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Abstract

Despite the great progress in data transmission systems using dielectric waveguides (DWGs)
in the millimeter-wave (mm-wave) frequency band (30–300 GHz), the signal distortions
caused by DWGs have not yet been fully understood. However, such investigations would
help to optimize DWGs as a transmission channel in order to further increase data rate
and transmission distance of such systems without the need for more complex transceivers.
Therefore, this paper presents a detailed study of the expected signal distortions caused by
frequency-dependent attenuation and frequency-dependent group delay of circular DWGs at
mm-wave frequencies. Based on a low-complexity digital transmission system, the effects of
DWGs on the signal-to-noise ratio and the intersymbol interference at the receiver are evalu-
ated. The figures and equations given in this paper allow the reader to easily calculate the chan-
nel properties and signal distortions for a wide range of circular DWGs without the need of
finite element method solver or other time-consuming numerical simulations. Finally, design
recommendations are given to minimize signal distortions for transmitting signals along DWGs.

Introduction

Since the rediscovery of dielectric waveguides (DWGs) as a medium for high data rate trans-
mission at millimeter-wave (mm-wave) frequencies in 2010 [1], a tremendous development
has been observed in this field [2, 3]. From the beginnings until today, the achievable data
rate over 1 m DWG has been tripled from 12 to 36 Gb/s [4]. At the same time, the maximum
transmission distance increased from 1 to 15 m [5]. In order to further increase the data rate,
the required components are constantly improved. Besides the optimization of transmitter
and receiver units [4, 6], the increase in data capacity of DWG systems has been mainly
achieved by improving the signal-to-noise ratio (SNR) at the receiver. The use of low-loss
materials or different designs (e.g. hollow core fibers) for DWGs [7–9] as well as the
enhanced coupling into DWGs [10–14] ensure a low insertion loss of the transmission chan-
nel and therefore increase the SNR at the receiver. In addition to signal distortions caused by
noise, a broadband signal transmitted along a DWG is also disturbed by the frequency-
dependent propagation characteristics of the DWG channel. These propagation characteris-
tics include frequency-dependent attenuation and frequency-dependent group delay (wave-
guide dispersion) that can lead to intersymbol interference (ISI) in digital data transmission
systems. The possibility to further improve the channel capacity by reducing frequency-
dependent attenuation and frequency-dependent group delay of the DWG itself has not
yet been completely investigated.

In [15], the channel capacity of DWGs is approximated exemplarily for some solid and hol-
low core DWGs in the D-Band frequency range (110−170GHz) based on the frequency-
dependent group delay. This rough first-order approximation indicates a 1/

�
l

√
relation

between maximum data rate and length l of the DWG. The authors concluded that waveguide
dispersion is the limiting factor in a DWG data transmission system, and not insertion loss.
A similar conclusion has been drawn in [16] where the dispersion caused by frequency-
dependent group delay was identified as the main limitation of the presented data transmis-
sion. However, the authors also pointed out that frequency-dependent attenuation is not
negligible. In both publications, the question remains unanswered how large the effect of
frequency-dependent attenuation and group delay actually is and which DWGs lead to min-
imal signal distortions. Although Meyer et al. [17] have shown that waveguide dispersion
caused by frequency-dependent group delay in circular solid and hollow core DWGs can be
minimized by appropriate design, it is still unclear how such a reduction would affect a trans-
mission system in detail. Therefore, it is unknown to what extent DWGs have to be optimized
to ensure negligible signal distortions. Furthermore, signal distortions caused by the
frequency-dependent attenuation of the DWG, as well as its minimization, has not yet been
investigated.

For this reason, this paper presents a detailed analysis of expected signal distortions that
occur when data are transmitted via circular DWGs in the mm-wave frequency range. First,

https://doi.org/10.1017/S1759078721000209 Published online by Cambridge University Press

https://www.cambridge.org/mrf
https://doi.org/10.1017/S1759078721000209
https://doi.org/10.1017/S1759078721000209
mailto:sekretariat@hf.uni-bremen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3166-6879
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1759078721000209&domain=pdf
https://doi.org/10.1017/S1759078721000209


the data transmission system is described and the definitions of
SNR and ISI for this system are introduced. Both SNR and ISI
are used later to quantify the signal distortions. Subsequently,
the frequency-dependent attenuation and frequency-dependent
phase constant of DWGs are modeled by a Taylor series. In
order to describe the frequency dependency of both values for
common circular DWGs at mm-wave frequencies, a generalized
analysis is given. The mathematical modeling for this analysis is
specified on the basis of only two parameters, i.e. normalized
frequency and normalized material properties. The general
mathematical description allows the reader to directly calculate
transmission properties, such as attenuation, group delay, and
waveguide dispersion, of a wide range of circular DWGs that
are typically used at mm-wave frequencies without the need of
time consuming finite element method (FEM) simulations.
Moreover, the given figures and equations can be used to calcu-
late the expected signal distortions in a circular DWG. To deter-
mine the main cause of distortions in DWG systems, the effects
of frequency-dependent attenuation and frequency-dependent
group delay are analyzed separately. Finally, the combined effect
of frequency-dependent attenuation and dispersion is consid-
ered, and recommendations for a DWG design are given to min-
imize signal distortions.

Data transmission system

To determine signal distortions along a DWG a low-complexity
digital data transmission system as shown in Fig. 1 is assumed.
In this communication system a data source generates an infinite
pulse sequence

T
∑1
i=−1

d(i) · d0(t − iT). (1)

where d(i) represents the actual data to be transmitted. For
example, d(i) can be a sequence of discrete voltage values of a
sampled analog signal or output values of a digital data processing
system. These data points are weighted by a Dirac impulse δ0. The
time between each impulse is the sampling period T. Since
the impulse sequence (1) would have an infinite bandwidth, an
ideal low-pass filter

g(v) = rect
v

vN

( )
= 1 for |v| , vN

0 else

{
(2)

is used as pulse shaping filter to limit the signal bandwidth of
the transmitted signal to 2ωN. The cut-off frequency ωN

of the filter fulfills the Nyquist–Shannon sampling theorem
fN = ωN/2π = 1/2T. After the pulse shaping filter, the
band-limited signal is transmitted via DWG. Additionally, the

signal is superimposed by white Gaussian distributed noise
n(t). To fulfill the matched filter criterion, the distorted signal
is filtered at the receiver by an ideal low-pass filter (receive fil-
ter) given by (2). The filtered receive signal r(t) is then sampled
with the sampling period T. This results in a disturbed signal
sequence at the receiver, where each received symbol r(iT)
can be described by

r(iT) = T
∑1
k=−1

d(k) · h(iT − kT) + n(iT)

= Td(i) · h(iT)︸������︷︷������︸
r0(iT)

+ T
∑1
k=−1
k=0

d(k) · h(iT − kT)

︸�������������︷︷�������������︸
Dr(iT)

+ n(iT)
(3)

where iT represents the i-th sample point for a sampling period
of T = π/ωN. The pulse shaping filter, the DWG as well as the
receive filter are summarized as the channel impulse response
h(t). It can be seen that the received symbol at time iT is not
only the transmitted symbol d(i) disturbed by the channel
impulse response (hereinafter called r0(iT)), it is also superim-
posed by the time-shifted channel responses of all symbols d(k)
that were transmitted before and after the actual symbol d(i)
(hereinafter called Δr(iT)). This effect is well known as ISI.

In order to evaluate the signal distortions by the channel, the
SNR and the ISI of the received symbols r(iT) are determined. For
uncorrelated random data d(i) the SNR can be expressed by

SNR = E{ r0(iT)| |2}
s2
N

= s2
D

s2
N

h(0)| |2 (4)

where s2
D and s2

N are the variances of the transmitted data
sequence d(i) and noise n(iT). The ISI can be quantified by

ISI = E{ r0(iT)| |2}
E{ Dr(iT)| |2} =

h(0)| |2∑1
k=−1
k=0

h(kT)| |2
(5)

Equations (4) and (5) depend solely on the impulse response h(t)
of the transmission channel including filters and DWG. Since the
filter characteristics are already described by (2), a mathematical
description of the DWG channel is needed to calculate the signal
distortions caused by the DWG. Due to the large variety of pos-
sible diameters and materials for circular DWGs in the mm-wave
frequency band, a general description of the transmission behav-
ior of circular DWGs is presented in Section “DWG channel.”
Based on this description, the channel impulse response h(t) is

Fig. 1. Schematic representation of a low-
complexity digital data transmission system using
a DWG as a channel.
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derived in Section “Signal distortions” and the resulting signal
distortions are determined using SNR and ISI.

DWG channel

The frequency response of a DWG in the bandpass domain can
be described by

HBP(jv) = e−g(v)l (6)
where γ(ω) is the frequency-dependent propagation constant

g(v) = a(v)+ jb(v) a, b [ R, (7)

l the length of the waveguide and j the imaginary unit. The attenu-
ation per unit length of an electromagnetic wave propagating
along the DWG is characterized by the attenuation constant α
whereas the phase change per unit length is described by the
phase constant β. In practice, both constants are frequency-
dependent. These frequency dependencies cause signal distortions
while transmitting data along such a waveguide. To describe the
frequency dependency mathematically, in this paper, real and
imaginary parts of the propagation constant are approximated
by a Taylor series. The Taylor series is calculated at the center fre-
quency ω0 of the transmitted signal:

g̃(v) = ã(v)+ jb̃(v) with

ã(v) = a0 + a1(v− v0)

b̃(v) = b0 + b1(v− v0)+ b2(v− v0)
2

(8)

and

g0 = a0 + jb0, g1 = a1 + jb1, g2 = jb2 (9)
For the attenuation constant α, the Taylor coefficients are

a0 = a(v0), a1 = da
dv

∣∣∣∣
v=v0

(10)

The coefficient α0 corresponds to the attenuation per unit length
at the center frequency ω0. The coefficient α1 represents the first-
order frequency dependency of the attenuation in the frequency
range around the center frequency ω0. For the phase constant β,
the Taylor coefficients are

b0 = b(v0), b1 =
db
dv

∣∣∣∣
v=v0

, b2 =
1
2
d2b
dv2

∣∣∣∣
v=v0

(11)

where β0 corresponds to the phase per unit length, β1 charac-
terizes the group delay τg(ω0) per unit length, and β2 is a measure
for the waveguide dispersion at the center frequency. The approxi-
mation of the attenuation constant and the phase constant using a
Taylor series of first and second order has been found to be highly
accurate for relative bandwidths up to 5–10%. For most DWGs, a
larger relative bandwidth (up to ≈30%) would result in a fre-
quency dependency of α(ω) and β(ω) that is slightly higher
than the frequency dependency calculated by the Taylor approxi-
mation in this paper.

The transmission behavior of a DWG and consequently its
propagation constant γ(ω) depends on the geometry and

materials used as well as the operating frequency. In case of circu-
lar DWGs, the diameter D of the core in relation to the free-space
wavelength λ0 significantly influences the transmission behavior.
To illustrate this effect, the electric field E of the fundamental
mode HE11 in a circular DWG is shown for different wavelengths
related to its diameter in Fig. 2. The figure shows the cross section
of a circular DWG consisting of a core with a diameter D and a
relative permittivity εr,1 surrounded by a cladding with the relative
permittivity εr,2. At low frequencies, meaning large wavelengths in
relation to the DWG diameter (D/λ0≪ 1), the field of the funda-
mental mode HE11 spreads widely into the cladding material.
With increasing frequency, the field is further concentrated within
the core of the DWG until the mode propagates almost com-
pletely in the core (D/λ0≫ 1). In the mm-wave frequency
range, DWGs are usually operated with a diameter smaller or
approximately equal to the free space wavelength (D/λ0≈ 1).
Thus, the fundamental mode propagates in core and cladding.
The ratio of the field in the core as well as in the cladding signifi-
cantly influences the attenuation and phase behavior of a signal
transmitted along a DWG. Since this ratio depends on the fre-
quency, the attenuation and phase behavior can be strongly
frequency-dependent, which in turn leads to signal distortions.
In order to enable a general description of the propagation char-
acteristics of various DWGs at different frequencies, Snitzer intro-
duced the normalized frequency V and the material ratio Δ for
circular DWGs [18]:

V = v

c0

D
2

�����������
1r,1 − 1r,2

√ (12)

D = 1r,1 − 1r,2
1r,2

(13)

This allows a comparison of DWGs with different diameters and
materials at different frequencies, despite the large number of pos-
sible design variations. Furthermore, the normalized frequency V
allows a clear classification of single-mode and multi-mode wave-
guides. Circular waveguides with a combination of core diameter,
core and cladding material that fulfill V < 2.405 for a certain
frequency are single-mode DWGs. Normalized frequencies of
V≥ 2.405 indicate multi-mode DWGs. In the following, the nor-
malized frequency V and the material ratio Δ are used to derive a
general description of the Taylor coefficients α0, α1 and β0, β1, and
β2. This allows the reader to calculate these coefficients for a par-
ticular application without the need for FEM simulation tools or
other complex numerical calculations.

Fig. 2. Illustration of the E-field distribution E of the fundamental mode HE11 in a
DWG at different wavelengths λ0 related to its diameter D.
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Attenuation constant

The attenuation constant α(ω) of DWGs depends not only on the
materials used for core and cladding, but also on the field distri-
bution in both regions. For circular DWGs, the attenuation con-
stant can be calculated by

a(v) = p

l0

����
1r,1

√
R1 tan d1 + ����

1r,2
√

R2 tan d2
( ) (14)

where tanδ1, tanδ2 are the material loss factors and R1, R2 are the
geometric loss factors of core and cladding, respectively [19]
(pp. 339), with

Ri =

∫
Ai

Ei · E∗
i dA�������

m0

101r,i

√ ∫
A1

E1×H∗
1 dA+

∫
A2

E2×H∗
2 dA

[ ] . (15)

The geometric loss factors R1 and R2 represent the ratio
between the power dissipation due to dielectric losses and the
time-average power flow in core and cladding, respectively.
E1, H1 and E2, H2 are the electric and magnetic vector fields
of the fundamental mode HE11 in the core area A1 and in the
cladding area A2, respectively. Both geometric loss factors R1,
R2 can by normalized with respect to V and Δ. Their respective
values have been analytically calculated from the numerical
solution of the dispersion relation for circular DWGs as
described in [19] (pp. 137). The obtained values for R1 and
R2 are shown in Fig. 3(a) in dependency of the normalized fre-
quency V for typical material ratios of Δ in the mm-frequency
range. It can be seen that with increasing frequency the propor-
tion of the wave in the core region increases (R1 increases, R2

decreases). Since the cladding material has a lower permittivity
than the core material, and thus usually a lower loss factor, it
seems desirable to design DWGs with the lowest possible values
of R1 and the highest possible values of R2. However, for low
values of R1 waves are weakly guided by the DWG which
leads to unwanted radiation or mode coupling in case of dis-
continuities like bends. For this reason, higher values of R1

(V ≈ 2–3) in combination with low-loss core materials are pre-
ferred in mm-wave applications.

From (10) and (14), the Taylor coefficient α0 at a certain fre-
quency V0 = V(v0) = (v0/c0)(D/2)

�����������
1r,1 − 1r,2

√
and therefore

the attenuation of a DWG (20 log (ea0 l) in dB) can be calculated
by

a0 = v0

2c0

����
1r,1

√
R1(V0) tan d1 + R2(V0)�������

1+ D
√ tan d2

[ ]
(16)

Following the same procedure the Taylor coefficient α1 and there-
fore the change of the attenuation over frequency can by calcu-
lated by

a1 =
����
1r,1

√
2c0

tan d1 V0
dR1

dV

∣∣∣∣
V=V0

+R1(V0)

( )[

+ tan d2�������
D+ 1

√ V0
dR2

dV

∣∣∣∣
V=V0

+R2(V0)

( )]
(17)

It can be seen that α1 depends not only on the geometric loss
factors R1 and R2, but also on their derivatives dR1/dV and
dR2/dV. The derivatives for typical material ratios Δ are shown
in Fig. 3(b) as a function of the normalized frequency V. Due
to the negative values of the derivative of R2, it seems possible to
compensate for the frequency-dependent attenuation by appropri-
ate material selection. However, such a minimization of α1 can only
be achieved with a loss factor of the cladding material (tan δ2) sig-
nificantly higher than the loss factor of the core (tan δ1) for typical
material ratios Δ in the mm-wave frequency range. This would lead
to a considerably higher insertion loss of the DWG. For this reason,
α1 is significantly influenced by the permittivity and loss factor of
the DWG core in practice.

With the help of (16) and (17) as well as Figs 3(a) and 3(b), the
Taylor coefficients α0 and α1 can be directly calculated for a wide
range of DWGs in the mm-wave frequency range. In Table 1 these
coefficients are given exemplarily for single-mode DWGs (V0 = 2.4)
with air cladding (εr,2 = 1, tan δ2 = 0) and cores made of Teflon
(PTFE), polyethylene (PE), and polystyrene (PS). Comparing

Fig. 3. Geometric loss factors R1, R2 (a) and their respective derivatives dR1/dV, dR2/dV
(b) as a function of the normalized frequency V for different material ratios Δ.
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the PTFE and the PE waveguide, it can be seen that the higher
core permittivity of PE not only increases the transmission losses
(e.g. from 3.1 to 3.5 dB/m at 140 GHz), it also increases their fre-
quency dependency. In combination with a high loss tangent (see
PS in Table 1), the frequency dependency is highly increased.
Since it is still unclear how this frequency dependency affects a
signal transmitted via DWG, the coefficients α0 and α1 are used
in Section “Signal distortions” to calculate the signal distortions
caused by the frequency-dependent attenuation of circular
DWGs.

Phase constant

Similar to the attenuation constant α(ω) the phase constant β(ω)
depends on the materials and field distributions in core and clad-
ding. The phase constant is given by

b(v) = 2p
lg

= v

c0

���������
1r,eff (v)

√
(18)

where λg is the guided wavelength and εr,eff is the effective relative
permittivity with εr,2≤ εr,eff≤ εr,1. The effective relative permittiv-
ity is normalized by

B(V) = 1r,eff (V)− 1r,2

1r,1 − 1r,2
(19)

which is referred as the normalized phase constant that ranges
between values of 0 and 1 [19] (p. 61). The normalized phase
constant B can be used as a measure of the field concentration
in core and cladding. It is shown as a function of the normalized
frequency V for different values of Δ in Fig. 4(a). From (11), (18),
and (19), the Taylor coefficient β0 at a certain normalized fre-
quency V0 and therefore the phase change per unit length at
the center frequency ω0 can be calculated by

b0 =
2V0

D

������������
B(V0)+ 1

D

√
(20)

Following the same procedure the Taylor coefficient β1, namely

the group delay per unit length, can by calculated by

b1 =
�����������
1r,1 − 1r,2

√
2c0

· D db
dV

∣∣∣∣
V=V0

with

d
dV

b(V) =
2

1
D
+ B(V)

( )
+ V

d
dV

B(V)

D

�����������
B(V)+ 1

D

√ (21)

By multiplying the derivative of β with diameter D, a normalized
value for the first-order frequency dependency of the phase con-
stant is obtained which only depends on V and Δ. This value is
shown as a function of V for different values of Δ in Fig. 4(b).
From (21) and Fig. 4(b) it can be seen that β1 and therefore the
group delay τg varies strongly over frequency. In case of a broad-
band signal that is transmitted along such a waveguide, the differ-
ent frequency components of this signal reach the receiver at
different times. This effect is known as waveguide dispersion.
To reduce the waveguide dispersion, the group delay should there-
fore be flat over frequency. According to Fig. 4(b) this is only pos-
sible for certain normalized frequencies in a range of 2 <V < 3 or
V→∞.

The waveguide dispersion per unit length of a DWG is
described by the Taylor coefficient

b2 =
1
2

D 1r,1 − 1r,2
( )

4c20
· D d2b

dV2

∣∣∣∣
V=V0

with

d2

dV2
b(V) =

V
d2

dV2
B(V)+ 2

d
dV

B(V)

D

�����������
B(V)+ 1

D

√

−
V

d
dV

B(V)

( )2

2D B(V)+ 1
D

( )3/2 (22)

Table 1. Taylor coefficients α0 and α1 as well as β0, β1, and β2 for some exemplarily chosen DWGs with air cladding (εr,2 = 1, tanδ2 = 0)

Material f0 in GHz D in mm α0 in 1/m α1 in s/m β0 in 1/m β1 in s/m β2 in s2/m2

single−mode
(V0 = 2.4)

PTFE
(1r,1 = 2,

tan d1 = 2× 10−4)

PE
(1r,1 = 2.3,

tan d1 = 2× 10−4)

PS
(1r,1 = 2.5,

tan d1 = 1× 10−3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

80 2.86 0.21 6.4 × 10−13 2015 5.0 × 10−9 2.4 × 10−22

140 1.64 0.36 6.4 × 10−13 3530 5.0 × 10−9 1.3 × 10−22

240 0.95 0.62 6.4 × 10−13 6041 5.0 × 10−9 8.3 × 10−23

80 2.51 0.23 7.1 × 10−13 2091 5.5 × 10−9 2.6 × 10−22

140 1.43 0.40 7.1 × 10−13 3656 5.5 × 10−9 1.5 × 10−22

240 0.84 0.69 7.1 × 10−13 6282 5.5 × 10−9 7.9 × 10−23

80 2.34 1.21 3.7 × 10−12 2139 5.8 × 10−9 2.5 × 10−22

140 1.34 2.12 3.7 × 10−12 3746 5.8 × 10−9 1.3 × 10−22

240 0.78 3.62 3.7 × 10−12 6416 5.8 × 10−9 8.2 × 10−23

min.dispersion
(V0 = 2.62)

PTFE
(1r,1 = 2,

tan d1 = 2× 10−4)

⎧⎨
⎩

80 3.13 0.22 6.0 × 10−13 2060 5.0 × 10−9 − 1.6 × 10−24

140 1.79 0.38 6.0 × 10−13 3605 5.0 × 10−9 − 1.7 × 10−24

240 1.04 0.65 6.0 × 10−13 6174 5.0 × 10−9 1.8 × 10−24
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that has been derived from (11), (18), and (19). Multiplying the
second derivative of β with diameter D yields a normalized
value for the second order frequency dependency which only
depends on V and Δ (shown in Fig. 4(c)). By using (20)–(22) as
well as Fig. 4(a)–4(c), the Taylor coefficients β0, β1, and β2 can
now be directly calculated for a wide range of DWGs in the
mm-wave frequency range. From (22) and Fig. 4(c) it can be
seen that the dispersion vanishes completely (β2 = 0) for certain
DWG designs. Thus, it is possible to realize dispersion-minimized
circular DWGs in the normalized frequency range 2.5 <V < 2.8.
Air-clad PTFE waveguides, for example, with core diameters of
D = 3.13 mm, D = 1.79 mm, and D = 1.04 mm have negligible dis-
persion at 80 GHz, 140 GHz, and 240 GHz, respectively (V = 2.62,
Δ = 1) (see Table I). Due to the rounded diameter values, the dis-
persion minimum is not precisely obtained, but a comparison
between the single-mode DWGs and the dispersion-optimized
DWG in Table I shows that the Taylor coefficient β2 is consider-
ably lower. It can be observed that dispersion-minimized designs
are all multi-mode waveguides (V≥ 2.405). In order to benefit
from the low waveguide dispersion, it might be necessary to
reduce the modal dispersion of these DWGs as described in
[20]. However, one might also ask the question whether it is
necessary to reduce the dispersion β2 to zero to obtain negligible
signal distortions. For this reason, the Taylor coefficient β2 is used
in Section “Signal distortions” to calculate the signal distortions
caused by waveguide dispersion of circular DWGs.

Signal distortions

According to Heaviside [21] a channel is considered free of distor-
tion if its propagation constant fulfills

g̃opt(v) = a0 + jb1v. (23)

Since this condition cannot be fulfilled by a DWG, the distortions
to be expected when transmitting a signal via DWG are analyzed
in the following. To evaluate DWGs as communication channels,
the baseband (ω0 = 0) channel impulse response h(t) is used.
The baseband impulse response can be determined by inverse
Fourier transformation F−1 of the baseband frequency transfer
function

HBB(jv) = e− g0+g1v+g2v
2( )l for |v| ≤ vN

0 else

{
(24)

where γ0, γ1, and γ2 are the complex coefficients of the approxi-
mated propagation constant g̃(v) given in (9). As described in
Section “Data transmission system,” a band-limited signal is
assumed that is caused by an ideal low-pass filter as transmit
and receive filter (see equation (2)). Thus, the baseband impulse
response is

h(t) = F−1 HBB(jv)
{ } = 1

2p

∫vN
−vN

e−g̃(v)l · e jvtdv (25)

For an analytical description of the impulse response h(t), the
solution of (25) is separated into two parts. First, only distortions
caused by a frequency-dependent attenuation are taken into
account. In the second part, distortions due to a frequency-
dependent phase constant, namely the dispersion, are considered.

Fig. 4. Normalized phase constant B (a) as well as the first and second derivatives D
(dβ/dV) (b) and D(d2β/dV2) (c) as a function of the normalized frequency V for differ-
ent material ratios Δ.
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Distortions caused by attenuation

The frequency-dependent attenuation of DWGs is modeled by
the Taylor coefficients α0 and α1. Therefore, the baseband fre-
quency response of the DWG given in (24) simplifies to

HBB(jv) = e− g0+g1v( )l for |v| ≤ vN
0 else

{
(26)

By applying the inverse Fourier transform according to (25), the
baseband impulse response of the DWG channel is obtained:

h(t) = T
p

sin (jg1 l + t)vN
[ ]
jg1 l + t

e−g0 l (27)

This impulse response can now be used to determine the SNR and
the ISI caused by the frequency-dependent attenuation of a DWG.
For this considerations the Taylor coefficient β1 is set to zero,
since it only represents a time shift (namely by the group delay
τg) of the impulse response h(t) and, therefore, does not affect
SNR and ISI.

Following equation (4) the SNR depends on the magnitude
squared of the impulse response of the wanted signal |h(0)|2.
For a DWG channel with frequency-dependent attenuation
follows:

h(0)| |2= 1
v2
N
· sinh

2 (a1lvN )

(a1l)
2 e−2a0 l (28)

Since α1 l ωN is much smaller than 1 for DWGs in the mm-wave
frequency range (see Section “Attenuation constant,”) the small
argument approximation of hyperbolic sine (sinh(x)≈ x) can be
applied. Thus, the SNR simplifies to

SNR ≈ s2
D

s2
N
· e−2a0 l for |a1lvN | ≪ 1 (29)

This clearly shows that the SNR at the receiver of a
DWG-based transmission system is simply the SNR of a chan-
nel with purely additive white Gaussian-distributed noise
(AWGN channel) reduced by the attenuation of the DWG.
Thus, the effect of the frequency-dependent attenuation on
the SNR is negligible.

In addition to the SNR, the ISI is of interest in order to deter-
mine the expected signal distortions along the transmission chan-
nel. Applying the definition of the ISI given by (5) leads to an
analytical description of the ISI. The magnitude squared of the
impulse response of the wanted signal |h(0)|2 has already been
given by (28). The sum of the magnitude squared of the impulse
response of all signals that superimpose the wanted signal con-
verges to

∑1
k=−1
k=0

h(kT)| |2= 1
v2
N
· sinh2 (a1lvN )e

−2a0 l

· vN
a1l

coth (a1lvN )− 1

(a1l)
2

[ ]
(30)

(for derivation see Appendix A). Using (28) and (30) as well as
the definition of the ISI given by (5) an analytical description of

the ISI can be obtained:

ISI = 1
a1lvN ·coth (a1lvN )− 1

(31)

Figure 5(a) shows the ISI for the common range of Taylor coeffi-
cient α1 in the mm-wave frequency range for different signal
bandwidths 2fN and a DWG length of l = 1 m. It can be seen
that for typical values of the frequency-dependent attenuation
in the mm-frequency range a1 = 10−13.. 10−11 s/m a tolerable
ISI can be achieved for all bandwidths over a DWG length of
l = 1m. For example, the single-mode DWG made of PTFE
given in Table I of 1 m length would still achieve a very good
ISI of 33 dB even at a bandwidth of 20 GHz. Using a single-mode
DWG made of PS reduces the ISI to 17 dB due to higher fre-
quency dependency of the attenuation. With increasing length,
the signal distortions further increase. For example, if the length
is changed from 1 to 10 m, the ISI lowers by 20 dB. Therefore,
for larger bandwidths and longer length l an optimization of
the DWG toward low α1≤ 10−12 s/m is recommended. A detailed
study is given in Section “DWG design for low signal distortions.”

Distortions caused by dispersion

The frequency-dependent phase constant of DWGs is modeled by
the Taylor coefficients β0, β1, and β2, which includes the modeling
of group delay and dispersion. This yields the baseband frequency
transfer function given by (24). Applying the inverse Fourier
transform according to (25) leads to the impulse response of
the dispersive DWG channel

h(t) = T
4p

����
p

g2l

√
e

g1 l−jt( )2
4g2 l

−g0 l · erf
2g2lvN + g1 l − jt

2
����
g2l

√
( )[

− erf
−2g2lvN + g1 l − jt

2
����
g2l

√
( )]

(32)

where erf() represents the error function

erf (x) = 2��
p

√
∫x

0
e−t2dt. (33)

Similar to Section “Distortions caused by attenuation,” the Taylor
coefficient β1 is set to zero for further analysis, since it has no
influence on the signal distortions. Accordingly, the magnitude
squared of the wanted signal is

h(0)| |2= p

16v2
N

1
|b2|l

e−2a0 l · erf
j2b2lvN + a1 l

2
�����
jb2l

√
( )∣∣∣∣∣

− erf
−j2b2lvN + a1 l

2
�����
jb2l

√
( )∣∣∣∣∣

2

(34)

and the magnitude squared of the interfering signal is

∑1
k=−1
k=0

h(kT)| |2= p

16v2
N

1
|b2|l

e−2a0 l ·
∑1

k=−1k=0

e−
a
b2

p
vN
k · erf z1(k)

( )∣∣
− erf z2(k)

( )∣∣2
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with

z1(k) =
j2b2lvN + a1 l − j

p

vN
k

2
�����
jb2l

√

z2(k) =
−j2b2lvN + a1 l − j

p

vN
k

2
�����
jb2l

√
(35)

The series (35) converges (for proof see Appendix B) and is there-
fore analyzed numerically to determine the ISI. First, the ISI is
considered without the influence of frequency-dependent attenu-
ation (α1 = 0). The results are shown in Fig. 5(b). A considerably
greater effect on the ISI compared to the frequency-dependent
attenuation can be observed in Fig. 5(a). Especially with increas-
ing signal bandwidth the ISI increases significantly. For typical
values of |β2|≤ 10−21 s2/m2, an acceptable ISI can only be
achieved for smaller bandwidth and/or shorter length. If the
single-mode DWG made of PTFE in Table I is considered, it
can be seen that for a bandwidth of 20 GHz and a length of
1 m only an ISI in a range of ≈10.. 20 dB is achieved. This is a
significant reduction compared to the ISI caused by frequency-
dependent attenuation. A transmission over l≥ 10 m seems only
possible for smaller bandwidths (e.g. 5 GHz). However, as already
shown in Section “Phase constant,” the waveguide dispersion can
be reduced to almost zero (|β2|→ 0) for certain circular DWGs. In
this case, the ISI and therefore the transmission length would be
infinite. Since in practical application, the frequency-dependent
attenuation is not negligible (see Section “Distortions caused by
attenuation”), the question remains whether a minimized wave-
guide dispersion actually results in a low overall ISI.

DWG design for low signal distortions

As shown in Sections “Distortions caused by attenuation” and
“Distortions caused by dispersion,” frequency-dependent attenu-
ation as well as waveguide dispersion have a significant effect
on signals transmitted along a DWG. This is especially true for
long distance communications (l≥ 10 m). However, it has also
been shown that for certain circular DWGs, the waveguide disper-
sion vanishes completely (β2 = 0). An interesting question at this
point is whether this dispersion minimum really leads to minimal
signal distortions despite frequency-dependent attenuation (α1≠ 0).
To answer this question, equation (35) is evaluated numerically
for values of α1≠ 0. In order to keep the variation of the results
low, only a bandwidth of 2fN = 5 GHz is considered. The results
for the ISI in dependency of α1 and β2 are shown in Fig. 5(c).
It can be seen that for small values of α1 (≤ 10−15 s/m) the ISI
as a function of α1 and β2 in Fig. 5(c) is almost congruent with
the ISI in Fig. 5(b) (B = 5 GHz), where only dispersion caused
by frequency-dependent group delay (α1 = 0) is considered. The
influence of the frequency-dependent attenuation on the ISI can
therefore be neglected for α1≤ 10−15 s/m. With increasing values
of α1, however, a limitation in the maximum achievable
ISI appears despite negligible waveguide dispersion (β2≤
10−25 s2/m2). For example, a DWG with a Taylor coefficient of
α1 = 10−12 s/m and 1 m length leads to an ISI of ISI≈ 41 dB
even if the waveguide dispersion is zero. This limitation in the
maximum achievable ISI despite negligible waveguide dispersion
corresponds to the values determined for the attenuation-
dependent ISI in Fig. 5(a) (B = 5 GHz). Whether the optimization

Fig. 5. ISI as a function of Taylor coefficient α1 (a) and β2 (b) for different signal band-
widths 2fN as well as α1 and β2 (c) at a signal bandwidth of 2fN = 5 GHz.
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of a DWG to low waveguide dispersion also leads to a reduction
of the expected ISI depends mainly on the frequency-dependent
attenuation of the respective DWG. For example, for a DWG
with a Taylor coefficient of α1 = 10−12 s/m, reducing the wave-
guide dispersion below |β2|≤ 3 × 10−23 s2/m2 would not further
improve the ISI. This clearly shows that low signal distortions
in DWGs can only be achieved if the frequency-dependent
attenuation in addition to dispersion is reduced. This fact has
not been considered in the majority of scientific studies so far.
Furthermore, it is more challenging to reduce the frequency
dependency of the attenuation than to reduce the waveguide dis-
persion of a DWG. Considering the mathematical description of
the first-order frequency-dependent attenuation in (17), it is
noticeable that the loss factors of core and cladding (tanδ1,
tanδ2) occur with different prefactors. If both factors are consid-
ered separately, it can be seen that the prefactor of the cladding
material’s loss factor becomes negative for normalized frequencies
of V≥ 1.2 (see Fig. 6). Thus, a minimization of the Taylor coeffi-
cient α1 to zero is theoretically possible. However, a reduction of
the frequency dependency of the attenuation is only possible if the
cladding material has significantly higher losses than the core
material (tan d2 ≈ 4 .. 5× tan d1). This would result in a signifi-
cant increase of the total losses of the DWG and thus in a
decrease of the SNR at the receiver.

It can generally be said that for low material ratios Δ the fre-
quency dependency of attenuation and group delay is reduced
and the signal distortions decrease. However, lower values of Δ
also result in a lower field concentration in the core of the DWG
(see Fig. 3(a)). This requires a larger size of the DWG package
(core + cladding). In addition, the sensitivity to discontinuities
will be increased. Therefore, a compromise on practical issues
must be found when reducing Δ. In most of nowadays DWG appli-
cations, the relative permittivity of the used materials is in a range
of 1r ≈ 2−3 and the loss factor in a range of tan d ≈ 10−4−10−3.
Considering (17) and Fig. 6, the respective range of this Taylor
coefficient is a1 ≈ 10−13−10−11 s/m (V ≈ 2−3). For such
DWGs, a minimization of the waveguide dispersion is recom-
mended, since it also reduces the frequency-dependent attenuation
to an acceptable value. For the waveguide-dispersion-minimized
DWG in Table I with a Taylor coefficient of α1 = 6.0 × 10−13 s/m,
an ISI of ISI = 10 dB could still be achieved over lengths of 58m
(5 GHz bandwidth) or 14m (20 GHz bandwidth). Reducing α1
by a factor of 10 allows to increase the respective lengths by the
same factor. For comparison, using the single-mode DWG made
of PTFE in Table I with Taylor coefficients of α1 = 6.4 × 10−13 s/m
and β2 = 2.0 × 10−22 s/m would only achieve a transmission length
of 19m (5 GHz bandwidth) or 1.3 m (20 GHz bandwidth). This
clearly shows the great potential of dispersion optimization of
DWGs in the mm-wave frequency range.

Conclusion

In this paper, a detailed study of signal distortions due to
frequency-dependent attenuation and group delay of DWGs in
a low-complexity digital transmission system was presented.
Based on a general description of this frequency dependency
for circular DWGs, it was shown that both frequency-dependent
attenuation as well as waveguide dispersion have a significant
effect on the signal transmission. Although it is possible to reduce
the waveguide dispersion to zero by proper waveguide design, the
remaining frequency-dependent attenuation significantly limits
the transmission capacity. It has also been shown that a complete

compensation of this effect is only feasible if the cladding material
of the DWG shows significantly higher losses than the core
material. With the currently available materials, this would result
in high transmission losses. However, reducing the frequency-
dependent attenuation to an acceptable level can be achieved
with the currently available materials, especially for dispersion-
minimized DWGs. For this purpose, it is recommended to choose
a core material with low permittivity and low losses (e.g. PTFE
and PE) and at the same time a low material ratio Δ. Such
improvements of the transmission channel allow to further reduce
signal distortions and thus to further increase the maximum
achievable data rates and transmission distances without the
need of more complex transceivers.
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Appendix A. Derivation of ISI caused by
frequency-dependent attenuation

The ISI caused by a frequency-dependent attenuation of a DWG is defined by
(5) with (28) in the numerator and the infinite sum

∑1
k=−1
k=0

h(kT)| |2=
∑1

k=−1k=0

1
v2
N
· sinh2 (a1lvN )

(a1l)
2 + (

p

vN
k)2

e−2a0 l (A.1)

in the denominator. This denominator can be rewritten as

∑1
k=−1
k=0

h(kT)| |2=
∑1
k=−1

h(kT)| |2− h(0)| |2 (A.2)

where |h(0)|2 is given by (28) and

∑1
k=−1

h(kT)| |2= 1
v2
N
· sinh2 (a1lvN )e

−2a0 l ·
∑1
k=−1

1

(a1l)
2 +

(
p

vN
k

)2

= 1
v2
N
· vN
a1 l

sinh2 (a1lvN ) coth (a1lvN )e
−2a0 l (A.3)

Thus

∑1
k=−1
k=0

h(kT)| |2= 1
v2
N
· sinh2 (a1lvN )e

−2a0 l · vN
a1l

coth (a1lvN )− 1

(a1l)
2

[ ]
(A.4)

Consequently, for the ISI follows

ISI = h(0)| |2∑1
k=−1
k=0

h(kT)| |2
= 1

a1lvN ·coth (a1lvN )− 1
(A.5)

Appendix B. Convergence of ISI caused by dispersion

To proof that the ISI caused by frequency-dependent attenuation and frequency-
dependent group delay of a DWG can be calculated numerically, as it has been
done in Section “Signal distortions,” it is needed to proof its convergence. The
ISI under influence of dispersion is defined by (5) with (34) in the numerator
and (35) in the denominator. To verify that the infinite series in (35) converges,
the series is first divided into two sums, each with a positive running index k.
Afterward, the convergence of both sums is verified separately:

∑1
k=1

e−
a1
b2

p
vN
k · erf z1(k)

( )− erf z2(k)
( )∣∣ ∣∣2

+
∑1
k=1

e
a1
b2

p
vN
k · erf z1(− k)

( )− erf z2(− k)
( )∣∣ ∣∣2 (B.1)

The convergence of both sums in (B.1) can be verified by the comparison test
which states that an infinite series

∑1
n=0 an converges, if there is a convergent

infinite series
∑1

n=0 bn for whose real summands holds: |an|≤ |bn| for all
n ≥ n0 [ N, where n0 can be any countable running index.

Using the triangle inequality

|z1 + z2| ≤ |z1| + |z2| for z1, z2 [ C (B.2)

and the asymptotic expression of the error function [22]

erf (z) � 1− e−z2��
p

√
z

for z [ C (B.3)

it can be stated for the summands of the first sum in (B.1) that
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(B.4)

In order to fulfill the comparison test, it is necessary to verify whether the sum

∑1
k=1

e
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(B.5)

actually converges. This can be verified by the ratio test which states that an
infinite series

∑1
n=0 bn converges if its summands satisfy: |(bn+1)/(bn)| < 1
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for n ≥ n0 [ N. Thus,
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with

Re{z1(k)
2} = a1vN − a1

b2

p

2vN
k, (B.7)

Re{z2(k)
2} = −a1vN − a1

b2

p

2vN
k, (B.8)

|z1(k)| =
���������������������������������������
a2
1

4|b2|
+ p2k2

4|b2|v2
N
− p|b2|k

b2
+ |b2|v2

N

√
, (B.9)

|z2(k)| =
���������������������������������������
a2
1

4|b2|
+ p2k2

4|b2|v2
N
+ p|b2|k

b2
+ |b2|v2

N

√
. (B.10)

Equation (B.6) simplifies to

ea1vN

|z2(k+ 1)| +
e−a1vN

|z1(k+ 1)|
ea1vN

|z2(k)|
+ e−a1vN

|z1(k)|
, 1. (B.11)

It can be directly seen that with increasing running index k the numerator in
(B.11) decreases faster than the denominator. Thus, the series (B.5) must have

a non-countable set of summands with the running index k > k0 that fulfill
condition (B.11). As a result, the series (B.5) and therefore the first sum in
(B.1) converges. Since the proof given for the first sum in (B.1) also holds
for the second sum, equation (B.1) converges. Obviously, the convergence of
series (B.1) is also valid for the case α1 = 0, as used in Section “Distortions
caused by dispersion.”
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