable type or are Cech-complete.

1.1. NOTATION AND TERMINOLOGY. In what follows, all spaces are assumed to be
Tychonoff. For a space X, the derived set X' is the set of all non-isolated points of
X. Obviously, X' is closed in X. A subset Y of a space X is called P-embedded in X
if every continuous bounded pseudometric on Y extends to a continuous pseudometric
on X. We also say that Y is bounded in X if f(Y) is a bounded subset of the real line
K, for every continuous function / : X —¥ R. A subset Y of X is w-bounded in X if, for
every continuous pseudometric d on X and every e > 0, the set Y can be covered by
countably many open balls of radius e with respect to d. It is clear that every a-compact
subset of X is w-bounded in X.

We say that a subset Y of a space X is Gj-dense in X if every non-empty Gj-set
in X intersects Y. It is well-known that every space X is Gg-dease in its Dieudonne
completion pX (see [5, Chapter 8]).

Suppose that a space X is the union of an increasing sequence {Kn : n € u} of
compact subsets Kn. If a subset Y of X is closed in X if and only if all intersections
Y f~l Kn are closed in X, then we say that X — \J K„ is a ku-decomposition of X. If a

n€u>

space X admits a /^-decomposition, we call it a ku-space. All fcw-spaces are obviously
<T-compact, but not vice versa (the space of rationals is a counterexample).

If Y is a subspace of X, then \{Y, X) denotes the character of Y in X, that is, the
minimum cardinal of a base at Y in X.

The free topological group over a space X is denoted by F(X), and A(X) stands for
the free Abelian topological group over X. Given a subset Y of X, we use F(Y, X) to
denote the subgroup of F(X) generated by Y, while A(Y, X) stands for the corresponding
subgroup of A(X). For every integer new, Fn(X) is the subset of F(X) consisting of
the words having reduced length ^ n with respect to X, and An(X) is the corresponding
subset of A(X). It is well known that the sets Fn(X) are closed in F(X) and that the sets
An(X) are closed in A(X) for all n e w (see [6] or [3]). We shall use additive notation
for the sum operation in A(X).

Let e be the identity of the free topological group F(X). The subspace Fi{X) of
F(X) is naturally homeomorphic to the topological sum X = X © {e} © X~l. Clearly,
the multiplication mapping j n : Xn —> Fn(X) defined by jn(xi,..-,xn) = xi---xn is
continuous for each n ^ 1, and jn(X

n) = Fn(X). The inverse image of an element
g € Fn(X) under j n is denoted by j£~(g). Observe that j£~(g) is a singleton for each
geFn(X)\Fn.l(X).
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The subgroup of a group G generated by a set A C G is {A), and (g) is the cyclic
subgroup of G generated by an element g € G. The fact that H is a subgroup of G
abbreviates to H < G. If A is a subset of a group G, then we use An to denote the set
Aj- • A. In the Abelian case, A" is replaced by nA.
n times

1.2. PRELIMINARIES. For a space X, denote by V(X) the family of all continuous pseu-
dometrics on X. Given a pseudometric d g V(X), we use d and dA to denote Graev's
extension of d to a maximal invariant pseudometric on F(X) and A(X), respectively [6].
The pseudometric d is continuous on F(X), so the set

O(d)={geF(X):d(e,g)<l}

is open in F(X). In particular, the set

O2(d) = O(d) n F2(X) = {x'y-6 :x,y€X, d(x,y) <1,6 = ± 1 }

is an open neighbourhood of e in F2(X). In general, the family {O(d) : d G V(X)} is not
a base at the identity of the group F(X), even if X is compact. The next result, proved
by Pestov [14], shows that the situation changes for the subspace F2(X) of F(X).

THEOREM 1 . 1 . For an arbitrary space X, the family {O2(d) : d e V(X)} is a
base for F2(X) at the point e.

As in the non-Abelian case, the pseudometrics dA are continuous on A(X), so the
set

Oa(d) = {g€A(X):dA(0,g)<l}

is open in A(X) for each d € V(X), where 0 is the neutral element of A(X). The following
theorem shows one of the principal differences between the groups F(X) and A(X) (see
[11, 14, 18]):

THEOREM 1 .2 . For every space X, the family {Oa(d) : d € V{X)} forms a base
at the neutral element 0 of A(X).

An elementary calculation shows that, for each d € V(X),

Ol{d) = Oa{d)nA2(X) = {x-y:x,yeX, d(x,y) < l } .

Therefore, we have the following:

COROLLARY 1 . 3 . For any space X, the family {0^{d) : d G V{X)} is a base at
the point 0 of A2{X).

A useful description of a neighbourhood base at the neutral element of A(X) in
terms of uniform entourages of the diagonal in X2 is as follows (see [22]). Let Ux be the
finest uniformity on X compatible with the topology of X (such a uniformity is called
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the universal uniformity of X [5, Chapter 8]). For every element U €Ux, denote by U
the set {x - y : (x, y) G U} C A2(X). Since every uniformity on X compatible with the
topology of X is generated by a family of continuous pseudometrics on X, it follows from
Corollary 1.3 that U is open in A2(X) for each U € Ux and the family {U : U € Ux}
is a base for A2(X) at the element 0. Let s: ui —> Ux be an arbitrary function, so that
s(n) € Ux for each n e w . We put

O{s) = {(xi-y!) + --- + (xn-yn) : (zi,yt) € s(i) for each i = 1,.. .,n, n^ l } .

THEOREM 1 . 4 . Tie family {O(s) : s e {UxY} is a local base at the neutral
element of the group A(X).

The next result from [1, 8, 7] provides important information about the topological
structure of the subspaces Fn(X) C F(X) and An(X) C A(X) of elements of length
precisely n.

PROPOSITION 1 . 5 . Let g = x\l •••xe
n" be an irreducible element of Fn(X),

where xi,..., xn € X and e\,...,en = ±l. Then the sets of the form U[' • • • U*n consti-
tute a base for Fn(X) at g, where Ui is an open neighbourhood ofxi for i = 1, . . . , n and
UiHUj = ill ifxi 7̂  Xj. Hence the mapping j n : X" -* Fn(X) is a local homeomorphism at
every point a € Xn whose image jn(a) has reduced length exactly n. Similarly, the sets of

the form e\UiA \-£nUn constitute a base at the irreducible element g — e\X\ H \-£nxn

inAn(X).

One further useful fact about free Abelian topological groups, which follows from
general categorical considerations, is given below (see for example [10]).

PROPOSITION 1 . 6 . Let X = Xi © X2 be the topological sum of spaces X\
and X2. Then A{X) S* AtfJ x A(X2).

The subgroup F(Y, X) of F(X) generated by a closed subset Y of X is always closed
in F(X) [6, Section 4, Statement D]. It is clear that the natural isomorphism iY,x of F(Y)
onto F(Y, X) is continuous, but it is not necessarily a homeomorphism. In other words,
the topology of the group F(Y, X) can be coarser than that of F(Y). The next general
result was proved by Uspenskij in [20].

THEOREM 1 . 7 . If a subspace Y of a space X is P-embedded in X and un-
bounded, then t ie naturai isomorphism iy,x ofF(Y) onto F(Y, X) is a homeomorphism.
Conversely, ifiy,x is a homeomorphism, then Y is P-embedded in X.

In fact, the phrase "w-bounded" can be omitted in Theorem 1.7 as was shown by
Sipacheva [17]. Therefore, iy,x is a homeomorphism if and only if Y is P-embedded
in X. One very special case when iy,x is a homeomorphism deserves mention here. It
has a very simple, direct proof, so we reproduce it here (see also [19]).

PROPOSITION 1 . 8 . If Y is a retract of a space X, then iytx is a homeomor-

phism.
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PROOF: Let r: X -» Y be a continuous retraction of X onto Y C X. Extend r to a
continuous homomorphism r: F(X) -* F(Y). Then the restriction of f to the subgroup
F(Y, X) of F{X) is a continuous isomorphism of F(Y, X) onto F(Y), and the inverse of
this restriction is exactly the isomorphism iYtx, which is always continuous. Hence iY,x
is a homeomorphism. D

2. MAIN RESULTS

To characterise the local compactness and pointwise countable type of the subspaces
Fn(X) of F(X), we need a series of lemmas.

LEMMA 2 . 1 . If F2(X) is of pointwise countable type, then the derived set X' is
bounded in X.

PROOF: From the hypothesis, there exist in F2(X) a compact set K containing the
identity e and a decreasing family of open sets {Un : n € w} which form a base for
F2(X) at K. Let us assume that X' is not bounded in X. Then there exists in X a
discrete family of open sets {Vn : n € w} each of which intersects X'. Choose a point
xn € Vn n X' for all n e w . It is clear that, from the fact that xn is non-isolated, we can
find yn & Vn such that xn ^ yn and such that x^lyn € Un for all n. Note that we also
have x^lym ^ x~lyn for distinct m,n € w. Set P = {z^t/n : n e w}. We claim that P is
closed and discrete in F2{X).

Certainly, P has no accumulation points in XUX'1, because the set Xl)X~l is open
in F2(X) and all elements of P have length 2. Since the family {Vn : n G u} is discrete and
xn and yn are distinct points in V̂ ,, we can find a continuous pseudometric d on X such
that d{xn,yn) > 1 for each n e w . Then O2(d) is an open neighbourhood of e in F2(X)
disjoint from P. Finally, the natural mapping j 2 : X2 —¥ F2(X) is a local homeomorphism
of X2 to F2(X) at every point of X2\j%~(e), and the set L — {(a;^1, yn) : n e w} is closed
in X2 and discrete. Hence P = j2(L) has no accumulation points in F2(X) \ Fi(X). It
follows that P is closed in F2(X) and discrete, as claimed.

Now K cannot contain an infinite subset of P, since no such subset has a clus-
ter point. Therefore, there is an infinite subset Po of P such that Po D K = 0. But
then F2(X) \ Po is an open set containing K but not containing Un for any n e w, a
contradiction. We conclude that the set X' is bounded in X, as required. D

The next result is well known in the topological folklore, but it is difficult to find its
proof in the literature. This is why the corresponding proof appears here.

LEMMA 2 . 2 . Let Y be a dense subspace of a space X. Then x{K, Y) = \{K, X)

for every compact set K C.Y.

PROOF: The inequality x ( ^ . Y) ^ x(K>X) is obvious, so we only prove the inverse
one. Let 7 be a base for Y at K satisfying |7| = x(-R", Y). For every O e 7, choose
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an open set Uo in X such that Uo n Y = O. Then the family fi = {Uo : 0 G 7} is a
base for X at K. Indeed, take an arbitrary open neighbourhood V of K in X. Then,
by the compactness of K, there exists another open neighbourhood W of K in X such
that d x ( W ) C V. Choose O G 7 such that O CWOY. Since K is dense in X and
f/o n Y = O, we have clx(O) - clx{Uo)- Therefore,

KCUoQ clx{Uo) = clx{0) C clx(W) C V.

So, /i is a base for X at K and x(#, * ) < M < 111 = x(#. ^)- This finishes the proof. D

The next fact is almost evident.

LEMMA 2 . 3 . Suppose that the set X' of non-isolated points in X is compact.
Then X is paracompact.

PROOF: Let 7 be an open cover of X. By the compactness of X', there exists a
finite subfamily \x of 7 which covers X'. Then i/ = /iU {{x} : x € U/x} is an open locally
finite cover of X which refines 7. Hence X is paracompact. D

REMARK 2.4. We do not need the fact here, but we note that a straightforward induc-
tive argument can be given to show that, in Lemma 2.3, the space X" is paracompact
for each n ^ 1.

Following [5], we denote by fiX the Dieudonne completion of a space X. We recall
that X' is the set of non-isolated points in X.

LEMMA 2 . 5 . Suppose that X' C Y C X and that Y is bounded in X. Then the
set K — clpjcY is compact and (MX = X U K. In addition, Y is Gs-dense in K.

PROOF: The set K is compact since the space (j,X is Dieudonne complete and Y is
bounded in both X and ftX. Put Z = X U K. Then X C Z C pX, and Lemma 2.3
implies that the space Z is paracompact and, hence, Dieudonne complete. Since a space T
with I C T C fiX is Dieudonne complete if and only if T = \iX (see [5, Chapter 8]), we
conclude that Z = fj,X. The equality fiX = X U K is now immediate.

To prove the second claim of the lemma, suppose that there exists a non-empty G{-
set P in K disjoint from Y. Let P = f) Un, where each Un is open in K. Pick a point

n€u/

x0 € P. Clearly, x0 is non-isolated in fj,X. Then there exists a sequence {Vn : n 6 w} of
open sets in fj,X such that x0 €Vn,VnnKC Un and cZ^x(Kn-i) Q Vn for each n € w.
Since x0 € P C K, each Vn intersects Y. For every n €. w, choose a point yn e Vn D Y
in such a way that yn ^ ym if n ^ m. From our choice of the sets Vn it follows that all
accumulation points of the set 5 = {yn : n G w} lie in P C K \ Y, so S is closed and
discrete in both Y and X (note that Y is closed in X). Clearly, there exists a disjoint
family 7 = {Wn : n € w} of open sets in X such that yn G Wn C Vn for each n & w. We
claim that the family 7 is locally finite in X.
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Indeed, the disjoint family 7 cannot have accumulation points in X\Y since all points
of the latter set are isolated in X. Let y e Y be arbitrary. Then y $Un for some n e w ,
so O — X \ cl^xiVn+i) is an open neighbourhood of y in X. Since Wfc+i C Vk+i C Vk for
each k € w, the set O does not intersect Wkiik > n. This implies that the family 7 has
no accumulation points in Y and, hence, it is locally finite in X, thus proving the claim.

Finally, each element of 7 intersects the set Y, which contradicts the boundedness
of Y in X. Therefore, Y is Gg-dense in K. D

LEMMA 2 . 6 . If F2{X) has pointwise countable type, then every closed bounded
subset ofX is compact.

P R O O F : Suppose that F2(X) is of pointwise countable type and take a
compact set K C F2{X) which contains the identity e of F(X) and satisfies
x(K,F2(X))^ ui. By the Nummela-Pestov theorem (see [12, 14]), F{X) can be iden-
tified with the subgroup F(X, fiX) of F(/j.X). Then F2(X) is identified with the subspace
F2(fiX)
("I F{X) of F2(nX). Observe that F2(X) is dense in F2(fj,X) since X is dense in \iX.
Hence Lemma 2.2 implies that x ( ^ > F2{nX)) < u>.

Let {{/„ : n £ w} be a countable base for F2(/iX) at K. By Theorem 1.1, for every
n e w there exists a continuous pseudometric dn on /xX such that O2(dn) C [/„. We can

assume without loss of generality that each dn is bounded by 1. Then d — 5])2~ndn is a
continuous pseudometric on \iX and one easily verifies that the set n~

P = {x~ly : x,y € pX, d(x,y) = 0}

satisfies P C f| 02{dn) C f| Un = K. In particular, P C F2(X).
new n€w

Let B be a closed bounded subset of X. Since the derived set X' is bounded in X
by Lemma 2.1, the union Y = X' U B is also bounded in A". Hence the set C =
is compact. As £ is closed in Y, it suffices to show that Y = C. Suppose not, and choose
a point x0 € C \ Y. Obviously, F = {y € fiX : d(xo,y) = 0} is a Gs-set in fiX and
Xo € F. Since Y is Gj-dense in C by Lemma 2.5, we can choose a point j/o G f f l F .
Then xj^yo £ f \ î M-̂ O, which contradicts the inclusion P C F2(X) established above.
Hence Y is compact. D

Combining Lemmas 2.1 and 2.6, we obtain the following:

COROLLARY 2 . 7 . If F2(X) has pointwise countable type, then the derived

set X' is compact.

LEMMA 2 . 8 . If F^X) is of pointwise countable type and X is non-discrete, then

X is pseudocompact.

P R O O F : From the hypothesis that F4(X) is of pointwise countable type, it follows
that the space X itself is of pointwise countable type. We claim that X contains an
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infinite compact set C. Indeed, using the hypothesis that X is non-discrete, let y be
a non-isolated point in X and let K be a compact set containing y such that X has a
countable local base at K. If K is infinite, we simply take C = K. If if is finite, it follows
that X has a countable local base at the point y, and the fact that y is non-isolated in X
implies that there is a non-trivial sequence in X converging to y, and we may then take
C to consist of the terms of the sequence together with y, and the claim is proved.

We now adapt an argument borrowed from the proof of of [15, Theorem 3.5] to show
that X must be pseudocompact. Let us assume that X is not pseudocompact. Then we
can find a countably infinite discrete family of open sets {£/„ : n e w} in X. We observe
that the family of closures {Un : n € w} is also discrete, and that (J Un is closed in X.

n€w

Now the discreteness of the family {£/„ : n € w} implies that the compact set C can
intersect at most a finite number of the sets Un, and so, by omitting any such sets from
the family and re-indexing, we may assume without loss of generality that Cn \J Un = 0.
It is now clear that the family {C} U {Un : n € w} is discrete in X. " e u

If we now pick xn € Un for each n, then the set Z = C U {xn : n € w} is closed,
(7-compact and P-embedded in X, and therefore, by Theorem 1.7, the subgroup F(Z, X)
of F(X) generated by Z is naturally topologically isomorphic to the free topological
group F(Z). Moreover, Z is clearly a fc^-space, and it follows by [9] that F(Z) is also a
fc^-space.

Since C is an infinite compact set, there exists a non-isolated point x € C. Following
[15, Theorem 3.5], we now write Y = \J Cn, where Cn = x~xx~lCxn for each n e w .

nGw

Then Y C F4{Z) C F4(X), and a straightforward argument shows both that Y is closed
in Fi(Z) and that Y has the quotient topology under the obvious mapping from 0 Cn

onto Y = U Cn- Now the first of these conclusions implies immediately that Y is of
new

pointwise countable type, and we claim that the second implies that it is not. Indeed, the
second conclusion implies that any compact subset of Y lies in a finite union (J Cn for
some N € ui, and then a standard diagonal argument using the fact that x is non-isolated
in C shows that Y is not of countable type at the point e € Y. This contradiction shows
that X must be pseudocompact, as claimed. D

We are now in position to prove our first main result on local compactness and
pointwise countable type in subspaces of free topological groups.

THEOREM 2 . 9 . The following conditions are equivalent for a space X:

(a) Fi(X) is a space of pointwise countable type;

(b) Fi(X) is locally compact;

(c) Fn(X) is a space of pointwise countable type for each n e w;

(d) Fn(X) is locally compact for each n G u;

(e) t ie space X is either compact or discrete.
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PROOF: It is clear that (b) => (a), (d) => (c) => (a), and that (e) implies each of the
conditions (a)-(d). Finally, if F4(X) has pointwise countable type and X is not discrete,
then X is pseudocompact by Lemma 2.8. In particular, X is a closed bounded set in
itself, so Lemma 2.6 implies that X is compact. This gives the implication (a) => (e).
Hence the five conditions are equivalent, as claimed. 0

Our next step is to characterise the spaces X such that the subspace An(X) of A(X)
is locally compact for each n e w . Again, we start with several auxiliary results.

LEMMA 2 . 1 0 . Let X be an arbitrary space andtp: F(X) -> A(X) be the canon-
ical homomorphism of F(X) onto A(X). Then the restriction (p2 = <P\F2{X) is a perfect
mapping of F2{X) onto A2(X).

PROOF: It is clear that |</?2~(y)| ^ 2 for each element y G A2(X), s o t n e fibres of <p2

are compact. In addition, the set Y = X U X'1 is clopen in F2(X), Ya = X \J {-X) is
clopen in A2(X), <p|"(K) = Y and the restriction of ip2 to Y is a homeomorphism of Y
onto Ya. Hence ip2 is closed at every point of Ya.

Let us show that ip2 is closed at every point g G A2(X) of length 2. Let
g = £iXi+e2x2 ^ 0, where X\,x2 G X and £\,£2 = ±1. Then tpifig) — {x^x^^x^x^}. If
O is an open set in F2(X) containing ^(g), then, by the continuity of the multiplication
in F(X), there exist open neighbourhoods U\ and U2 of Xi and x2, respectively, in X such
that U^U^UU^Uf1 C O. In addition, if e1+e2 = 0, then i j ^ x2, so the sets Ui and U2

can be chosen to be disjoint. By Proposition 1.5, the set V = EiUi + e2U2 is an open
neighbourhood of g in A2(X), and one easily verifies that <^T(V) = f/1

eif/|2Ui7|2t/1
ei C O.

So the mapping ip2 is closed at every point of length 2 in A2(X).

Let e be the neutral element of F(X). It is clear that </?2~(0) = {e}, where 0
denotes the neutral element of A(X). If O is a neighbourhood of e in F2(X), then, by
Theorem 1.1, there exists a continuous pseudometric d on X such that O2(d) C O- The
set O2(d) — {x — y : x,y G X, d(x,y) < l} is an open neighbourhood of 0 in A2{X) by
Corollary 1.3 and, clearly, we have f2~(O2(d)) = O2(d). This proves that ip2 is closed at
the point 0 G A2(X). Therefore, <p2 is a closed mapping with compact fibres, and so ip2

is perfect. D

It is worth mentioning that Lemma 2.10 cannot be generalised to n = 3. Indeed, let
X be an arbitrary non-compact space and a0 G X be a fixed point. Clearly, there exists an
open neighbourhood U of ao in X such that the complement Y = X \ U is non-compact.
Denote by ip3 the restriction of the canonical homomorphism <p: F(X) —> A(X) to F3(X).
Then <p3l(ao) contains the closed set {xaoaT1 : x G Y}, which is homeomorphic to the
non-compact space Y. Therefore, the fibre p^'(ao) is not compact and, hence, p3 fails
to be a perfect mapping. We have thus shown that ip3 has compact fibres if and only if
X is compact.

LEMMA 2 . 1 1 . Let X = Y@D be the topological sum of a space Y and a discrete
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space D. Then:

(a) F2(X) is locally compact if and only if F2{Y) is locally compact;

(b) for every n € LJ, An(X) is locally compact if and only if An(Y) is locally

compact.

PROOF: (a) It is clear that Y is a retract of X, so the closed subgroup F(Y, X) of
F(X) is topologically isomorphic to the group F(Y) by Proposition 1.8. In particular,
F2(Y) can be identified with the closed subspace F2(Y, X) = F(Y, X) n F2{X) of F2(X).
Therefore, the local compactness of F2(X) implies that of F2(Y).

Conversely, suppose that the space F2(Y) is locally compact. Since Y is closed in
F(Y) and Y C Fi(Y) C F2(Y), the spaces Y and X = Y © D must be locally compact.
Therefore, it follows from Proposition 1.5 that F2(X) is locally compact at every element
of length 2. It is also clear that the subspace X U X'1 = X © X of F2{X) is clopen in
F2(X), so F2(X) is locally compact at all elements of length 1. It remains to verify the
local compactness of F2{X) at the identity e.

By our assumption, there exists an open neighbourhood O of the identity in F2(Y)
with compact closure. Apply Theorem 1.1 to find a continuous pseudometric d on Y such
that

O2(d) = {xey~E :x,yeY, d(x,y) < 1, e = ±1} C O.

Clearly, the closure of O2(d) in F2(Y) is also compact. Since X = Y © D and D is
discrete, we can extend d to a continuous pseudometric g on X such that g(d, d') = 1 if
d, d! are distinct points of D and g(y, d) ^ 1 for all y € Y and d € D. Then, identifying
F{Y) with the closed subgroup F(Y,X) of F(X), we obviously have O2(g) = O2(d).
Hence the space F2(X) is locally compact at e as well.

(b) The group A[X) is topologically isomorphic in the natural way with
A(Y) x A{D) by Proposition 1.6, and if we identify A{X) and A(Y) x A(D) under
this isomorphism, then we have An(X) C An(Y) x An(D). Since -4(£)) and /in(D) are
discrete, this implies (b). D

The next lemma is almost evident.

LEMMA 2 . 1 2 . Suppose that in a locally compact space X, the derived set X' is
compact. Then X is homeomorphic to the topological sum of a compact space and a
discrete one.

PROOF: For every point x € X', choose an open neighbourhood Ux of x in X such
the closure of Ux in X is compact. Using the compactness of X', we find a finite set

n
x\,...,xn in X' such that X' C (J UXi. Let K be the union of the closures of the

«=i
sets UXi. Then K is compact and X' C K. In addition, the set D = X \ K has no
accumulation points in X', so K is open in X. Therefore, the space X is homeomorphic

to K © D, as required. D
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We now state and prove our second main result.

THEOREM 2 . 1 3 . Tie following conditions are equivalent for a space X:

(a) F2{X) is locally compact;

(b) A2(X) is locally compact;

(c) An(X) is locally compact for each n € w;

(d) X is homeomorphic to the topological sum of a compact space and a dis-
crete space.

PROOF: Suppose that F2(X) is locally compact. Then X is also locally compact
as a closed subspace of F2(X). By Corollary 2.7, the derived set X' is compact. Hence
Lemma 2.12 gives the implication (a) => (d). Local compactness is both an invariant
and an inverse invariant of perfect mappings by [5, Theorems 3.7.21 and 3.7.24], so the
equivalence (b) <& (a) follows from Lemma 2.10. The implication (c) =* (b) is trivial. It
is also clear that if Y is a compact space, then An(Y) is compact for each n ^ 1. Hence
(d) => (c) by Lemma 2.11. D

The next result explains the special role of the number 4 in Theorem 2.9.

PROPOSITION 2 . 1 4 . The local compactness ofF3(X) is equivalent to that of
F2(X), for every space X.

PROOF: By Theorem 2.13, the local compactness of F2(X) implies that X is home-
omorphic to a disjoint sum C © D, where C is compact and D is discrete. Let Y be the
discrete space {c} © D obtained from X by identifying C to the point c. Let / : X -»• Y
be the identification mapping, let / : F(X) -> F(Y) be an extension of / to a continuous
homomorphism, and consider the restriction f3 — JF\F3(X) which maps F3(X) onto F3(Y).
We claim that f3 is a perfect mapping.

Indeed, it is trivial that f3 is closed, since its range is discrete. Also, one can verify
routinely that the fibres f£~(w) are compact for each w € F3(Y). For example, the set
ftivVy^yi3)' where y^yl'yl3 is a reduced word, is clearly singleton if 1/1,2/2,2/3 € D,
and the set /^(cy^y^2), where y^y^ is a reduced word and 2/1,2/2 G D, is the compact
set Cy\lye

2. Similarly, the set ft{ye), where y € D, is the compact set {y£} U CC~x\f
U C~lCye U yeCC~x U yEC~lC, and one can perform similar checks for words in F3(Y)
of all the other possible forms.

We conclude that f3 is indeed a perfect mapping. Finally, since local compactness is
an inverse invariant of perfect mappings, by [5, Theorem 3.7.24], we conclude that F3(X)
is locally compact, as required. D

We cannot extend the above to say that the restriction /4 = /ff4(x) which maps
Fi(X) onto Fi(Y) is in general perfect, even for very simple perfect mappings. This
follows from the next fact:

PROPOSITION 2 . 1 5 . Let f: X -> Y be a continuous onto mapping. The
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mapping / 4 : Ft(X) -> Ft(Y) is perfect if and only if either f is a homeomorphism or X
is compact.

PROOF: If / is a homeomorphism, then its extension / : F(X) —• F(Y) is a topo-
logical isomorphism and the mapping /4 — /7F«(X) is a homeomorphism between F4(X)
and F^Y). If X is compact, then F4(X) is also compact, so / 4 is again perfect.

Conversely, suppose that the mapping /4 is perfect. Then its restriction / = /4 \x

to the closed subspace X of F^X) is also perfect. So, if / is one-to-one, then / is a
homeomorphism, and we are done. Suppose, therefore, that / has a non-trivial fibre.
Choose distinct points a,b € X such that / (a) = f(b). If X is not compact, there exist
open neighbourhoods U and V of a and b in X, respectively, such that the complement
Y = X \ (U U V) is not compact. The set

P = {xab~lx-x :xeY}

is closed in Ft(X) and is contained in / ^ ( e ) , where e is the identity of F(Y). In addition,
P is homeomorphic to the non-compact space Y, so the fibre / ^ ( e ) is not compact. Thus
the mapping /4 is not perfect. D

3. M O R E ON POINTWISE COUNTABLE TYPE

Our next step is to characterise, in a manner analogous to Theorem 2.13, the
spaces X such that F2(X) or A2{X) is of pointwise countable type. We shall see in
Theorem 3.5 that, in both cases, this is equivalent to the existence of a compact set C of
countable character in X such that X' C C.

Let X be a space and Ax be the diagonal in X2. Denote by U\ the finest uniformity
on X compatible with the topology of X. For every U 6W, put

The lemma below is a reformulation of Theorem 1.1.

LEMMA 3 . 1 . The sets 02{U), with U e U\, form a base at the neutrai element e
for the space F2(X).

The next fact is a simple part of Theorem 3.3.

PROPOSITION 3 . 2 . Let C be a compact subset of a space X such that X' C C
and x{C,X) ^ w. Then F2(X) has pointwise countable type.

PROOF: If X is discrete, then the spaces F(X) and F2(X) are discrete. Suppose,
therefore, that X' ^ 0. Our assumptions about X imply that X is of pointwise countable
type. Hence the space X2 also has pointwise countable type. Let e denote the neutral
element of the group F(X). Since X ® X~l 3* F^X) \ {e} is clopen in F2{X) and the
space F2(X) \ Ft(X) is locally homeomorphic to X2, it suffices to find a compact set in
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F2(X) which contains e and has countable character in F2(X). Put K = CC~l U C~lC.
Let us verify that the compact set K C F2(X) is as required. It is clear that e € K.
Since x(C. X) ^ w, the space X has a countable base {Un : n £ u} at C. For every
n e w , let Vn = UnU~l U U~lUn. We claim that the family {Vn : n G w} is a base for
F2 W at if.

Indeed, let O be an open neighbourhood of K in F2(X). Since C is compact, there
exists an open neighbourhood U of C in X such that UU~l C O and C/^t/ C O. Choose
n € w with Un C [/. Then Vn C O, so it remains to show that Vn is open in F2(X).
Clearly, the set Wn — (Un x [/„) U Ax is open in X2. Since X is paracompact by
Lemma 2.3, we have Wn € Ux for all n € w, and one easily verifies that C>2(Wn) = Vn.
This implies our claim and shows that F2{X) is of pointwise countable type. D

THEOREM 3 . 3 . The following conditions are equivalent for a space X:

(a) F2(X) has pointwise countable type;

(b) there exists a compact set C in X such that X' C C and x{C,X) ^ u.

PROOF: The implication (b) => (a) follows from Proposition 3.2. Conversely, sup-
pose that F2{X) is of pointwise countable type and take a compact set K C F2(X) which
contains the identity e of F(X) and satisfies x{K, ^M^)) ^ w. By the Nummela-Pestov
theorem, F(X) is identified with the subgroup F{X,fj,X) of F(fiX). Then F2(X) is
identified with the subspace F2{nX) f~l F{X) of F2(nX). Observe that F2{X) is dense
in F2{fiX) since X is dense in fiX. Hence Lemma 2.2 implies that x{K,F2(nX)) ^ to.
Let {Un : n € w} be a countable base for F2(/j.X) at if. By Theorem 1.1, there exists,
for every n € us, a. continuous pseudometric dn on fiX such that O2(dn) C [/„. We can

00
assume without loss of generality that each dn is bounded by 1. Then d = ^2 2~ndn is a

n=0
continuous pseudometric on fj,X and one easily verifies that the set

P = {x~ly :x,y£ \iX, d{x,y) = 0}

satisfies P C f| 02(dn) C f| Un = K. In particular, P C F2(A"). The set P is closed in

since the pseudometric d is continuous. Hence P is compact as a closed subset
oftf.

Consider the continuous mapping i2: X
2 —¥ F2(X), i2(x,y) = x~ly for x, y € X.

Since X' is compact by Corollary 2.7, it follows from Lemma 2.3 that the space X is
paracompact. So [22, Proposition 4.8] implies that i2 is a closed mapping. Observe that
the restriction of i2 to the closed subspace

Z = X2\{(x,x):x£X\X'}

of X2 has compact fibres. In fact, the unique non-trivial fibre of i2\z can only be ^ ( e )
= {(x,x) : i 6 X'} . Therefore, this restriction is a perfect mapping (onto its image).
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Since P is compact,

L = Zni2~(P) = {(x,y) G X2 : d(x,y) = 0} \ {(x,x) :x€X\X'}

is a compact subset of Z. Let it: X2 -t X be the projection to the second factor. Then
C = %{L) is a compact subset of X and, clearly, X' C C.

It remains to verify that x(C, X) ^ w. For every n € w, put

Vn = {xeX:d(x,C)<2-"}.

Then 7 = {VJ, : n € w} is a countable family of open neighbourhoods of C in X, and we
claim that 7 is a base for X at C.

First, we verify that d(y, C) > 0 for each y G X \ C. Indeed, if y G X \ C and
d(z, y) = 0 for some x € C, then (x, y) € L and y £ C, which is a contradiction. Hence
ti(x, 2/) > 0 for each x G C. Since the set C is compact, we conclude that d{y, C) > 0.
Observe that this implies the equality C = C\j.

Suppose to the contrary that 7 fails to be a base for X at C. Then there exists an
open set O in X such that C C O and Vn \ O ^ 0 for each n G w. Therefore, we can
choose two sequences { i n : n G w} and {yn : n e u} such that i n G C, yn G K, \ O
and ^(a;,,,^) < 2~n for each n G ui. Then our definition of d as an infinite linear
combination of the pseudometrics dn implies that dn(xn,yn) < 1, whence it follows that
9n — x~lyn G Un. Clearly, xn ^ yn, so j n / e for each n G w. From our choice
of the points yn it follows that the positive distances d(yn,C) tend to zero, so the set
{yn : n € w} is infinite. Since the sets Un form a base for F2(X) at the compact set K,
the infinite set 5 = {gn : n G w} has an accumulation point in K. On the other hand,
the set T = {{xn, yn) : n G w} is closed and discrete in X2. Indeed, since X' C C C O,
the set X\O is closed and discrete in X. Hence the set Y = {yn : n €w} C X\O is also
closed and discrete in X. Since TT(T) = Y, so is T in .Y2. Finally, the mapping i2 is closed
and t2{T) = S, so that 5 is infinite, closed and discrete in F2(X). This contradiction
shows that (a) implies (b), as claimed. D

As in Theorems 2.9 and 2.13, it is natural to ask for a characterisation of the spaces X
such that each An(X) has pointwise countable type. It turns out that the latter property
is equivalent to that for the single number n = 2. Our proof of this fact requires the
following proposition:

PROPOSITI ON 3 . 4 . Let C be a compact subset of a space X such that X' C C

and x(C, X) < w. Then An(X) has point-countable type for every n G w.

PROOF: We show first that A2n{X) has countable type at the identity 0 for each
integer n. Fix n G w. If A" is discrete, there is nothing to prove, so we assume that
X' ^ 0. Let K = nC — nC, and note that K is a compact subset of A2n(X) which
contains 0. Fix a countable base {£4 : k £ u} for the space X at C, and for every k G w
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let Vk = nUk - nUk. Clearly, K C Vk C A2n(X) for each k, and we claim that the family
{Vfc : k € w} is a base for A2n(X) at /C.

Let O be an open neighbourhood of K in J42r>(-^)- Since C is compact in X, there
exists an open neighbourhood U of C in X such that rat/ — nil CO. If we choose A; € w
with Uk C £/, then clearly Vk C O. It is easy to see that the set Wk = (Uk x Uk) U A*
is open in X2, where Ax denotes the diagonal in X2. Then since X is paracompact, by
Lemma 2.3, we have Wk € Ux- Let s: u 4 Wx be a constant function, s(n) = Wk for
each n 6 w. It is easy to see that O(s) D A2n = Vk, and it follows from Theorem 1.4 that
Vk is open in A2n(X). We conclude that, as claimed, A2n(X) has countable type at 0.

Now let g be an arbitrary element of An(X) for a fixed n € w. Also, let K be a
compact subset of A2n(X) which contains 0 and at which A2n(X) has a countable base
{Vk : keui}. Wri teC= (K + g)nAn{X), and note that C is acompact subset of An(X)
containing g. We claim that the collection {Wk : k euj}, where Wk — (Vk + g) D An(X)
for each k e w, forms a base for An(X) at C.

Indeed, since Vk is open in A2n(X), the set Vk + g is open in A2n(X) + 5, and since
An{X) C ^ 2 n ( ^ ) + p, we see that W* = (Vk + g) n An(X) is open in (A2n(X) + j)
n yln(X) = i4n(X). Also, i f C C V C An(X), where V is an open set in An(X), let
W = VU (A{X) \ An(X)), and note that W is an open set in A(X). Now C = (K + g)
HAn(X) C V implies K + gCVU (A(X)\An(X)) = W, and soKCW-g. Therefore,
since W — g is an open set in A(X), there exists k e ui such that K CVk CW — g, and
we have

(K + 9)n An(X) c (Vi + ff) n An(X) c w n An(X),

that is, C C Wk C F. We conclude that An(X) is of pointwise countable type, as
required. D

We now present our third main result.

THEOREM 3 . 5 . The following conditions are equivalent for a space X:

(a) F2(X) has pointwise countable type;

(b) A2{X) has pointwise countable type;

(c) An(X) has pointwise countable type for each n 6 u>;

(d) X contains a compact set C such that X' C C and x(C, X) ^ ui.

PROOF: The implication (d) => (c) is given by Proposition 3.4, while the implication
(c) => (b) is trivial. The restriction of the canonical homomorphism <p: F(X) -> A{X) to
F2(X) is a perfect mapping onto A2{X) by Lemma 2.10, and having pointwise countable
type is an inverse invariant of perfect mappings. (Indeed, if / : X —> Y is a perfect onto
mapping and C is a compact set of countable character in Y, then / - 1 (C) is again a
compact set of countable character in X.) Hence (b) implies (a). Finally, the implication
(a) => (d) is given by Theorem 3.3. D
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We shall show in Proposition 3.7 that, as in the case of local compactness, F3(X)
has pointwise countable type if and only if F2(X) has pointwise countable type. Our
proof is based on the following auxiliary fact.

LEMMA 3 . 6 . Let U be an open set in a space X such that X' C U. Then the
set W = UUU~l U UU~lU U U~lUU is open in F3(X).

PROOF: Clearly, U and V — X \ U are clopen disjoint sets and V is discrete, so
we can take a continuous pseudometric d on X such that d(x, x1) = 0 for all x, x' 6 U,
d(x, x') = 1 for all x, x' € V, and d(x, y) = 1 for all x 6 U and y 6 V. Let d be
Graev's extension of d to a continuous invariant pseudometric on F(X) such that d(x~1, y)
= d{x,y~l) = d(xy, e) ^ 1 for all x, y € X, where e is the identity of F(X). Since d is
continuous, the set

0={9£F(X):d(g,e)<l}

is an open neighbourhood of e in F(X). Hence G = UO U OU is also open in F(X), and
we claim that

(*) G n F3(X) = W.

Indeed, we have UU~l U U~lU C O, so the inclusion W C G D F3(A") is immediate.
Conversely, let x € U and j s O b e arbitrary elements such that h — xg 6 ^ ( X ) , and
observe that g must have even length ^ 4 . If g — e, then h — x€UC. W. If the length
of 3 equals 2, then g — xey~e for some x,y e X and e = ±1 . It follows from g € O that
x,y e U, so h = xg € UUeU~e C W. The last possibility is that g has length 4, so that
h = xg — x(x~1yzt) = yzt, where z € U and j / , z , ( e X U X " 1 . Since g — x~lyzt g O,
we have d(g, e) < 1. Let us consider the following two cases.

(a) d{g,e) = d{x~ly,e) +d(zt,e) = d(y,x) + d{t,z~l) < 1. Then d(j/,i) < 1,
s o y € X a n d x '2/ € £/. In addition, we have d(t, z~l) < 1, whence it follows that
z~l,t € X£ for some e = ±1 and, by the choice of d, this gives z~l,t € U*. Thus
h = yzte UU~eUe C W.

(b) d{g,e) = d(x-4,e) + d(yz,e) = d(t,x) + d{z,y~l) < 1. Then d(t,x) < 1, so
t & X and x,t & U. Similarly, from d(z, y~l) < 1 it follows that z, y'1 € X€ for some
e = ±1 , so z,y~l € f/£, by our choice of d. We conclude that h = yzt € U~eUcU C W.

Combining (a) and (b), we deduce the inclusion UO C\ F3(X) C W. A similar
argument gives the inclusion OUnF3(X) C W, so we finally have that G n F3(X) C W.
This proves the equality (*) and implies that W is open in F3(X). D

PROPOSITION 3 . 7 . For every space X, F3(X) is of pointwise countable type

if and only if so is F2(X).

PROOF: Since F2(X) is a closed subspace of F3(X), it suffices to prove the suffi-
ciency. Suppose that F2(X) has pointwise countable type. Then, by Theorem 3.3, there
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exists a compact set C of countable character in X such that X' C C. Observe that
P = (F2(X) \ Fi(X)) U {e} is a clopen subset of F3(X) (see [2, 8]), and P is closed
in F2(X). Hence F3(X) has countable type at the identity e and at each element of
length 2. Clearly, X is of pointwise countable type as a closed subspace of F2(X), and
s o a r e d * ) ^ ^ © { e } © * - 1 andF^X)3. Since the spaces F3(X)\F2(X) and F^X)3

are locally homeomorphic by Proposition 1.5, F3(X) is of countable type at all elements
of length 3.

It remains to show that, for every element x G F3(X) of length 1, there exists a
compact set K of countable character in F3(X) such that x G K. Since taking inverses
is a homeomorphism of F3{X) onto itself, we can assume that x G X. If x G C, put
K = CCC-1 U CC~XC U C~lCC. It is clear that K is a compact subset of F3{X) and
x G C C K. By our choice of C, there exists a countable base {Un : n G w} for X
at C. For every n € w, let Wn = UnUnU^ U UnlJ-lUn U lJ-xUnUn. We claim that
<y = {Wn : n 6 w } i s a countable base for F3(X) at K.

Indeed, since X' C C C [/„ for each n, Lemma 3.6 implies that each Wn is open
in F3(X). It is also clear that K C. Wn for each n € u. Let O be an arbitrary open
neighbourhood of K in F3(X). Take a neighbourhood W of if in F(X) such that
W n F3(X) = O. Since the set C is compact, we can find an open neighbourhood V
of C in F(X) such that W V " 1 U VV^V U ^ ~ W C W. Choose n G w such that
[ / , c y n l We then have K CWnCWnF3{X) = O, which implies the claim.

Finally, if x G X\C, then x is an isolated point of X. The compact set Cx = Cu{x}
also has countable character in X, so one can apply the above argument to the set
Kx = CxCxC~l U CxC~lCx U C~XCXCX and show that Kx has countable character in
F3(X). This finishes the proof. D

Cech-completeness occupies a place between local compactness and pointwise count-
able type. In a sense, Cech-completeness is a kind of uniform pointwise countable type.
Let us show that, for spaces of the form A2(X) or F2(X), Cech-completeness and point-
wise countable type coincide.

We recall that a continuous pseudometric d on a space Y is called complete if, for
every Cauchy sequence {yn : n e u} CY with respect to d, there exists a point y €Y
such that d(yn, y) -¥ 0 when n -> oo.

THEOREM 3 . 8 . Tie following conditions are equivalent for a space X:

(a) A2(X) is Cech-complete;

(b) F2(X) is Cech-complete;

(c) A2{X) has pointwise countable type;

(d) F2(X) has pointwise countable type.

PROOF: Since the natural mapping tp: F2(X) -> A2(X) is perfect (see Lemma 2.10)

and Cech-completeness is both an invariant and an inverse invariant of perfect mappings
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by [5, Theorem 3.9.10], we have (a) <* (b). It also follows from Theorem 3.5 that
(c) <=> (d). The implications (a) =• (c) and (b) => (d) are trivial. Therefore, it suffices to
show that (d) =>• (b).

Suppose that the space F2(X) has pointwise countable type. Then, by Theorem 3.3,
there exists a compact set C of countable character in X such that X' C C. Let
{Un : n e u} be a decreasing base for X at C. For every new, choose a continuous
pseudometric d,, on X such that d,, ^ 1, dn(x, y) = 0 for all x, y € C, dn(x,y) = 1 if
x, y are distinct points in X \ £/„, and dn(x, y) = 1 for all x e Un and y £ X\Un- Then

oo

rf = 5^ 2~"rfn is a continuous pseudometric on X having the following properties:

(i) dfo y) = 0 for all i . y e C ;

(ii) d(x, y) ^ 2~n if x, y are distinct points in X \ £/„;

(iii) d(x, y) > 2~" for all x € Un and y G X \ Un, n e w.
We claim first that d is a complete pseudometric. Indeed, let 5 = {x* : k € u>} be a
Cauchy sequence in X with respect to d. If 5 D £/„ ^ 0 for each n € w, then 5 has an
accumulation point y 6 C, so that 5 converges to y with respect to d. Suppose, therefore,
that Um fl 5 = 0 for some m e w. Then d(xjt, £() ^ 2~m for distinct xk, xi € 5 and, since
5 is a Cauchy sequence, 5 is eventually constant. In particular, 5 converges. This proves
our claim.

Let d be Graev's extension of d over F(X) such that d(x,e) = d(x~x,e) ^ 1 and
d(x, y~l) = d(xy,e) = d(x~1,y) ^ 1 for all x,y € X, where e is the identity of F(X).
Denote by d2 the restriction of d to F2(X). We claim that d2 is a complete pseudometric.
Indeed, since d is complete, it follows from our choice of d that d2 is complete on F^X)
= X 0 {e} 0 A""1. Observe also that d2{x,g) ^ 1 for every x e X U A""1 and
5 S ( ^ ( A ) \ ^ ( X ) ) U {e}. Therefore, it suffices to prove that d2 is complete on
P=(F2(X)\F1(X))u{e}.

Suppose that T = {gn : n € w} is a Cauchy sequence in P with respect to d2. We can
assume without loss of generality that d2(gn,gm) < 1 for all n,m € w. Every element <7n

has the form gn — x^y^" for some xn, yn € X and £„,($„ = ± 1 . Choose an infinite set
A C ui and e, 6 = ±1 such that en = e and 6n — 6 for each n e A By our choice
of A and the above assumption, we have d2(gn,gm) — d2(gng^,e) < 1 or, equivalently,
d^x^y^y^x^,e) < 1 for all n,m 6 w. Hence, for any given pair n,m € ui, either

(1) d2(gn, gm) = d(xn, xm) + d(yn, ym)

or

(2) d2(gn, gm) = d2{xn, yn) + d(xm, ym) and £ + 6 = 0.

Clearly, if e + 6 ̂  0, then (1) holds for all n, m € A. Consider the set

[A]2 = {{n,m}:n,m6j4, n ̂  m}
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and define a mapping / : [A]2 -»• {1,2} by f({n,m}) = 1 if (1) holds for the pair {n,m}
with n < m; otherwise put f({n,m}) = 2. By Ramsey's theorem (see [16, p. 7]),
one can find an infinite set B C A and i G {1,2} such that f({n,m}) = i for all
distinct n,m G B. If i = 1, then it follows from (1) that both Sx = {xn : n G B}
and S2 = {yn : n € B} are Cauchy sequences with respect to d. Since d is complete
on X, Si converges to a point x G X and S2 converges to y e X, both with respect to
d. Hence the sequences {gn : n e B} and {jn : n e w} converge to the element g = x£ys

with respect to the pseudometric d2. Finally, if i = 2, then (2) implies that S = — e and
d(xn,yn) < d2(gn,gm) for any n,m € B with n < m, so that the distances d(zn,yn) tend
to zero when n —> 00, n £ B. In its turn, this implies that d2{gn, e) —• 0 when n —t 00,
n € B. Since {<?„ : n 6 u } is a Cauchy sequence, we conclude that limd2(gn,e) — 0.
This proves that d2 is a complete pseudometric.

Consider the equivalence relation ~ on F2{X) defined by g ~ h if and only if d(g, h)
= 0 and let Y = F2(X)/ ~ be the quotient set. Let p: F2(X) -> F be the natural
projection, p(g) — [g] for each x G Y, where [g] = {h G F2(X) : g ~ /i}. Define a
function g on y 2 by g(p(g),p(h)) = d2(g,h) for all g, h G i^PO- It is clear that £ is a
metric on Y. Let r be the topology on Y generated by g. We claim that the mapping
p: F2(X) -> (Y,T) is perfect.

It easily follows from our definition of d2 that [g] = {g} for each g = xeys G F2(X) \
Fi(X) with x,y G X\C and e, J = ± 1 . If only one of the points x, y is in C, say, x G C,
then [0] = C V . If both points x, y are in C, then [g] = CSC5. Similarly, if g = xe

with x € X and e = ± 1 , then [g] = {g} if x £ C, and [g] = Ce otherwise. Finally,
[e] = CC~l U C~lC. Therefore, the fibres of the mapping p are compact.

It remains to verify that p is a closed mapping. For every integer n ^ 1 and y € Y,
denote by B(y, 1/n) the open ball with centre at y and radius 1/n with respect to g.
Let us show that p is closed at the point a = p(e). Suppose that O is a neighbourhood
of the fibre p " 1 ^ ) - [e] - CC~l U C~lC in F2(X). Since C is compact, there exists
an open neighbourhood U of C in X such that UU'1 U U~lU C O. Choose an integer
n #s 1 such that Un C {/. Then p-1(B(a,2~")) C 0 . Indeed, suppose that g G
and g(p(g),a) = d2(g,e) < 2~n. Then either g = e G O o r f f = x£y-£ G F2(X) \
where e = ± 1 . In the latter case, we have

d2(g,e) = d2{xey-e,e) = d2(x
e,ye) = d2(x,y) = d(x,y) < 2"".

Since g ^ e, we necessarily have that x ^ y. It follows now from (ii) and (iii) that
x,y G Un, so that 5 = xey~e G U^U~£ C O. This proves the inclusion
p~1[B(a, 2"")) C O and, hence, p is closed at the point a = p(e). A similar argument
(with certain simplifications) shows that p is closed at any point of Y \ {a}. Therefore,
p is a perfect mapping.

Since the pseudometric d2 is complete, we conclude that the metric space (Y, g) is
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complete. In particular, the space (Y, r ) is Cech-complete. Hence F2{X) is Cech-complete
as a perfect preimage of a Cech-complete space. D

One can modify the argument in the proof of Theorem 3.8 to show that the restriction
of the pseudometric d to F3(X) remains complete, so that F3(X) is Cech-complete if and
only if so is ^ ( X ) .

4. ALMOST METRISABILITY OF FREE GROUPS

A topological group G is called almost metrisable if it contains a non-empty compact
set of countable character in G [13]. Since topological groups are homogeneous, every
almost metrisable group has pointwise countable type, and vice versa. It is clear that all
locally compact groups as well as all metrisable groups are almost metrisable. It turns
out that the free (Abelian) topological group on a space X is almost metrisable if and
only if X is discrete (see Theorem 2.9). Our proof of this fact requires the following
well-known lemma (see [2]):

LEMMA 4 . 1 . Let K be a subset of A{X) such that the intersections K n An{X)
are finite for all n 6 w. Then K is closed in A(X). A similar result remains valid for
subsets ofF(X).

PROPOSITI ON 4 . 2 . Tie following conditions are equivalent for a space X:

(a) t ie group F(X) is almost metrisable;

(b) t ie group A(X) is almost metrisable;

(c) t ie space X is discrete.

PROOF: Since A(X) is a quotient of F(X), the implication (a) => (b) is obvious.
It is also clear that the groups A(X) and F(X) over a discrete space X are discrete.
Therefore, it suffices to verify that (b) implies (c).

Let A" be a non-empty compact set of countable character in A(X). Since translates
in topological groups are homeomorphisms, we can assume without loss of generality that
K contains the identity 0 of A(X). Choose a countable base {Un : n £ w} for A(X) at the
set K. Define by induction a sequence {Vn : n £ w} of open symmetric neighbourhoods
of 0 in A(X) such that 2K+i QUnf\Vn for each n e w . Then L = f| Vn is a closed

subgroup of A(X) and L C K. Therefore, the subgroup L of A(X) is compact. Then
one can apply Dudley's theorem in [4] to conclude that L = {0}, or argue as follows. If
the group L is non-trivial, take an element g € L \ {0} and consider the infinite cyclic
subgroup (g) of L generated by g. Then the intersection An(X) n (g) is finite for each
n € w, so the group (</) is discrete and closed in L by Lemma 4.1. This contradiction
shows that the group L is trivial. Hence the identity 0 has countable pseudocharacter
in A(X) and in K. Since K is compact, we conclude that x(0, K) ^ ui. Therefore,
x(0, A(X)) sj x(0, K) • X{K, A(X)) ^ w by [5, 3.1.E]. In other words, the identity 0 has
countable character in A(X), so X is discrete by Graev's theorem in [6]. D
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5. OPEN PROBLEMS

Given a continuous mapping / : X -> Y, we denote by / the extension of / to a
continuous homomorphism of F(X) to F(Y). The next problem is related to Propo-
sition 2.15. Its solution can provide a "uniform" proof of the equivalence of certain
topological properties of F2(X) and A2(X).

PROBLEM 5.1. Characterise the continuous onto mappings / : X —¥ Y such that the

restriction f2 = /I>2(X) of F2(X) onto F2(Y) is perfect. We raise the analogous problem

for h = T\F3(X)-

A space X is called a q-space provided that every point x 6 X has a sequence
{Un : n € w} of neighbourhoods with the property that if xn € Un for each n € u>, then
the set {xn : n € UJ} has a cluster point in X. It is easy to see that X is a g-space if
and only if it can be covered by countably compact sets, all having countable character
in X. Clearly, every space of pointwise countable type is a g-space, but not vice versa
(take any countably compact space which fails to be of pointwise countable type).

PROBLEM 5.2. Characterise the spaces X such that F2(X) is a g-space. What about
Fn(X) for all n£u>? The Abelian case?
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